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1 Introduction
The aim of this course is to introduce a series of ideas related to the robust analysis of solutions
to differential equations driven by irregular signals and related problems. Initiated by work of
T. Lyons in the '90 these ideas goes under the name of rough path theory. A rough path is an
object which lives on top of a given continuous path on a Banach space (which can be infinite
dimensional). This object, in some sense, encodes informations about the “microscopic” behav-
iour of the path, information which in general is not possible to recover in a robust (continuous)
way from the knowledge of the path alone. This lack of robustness is essentially due to the low
regularity of the path. In some sense we will trade regularity of the path itself with some analytic
information on this additional structure. On a general perspective our task can be considered that
of extending natural non–linear operations to spaces of distributions (in the sense of L. Schwartz)
in a continuous way. This is of course not possible using only analytical tools in standard spaces
of distributions since there are easy counterexample at hand. The key new idea is to identify par-
ticular sets of distributions (or functions) on which we possess enough information to make our
operations continuous. In order to keep the exposition at a reasonable level, away from technical
difficulties, we will restrict ourselves to analyse the case where the irregular behaviour depends
on a single independent real variable which will be mostly the time variable. The prototypical
problem of the difficulties which can arise while mixing non–linear operations and distributions
is the analysis of the continuity of the intergral map given by

( f ,g) ↦ I( f ,g): =∫0

⋅
f (s)∂sg(s)ds

Cα × Cβ → Cγ

where Cζ denotes the space of ζ–Hölder continuous real functions in [0, 1]. This map is well
defined for f continuous and g continuously differentiable and we ask if it is possible to extend it
in a continuous way to all ( f , g) ∈ Cα × Cβ for certain values of the Hölder exponents α,β.

That this extension is not possible in general is clear from the following counterexample. Let

fn(t) = n−αcos(2πn t), gn(t) =n−αsin(2π n t),

for some fixed α ∈ (0, 1) and n⩾ 1. Then if we consider the Hölder semi–norm

‖h‖ζ = sup
0⩽s⩽t⩽1

∣h(t) −h(s)∣
∣t − s∣ζ
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we have
‖ fn‖ζ +‖gn‖ζ →0

as n →∞ whenever 0 <ζ <α. However

I( fn,gn)(t) =−2π n1−2α∫0

t
cos2(2π ns)ds =−2π n1−2α( t

2 + o(1))
uniformly in t ∈ [0, 1]. Which means that I( fn, gn)(1) → I(0, 0)(1) = 0 only when 2α > 1. This
example shows that the integral map ( f , g) ↦ I( f , g)(1) cannot be continuous from Cα × Cα if
α <1/2. In general is easy to see that the map cannot be continuous from Cα ×Cβ if α +β <1.

The fact that, on the other hand, the integral map is continuous from Cα × Cβ → Cβ when α +
β > 1 is already a quite useful result, as we will show during these lectures. The map IY which
one obtains by such an extension is referred to as the Young integral. Originally Young proved
this result in a topology different from the Hölder one but for the moment we will not discuss
further this issue. The Hölder topology is quite convenient for many of our considerations and
we will stick to it for most of our exposition. Construction of the Young integral and some of
its applications will be our first goal. Rough paths will appear only later, when we will try to go
beyond Young's theory.

2 The sewing map
There are various ways to construct the Young integral, here we will follow a longish path which
however will build up the basic tool to handle also the rough path case. This tool is the sewing
map and the related sewing lemma.
In order to introduce this map we would like to have an algebraic characterization of the (indef-
inite) integral I( f , g) of the integrand f with respect to the integrator g, characterization which
do not use differential calculus (since we hope to extend our construction to non–differentiable
objects). From a differentiable point of view, the integral I( f , g) is just the unique solution of the
differential equation ∂tI( f ,g)(t)= f (t)∂tg(t). Going from derivatives to finite increments we could
say that the integral I( f , g) is that particular function I which satisfy

I(t) − I(s) = f (s)(g(t) −g(s)) +ou(∣t − s∣), I(0) = 0, (1)

for any 0⩽s⩽ t ⩽1, where the remainder is ou(∣t −s∣) uniformly in s, t. It is clear that this property
is satisfied by the usual integral as soon as g is at least C1. Moreover this equation provides a
characterization of the integral since there cannot be another function J (necessarily continuous)
with the same property, since in this case the difference D = I −J would satisfy

D(t) −D(s) =ou(∣t − s∣)

but this means that D(t) =D(s) for all 0⩽s⩽ t ⩽1 and so D(t)=0 for all t ∈ [0,1]. Eq. (1) provides
then an alternative description of the integral map. We can look at it as saying that the integral
I is the only function whose increments match the “germ” f (s)(g(t) − g(s)) modulo a negligible
error. Underlying this picture there is a cochain complex of n-increments defined as follows: an
n-cochain (n ⩾1) is an element of Cn(V) =C(Δn; V) where Δn = Δn(0,1) and

Δn(s, t) ={(s1, …, sn): s⩽ s1 ⩽ ⋯⩽ sn ⩽ t}
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where V is a vector space (for the moment just consider V = ℝ) and the coboundary δ: Cn(V) →
Cn+1(V) is given by

δf (s1, …, sn+1) =∑
k=1

n+1
(−1)n+1−k+1 f (s1, …, sk, …, sn+1)

so for example

δf (s, t) = f (t) − f (s), δf (s,u, t) = f (s, t) − f (u, t) − f (s,u).

The basic property of the coboundaries is δ ∘δ =0. This defines the complex

ℝ →C1⟶δ
C2⟶δ

C3⟶δ
C4⟶δ ⋯

where the first arrow is given by the constant map. This complex is exact: if δf = 0 then there
exists g such that f = δg (find it). Letting A(s, t) = f (s)δg(s, t) = f (s)(g(t) − g(s)) we have
A = δI + R where R(s, t) = ou(∣t − s∣). So we see that R (and thus I) is obtained by computing a
particular representative of the class of A in the cohomology of the above complex, namely the
representative such that R(s, t) = ou(∣t − s∣). Given two arbitrary functions f , g it is not clear that
this is always possible. But whenever it is possible we can try to define the integral of f with
respect to g (modulo constants) from the formula A=δI +R. Now the class of A can be identified
with δA ∈ C3. The sewing map provides, under certains smallness conditions, the way to recover
R from δA.

In order to formulate a precise statement we need to introduce topologies on Cn. We say that
h ∈Cn

α if

‖h‖α,[s,t] ≔ sup
(s1,…,sn)∈Δn(s,t)

∣h(s1, …, sn)∣
∣sn − s1∣α <+∞.

And we let Cn
α+ =∪β>αCn

β. Remark that δC1 ∩C2
1+ = {0}.

Theorem 1. (Sewing map) There exists a unique map Λ:C3
1+ ∩δC2 →C2

1+ such that δΛ=IdC3. It
satisfies

‖ΛδA‖z,I ⩽ 2 z

2 z−2‖δA‖z,I

for all z >1 and closed interval I ⊆ℝ.

Proof. Assume we already showed the existence of a map Λ such that δΛ= IdC3 and for which

∣(ΛδA)(s, t)∣ ⩽C ∣t − s∣ρ, (s, t) ∈ Δ2

for some ρ>1 (actually less is necessary) then we show that also the claimed estimate for Λ holds.
We just note that for all s, t ∈ I we have

∣(ΛδA)(s, t)∣ ⩽ ∑
i=0

2n−1
∣(ΛδA)(tin, ti+1

n )∣ +∑
k=0

n−1

∑
i=0

2k−1
∣δ(ΛδA)(t2i

k+1, t2i+1
k+1 , t2i+2

k+1 )∣
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where {tin = s +2−n(t − s) i, i =0, …,2n} is a dyadic partition of [s, t]. Direct estimations give

∣(ΛδA)(s, t)∣⩽ C2n(1−ρ) +‖δA‖z,I∑
k=0

n−1
2k2 −kz∣t − s∣z ⩽C2n(1−ρ) + ‖δA‖z,I

1
1 −21−z ∣t − s∣z

and sending n →∞ we obtain

∣(ΛδA)(s, t)∣⩽ 1
1− 21−z‖δA‖z,I ∣t − s∣z, s, t ∈ I.

Let us prove now the existence of such a map Λ. Fix a smooth function Q:ℝ→ℝ+ with compact
support in ℝ+ and unit integral and let Qσ(x) = Q(σ−1x)σ−1. Extend A to ℝ × ℝ so that A(s,
t) = A(J0,1(s), J0,1(t)) where Ja,b(r) = min (a, max (r, b)). For σ > 0 and 0 ⩽ s ⩽ t ⩽ 1 define a
approximation Aσ to A which is smooth in the second variable:

Aσ(s, t) = ∫s

t
dr∫ℝ

drʹ ʹQσ́(rʹ ʹ)A(s, r + rʹ ʹ) = ∫ℝ
drʹ ʹ Qσ(rʹ ʹ)(A(s, t + rʹ ʹ) − A(s, s+ rʹ ʹ))

where Qσ́(x) = ∂xQσ(x). This strange definition is motivated by the fact that we want Aσ(s, s) = 0.
Note that

δAσ(s,u, t) = ∫ℝ
drʹ ʹ Qσ(rʹ ʹ)(δA(s,u, t + rʹ ʹ) − δA(s,u, u+ rʹ ʹ))

and that Aσ → A and δAσ →δA pointwise. Now let

(ℛAσ)(s, t) = ∫s

t
∂2Aσ(r, r)dr = ∫s

t
dr∫ℝ

drʹ ʹQσ́(rʹ ʹ)A(r, r + rʹ ʹ)

where ∂2Aσ(s, t) = ∂tAσ(s, t) and set ΛδAσ = Aσ − ℛAσ. Then

(ΛδAσ)(s, t) =∫s

t
dr∫ℝ

drʹ ʹ Qσ́(r + rʹ ʹ)(A(s, rʹ ʹ) − A(r, rʹ ʹ)) = ∫s

t
dr∫ℝ

drʹ ʹQσ́(rʹ ʹ)δA(s, r, r + rʹ ʹ)

and δ(ΛδAσ)(s, u, t) =δAσ(s, u, t). When ∣t − s∣⩽ σ we can estimate

∣(ΛδAσ)(s, t)∣≲ ∣t − s∣σ−1(∣t − s∣+ σ)z ≲ ∣t − s∣σz−1.

While when ∣t − s∣ >σ by dyadically refining at each step the interval [s, t] we have

(ΛδAσ)(s, t) = ∑
i=0

2n−1
(ΛδAσ)(tin, ti+1

n ) +∑
k=0

n−1

∑
i=0

2k−1
δAσ(t2i

k+1, t2i+1
k+1 , t2i+2

k+1 )

Choosing n such that ∣t − s∣2−n ⩽σ < ∣t − s∣2−n+1 together with the two estimates

∣(ΛδAσ)(tin, ti+1
n )∣ ≲ ∣t − s∣2−nσz−1 ≲ ∣t − s∣z2−nz
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and for k <n

∣δAσ(t2i
k+1, t2i+1

k+1 , t2i+2
k+1 )∣ ≲ (∣t − s∣2−k +σ)z ≲2−zk∣t − s∣z(1+ 2k−n)z ≲ 2−zk∣t − s∣z

gives

∣(ΛδAσ)(s, t)∣ ≲ ∣t − s∣z[2n(1−z) + ∑
k=0

n−1
2k(1−z)]≲ ∣t − s∣z ≲ ∣t − s∣

so

sup
σ >0

sup
0⩽s<t⩽1

∣(ΛδAσ)(s, t)∣
∣t − s∣ ≲1.

Now when ∣t − s∣ >σ

∣Aσ(s, t)∣ ⩽ ∣t − s∣γ +(∣t − s∣ +σ)z ⩽∣t − s∣γ + ∣t − s∣z ≲∣t − s∣γ

and when ∣t − s∣ ⩽σ

∣Aσ(s, t)∣≲ σ−1∣t − s∣(∣t − s∣+ σ)γ ≲ ∣t − s∣σγ−1 ≲∣t − s∣γ.

So

sup
σ >0

sup
0⩽s<t⩽1

∣(ℛAσ)(s, t)∣
∣t − s∣γ ≲1

which means that the sequence of functions fσ(t) = ℛAσ(0, t) is uniformly continuous. By
choosing a converging subsequence denoted fn we obtain a limit f which we call (ℛA)(0, t) =
f (t). Then noting that Aσ → A pointwise and letting ΛδA = ℛA − A we have (ΛδA)(s, t) =
limσ →0 (ΛδAσ)(s, t) and the key estimate

∣(ΛδA)(s, t)∣ = lim
n→∞

∣(ℛAσn − Aσn)(s, t)∣≲ ∣t − s∣z

which almost concludes the proof of existence since δ(ΛδAσ) =δAσ →δA pointwise by the conti-
nuity of A. □

Alternative proof of the sewing lemma. Other proofs of existence of the sewing map proceed
via discrete approximations. For example, letting {ui

n} be the n-th order dyadic partition of [0,1]
one can let

=nA(t) = ∑
i=0

2n−1
>t⩾uiA(ui

n, ui+1
n ∧ t)

and estimating

∣δ=nA(s, t) − A(s, t)∣ ⩽ ∑
k=ℓ+1

n
∣δ=kA(s, t) −δ=k−1A(s, t)∣

where ℓ is the greatest integer such that 2−ℓ ⩾∣t −s∣. The differences can be readily controlled by

∣δ=kA(s, t) − δ=k−1A(s, t)∣ ≲2 k−ℓ2−zk‖δA‖z
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and one obtains

∣δ=nA(s, t) − A(s, t)∣ ≲‖δA‖z2−ℓ ∑
k=ℓ+1

∞
2k(1−z) ≲‖δA‖z2−ℓz ≲‖δA‖z∣t − s∣z

from which it is easy to conclude.
Another strategy allows to control the limit over all partitions A of [s, t]⊆ [0,1] as their size goes
to zero. In this case we let

=AA = ∑
[a,b]∈A

A(a,b)

Now fix s, t and for a given partition A of [s, t] with n⩾2 intervals let [a,b], [b,c] two consecutive
intervals of A for which ∣c − a∣ ⩽ r = 2∣t − s∣ / (n − 1). Note that this pair has to exist otherwise
∣t − s∣ < r (n − 1)/2 ⩽ ∣t − s∣. If we remove the point b from the partition we obtain a partition Aʹ
with n −1 intervals and for which

∣=AA− =Aʹ A∣ ≲ ∣δA(a, b,c)∣ ≲‖δA‖z
2 z

(n− 1)z ∣t − s∣z.

Continuing up to get the trivial partition [s, t] we obtain the maximal estimate

∣=AA − A(s, t)∣≲ ‖δA‖z∑
n⩾1

2 z

nz ∣t − s∣z ≲‖δA‖z∣t − s∣z.

By the same reasoning, if B ⊇A are two partitions then

∣=BA− =AA∣⩽ ∑
[a,b]∈A

∣=B∩[a,b]A− A(a,b)∣ ⩽ ∑
[a,b]∈A

‖δA‖z∣b− a∣z ≲ ∣A∣z−1.

This shows that the family {=AA}A is Cauchy. If we let I(t) =limA=AA where the limit is taken
over all partition of [0, t] as the size goes to zero, we have

∣I(t) − I(s) − A(s, t)∣ ⩽ limsup
A⊆[s,t]

∣=AA− A(s, t)∣ ≲‖δA‖z∣t − s∣z.

Riemann sums. The sewing map provides a “correction” to a given 2-increment A in order to
make it closed and then exact by the exactness of the complex C∗. Indeed δ(A−ΛδA)=0 so there
exists a unique I ∈ C1 such that δI = A −ΛδA and I(0) = 0. That this function I is a generalisation
of the (Riemann) integral can be understood via the following corollary relating it to limit of
Riemann–like sums.

Corollary 2. Let δA∈ C3
1+ ∩ δC2 and let δI = A− ΛδA, then

SA(s,t)(A) = ∑
i

A(ti, ti+1) → I(t, s)

where the limit is taken over partitions A(s, t)={ti}i of the interval [s, t] as the size ∣Π(s, t)∣ of the
partition goes to zero.
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Proof. Take z> 1 such that A∈ C3
z. Then ∣ΛδA(ti, ti+1)∣≲z ∣ti+1 − ti∣z ≲z ∣A(s, t)∣z−1∣ti+1 − ti∣ and

∑
i

A(ti, ti+1) = ∑
i

δI(ti, ti+1) +∑
i

ΛδA(ti, ti+1) =δI(s, t) + ∣A(s, t)∣z−1∑
i

O(∣ti+1 − ti∣)

=δI(s, t) + ∣A(s, t)∣z−1O(∣t − s∣) → δI(s, t)

as ∣A(s, t)∣→ 0. □

The Young integral. A first easy consequence of the sewing lemma is the existence of the
Young integral.

Theorem 3. For any α,β ∈ (0,1) such that α+β >1 the integral map I has a continuous extension
IY : Cα × Cβ → Cβ such that

∣δIY( f ,g)(s, t) − f (s)δg(s, t)∣ ≲α+β ∣t − s∣α+β‖ f ‖α‖g‖β

and

‖IY( f , g)‖β,[a,b] ⩽ (‖ f ‖∞,[a,b] +‖ f ‖α,[a,b])‖g‖β,[a,b]

for any 0 ⩽a ⩽b ⩽1. Moreover

IY( f , g)(t) = lim
∣A(0,t)∣→0 ∑

i=0

n−1
f (ti)(g(ti+1) − g(ti))

for partitions A(0, t) = {0= t0 ⩽ t1 ⩽ ⋯⩽ tn = t} of [0, t].

Proof. Let A(s, t) = f (s)δg(s, t) and note that δA(s,u, t) = δf (s,u)δg(u, t) so

‖δA‖α+β,[a,b] ⩽ ‖ f ‖α‖g‖β,[a,b]

Since α+β >1 we can apply the sewing map and let RY( f ,g)=ΛδA with ‖RY‖α+β ≲α+β ‖ f ‖α‖g‖β.
Then we let IY( f , g)(t) = A(0, t) − RY(0, t). Now δIY( f , g)(s, t) = A(s, t) − RY(s, t) and the claim
readily follows since for smooth f , g we have δI( f , g)(s, t) = A(s, t) + ou(∣t − s∣) so in this case
IY( f , g) = I( f ,g). Note moreover that

‖IY( f ,g)‖β,J ⩽ ‖A‖β,J + ‖RY‖β,J ⩽ ‖ f ‖∞,J‖g‖β,J +‖RY‖α+β,J ⩽ (‖ f ‖∞,J + ‖ f ‖α,J)‖g‖β,J.

For the final statement we use Corollary 2. □

An alternative construction of the Young integral. Consider smooth functions f , g and a
dyadic decomposition {tin}i,n of [s, t]. Then

I( f , g)(s, t) − f (s)(g(t) −g(s)) = ∑
i=0

2n−1
I( f − f (tin), g)(tin, ti+1

n ) − ∑
k=0

n−1

∑
i=0

2k−1
H(t2i

k+1, t2i+1
k+1 , t2i+2

k+1 )
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where H(s, u, t) =( f (u) − f (s))(g(t) −g(u)). So now

∣I( f ,g)(s, t) − f (s)(g(t) − g(s))∣⩽ 2n∣t − s∣α+12−(1+α)n‖ f ‖α‖g‖1 +∑
k=0

n−1
‖ f ‖α‖g‖β2k−(α+β)(k+1)

⩽2n∣t − s∣α+12−(1+α)n‖ f ‖α‖g‖1 + 2−α−β

1 −21−α−β‖ f ‖α‖g‖β

and taking the limit n →∞ we get

∣I( f , g)(s, t) − f (s)(g(t) −g(s))∣ ⩽ 1
2α+β −2‖ f ‖α‖g‖β.

In particular this implies that the bilinear map I has the bound

‖I( f , g)‖β ⩽ C(‖ f ‖∞ + ‖ f ‖α)‖g‖β (2)

so it can be extended continuously to the closure of Cα ×C1 in Cα ×Cβ with the same bound. Now
the closure C0

β of C1 in Cβ does not coincide Cβ but it is enough to observe that Cβ ⊆C0
β−ε for any

small ε> 0. Then if C 1∋gn →g ∈Cβ in Cβ we have also I( f ,gn) → I( f ,g) in Cβ−ε for some small
ε. The sequence (I( f ,gn))n is bounded in C β and we can extend the bound (2) to all g∈ Cβ.

Weighted spaces. To discuss estimates involving the sewing map (for example for rough equa-
tions) it is useful to dispose of weighted Hölder norms. Take τ > 0 and any function g: ℝ+ → ℝ+
positive and non–decreasing and define norms on Cn by

‖h‖α,τ,g ≔ sup
(s1,…,sn)∈Δn(s,t)

∣h(s1,…, sn)∣
g(sn/τ)∣sn − s1∣τα

< +∞.

where ∣a∣τ =min (∣a∣,τ). Note that we have the relations

‖h‖α,τ,g ⩽ τβ−α‖h‖β,τ,g, β ⩾ α

and for f ∈C1

‖ f ‖∞,τ,g ≔ sup
t⩾0

∣ f (t)∣
g(t /τ) ⩽ sup

t⩾0

∣ f (0)∣
g(t /τ) +τα ‖δf ‖α,τ,g.

The next corollary gives estimates of the sewing map in these weighted norms.

Corollary 4. For any z> 1

‖ΛδA‖z,τ,Gτ ⩽ 2 z

2 z−2‖δA‖z,τ,g

where

G(t) =g(t) +∫0

t
g(s)ds.
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Proof. Given 0⩽ s< t and n≥ 1, set tin = s+ i2−n (t − s), and consider

ΛδA(s, t) = ∑
i=0

2n−1
ΛδA(tin, ti+1

n ) − A(s, t) =∑
k=0

n−1

∑
i=0

2k−1
δA(t2i

k+1, t2i+1
k+1 , t2i+2

k+1 ).

We already know that ∣ΛδA(s, t)∣ ⩽Cz‖δA‖z,[s,t]∣t − s∣z with Cz = 2 z

2 z−2 . Now, if ∣t − s∣⩽ τ, we have
∣t − s∣τ = ∣t − s∣, so the above inequality implies clearly that we have

∣ΛδA(s, t)∣
Gτ (t /τ) ∣t − s∣τz

⩽ ∣ΛδA(s, t)∣
g (t /τ) ∣t − s∣τz

⩽ Cz
‖δA‖z,[s,t]

g (t /τ) ⩽Cz‖δA‖z,τ,g (3)

in that case. If now ∣t − s∣ > τ, divide the interval [s, t] into sufficiently many intervals [tk, tk+1] of
equal length no greater than τ, say N sub-intervals. Since δΛδA= δA we have

(ΛδA)(s, t) = ∑
k=0

N−1
(ΛδA)(tk, tk+1).+ ∑

k=0

N−1
δA(s, tk, tk+1).

The choice of times tk and inequality (3) guarantee that

∑
k=0

N−1
∣(ΛδA)(tk, tk+1)∣⩽ Cz‖δA‖z,τ,g τz ∑

k=0

N−1
g (tk+1/τ) ⩽Cz‖δA‖z,τ,g ∣t − s∣τz G (t /τ)

where we used that

∑
k=0

N−1
g (tk+1/τ) ⩽ ∑

k=0

N −1 1
τ ∫tk+1

tk+2∧t
g (s/τ)ds⩽ ∫0

t
g(s/τ)ds

τ =∫0

t/τ
g(s)ds ⩽G(t /τ).

The conclusion follows from the other elementary inequality

∑
k=0

N−1
∣δA(s, tk, tk+1)∣ ⩽τz‖δA‖z,τ,g∑

k=0

N −1
g (tk+1/τ) ⩽ ‖δA‖z,τ,g τz G (t /τ).

□

Two useful choices for g are :

a) g(t) = exp(t) in which case we denote the correspondig weighted norm by ‖⋅‖α,τ,exp. We
have G =2 exp(t) so ‖⋅‖α,τ,exp = 2‖⋅‖α,τ,G.

b) g(t) = 1 with norm denoted by ‖⋅‖α,τ and for which G(t) = 1 + t so that again if the set of
times is bounded by T we have, if ‖⋅‖α,τ ⩽ (1+ T) ‖⋅‖α,τ,G.
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