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NON-BRANCHING GEODESICS AND OPTIMAL MAPS

IN STRONG CD(K,∞)-SPACES

TAPIO RAJALA AND KARL-THEODOR STURM

Abstract. We prove that in metric measure spaces where the entropy functional is K-
convex along every Wasserstein geodesic any optimal transport between two absolutely con-
tinuous measures with finite second moments lives on a non-branching set of geodesics. As a
corollary we obtain that in these spaces there exists only one optimal transport plan between
any two absolutely continuous measures with finite second moments and this plan is given
by a map.

The results are applicable in metric measure spaces having Riemannian Ricci curvature
bounded below, and in particular they hold also for Gromov-Hausdorff limits of Riemannian
manifolds with Ricci curvature bounded from below by some constant.

1. Introduction

Ricci curvature lower bounds in general metric measure spaces were studied by the second
author in [16, 17] and at the same time with a similar approach by Lott and Villani in [12].
There the lower bound K ∈ R on the Ricci curvature without a reference to the dimension
of the metric measure space was defined as K-convexity of the entropy functional along
Wasserstein geodesics (see Section 2 for details). These spaces are called (weak) CD(K,∞)-
spaces. The word weak is sometimes used to emphasize that the convexity is required only
along one geodesic between any two given probability measures.

A property of the CD(K,∞)-spaces which complicates the theory is the possibility to have
branching geodesics. For example the space R2 with the l∞-norm is a CD(0,∞)-space and
it has lots of branching geodesics. Being the limit as p → ∞ (in any reasonable sense) of
the spaces R2 with the lp-norm – which are non-branching CD(K,∞)-spaces – this example
in particular illustrates that being non-branching is not a stable property. A number of
results in CD(K,∞)-spaces have been proven only under the extra assumption that there
are no branching geodesics in the space. Although in some of the results this assumption has
recently been removed (see for example [15, 14]), in many it still remains.

Because branching geodesics are hard to deal with, it is reasonable to consider more restric-
tive definitions that exclude spaces with branching geodesics or at least limit the amount of
branching that can occur. One of the essential properties of the definitions of Ricci curvature
lower bounds in metric measure spaces is the stability under the measured Gromov-Hausdorff
convergence. Therefore any stable definition that extends the Riemannian case should in-
clude the limit spaces of Riemannian manifolds with uniform Ricci curvature lower bounds.
While Riemannian manifolds are known to be non-branching, to our knowledge it is not
known whether this holds for their limit spaces. The spaces we consider in this paper cover
also these limit spaces. Although our result does not rule out the possibility to have some
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branching geodesics, it still says that there has to be so few branching geodesics that optimal
transports between any two absolutely continuous measures do not see them.

Before stating our main result we fix some terminology. In this paper we will always
assume (X, d) to be a complete separable geodesic metric space and m to be a locally finite
Borel measure. We refer to Section 2 for some details on optimal mass transportation and
CD(K,∞) condition in such spaces. We call a space (X, d,m) essentially non-branching if
for every µ0, µ1 ∈ P2(X) which are absolutely continuous with respect to m we have that
any π ∈ OptGeo(µ0, µ1) is concentrated on a set of non-branching geodesics. The space
(X, d,m) is said to be a strong CD(K,∞)-space if the entropy Entm is K-convex along every
π ∈ OptGeo(µ0, µ1) for every µ0, µ1 ∈ P2(X).

Theorem 1.1. Every strong CD(K,∞)-space is essentially non-branching.

One of the cases which is covered by Theorem 1.1 are theRCD(K,∞)-spaces, that is, spaces
with Riemannian Ricci curvature bounded from below by some constant K ∈ R. These spaces
were recently defined and studied in [3, 4], see also [2]. They were obtained by reinforcing the
CD(K,∞)-spaces with a requirement that the local structure of the space must be Hilbertian.
The Hilbertian structure immediately rules out spaces like the above mentioned R2 with the
l∞-norm. In [4] it was shown that one of the equivalent formulations of RCD(K,∞)-spaces
is that any probability measure with finite second moment is the starting point of an EVIK -
gradient flow of the entropy. This condition is known to imply K-convexity of the entropy
along every geodesic [8].

In [4] it was also proven that the definition of RCD(K,∞) with a finite reference measure
is stable under the measured Gromov-Hausdorff convergence (or under the D-convergence in-
troduced in [16]). Later in [10] the stability was proven with more general reference measures.
When we combine the stability with Theorem 1.1 we arrive at the following corollary which
in fact was our main motivation to write this paper.

Corollary 1.2. The RCD(K,∞) condition is stable under measured Gromov-Hausdorff con-
vergence (or under the D-convergence) and it implies essential non-branching.

As we already mentioned, we are not aware of any other non-branching results even for the
Gromov-Hausdorff limits of Riemannian manifolds with Ricci curvature bounded from below
by some constant.

Another corollary of our result is that the RCD(K,∞) condition implies the formulation of
CD(K,∞) that was used by Lott and Villani [12]. They required convexity type inequalities
for a class of functionals instead of just Entm, and hence their definition was at least a priori
more restrictive than the definition of CD(K,∞) we use here, following [16]. Corollary 1.3
is proven exactly as in the non-branching CD(K,∞)-spaces. For the proof, see for instance
[18, Theorem 30.32] or [17, Proposition 4.2].

Corollary 1.3. The RCD(K,∞) condition implies the CD(K,∞) condition by Lott and
Villani.

By inspecting the proof of [9, Theorem 3.3] where the existence of optimal maps in non-
branching CD(K,∞)-spaces was shown we can make a refinement of the statement of The-
orem 1.1. Regarding this refinement, stated in Corollary 1.4, we note that in [9] there was
an extra assumption for the measures µ0 and µ1 to have finite entropy. This assumption
was needed for showing that all absolutely continuous measures with respect to a measure
π ∈ OptGeo(µ0, µ1) satisfying (2.2) also satisfy (2.2). Here this conclusion is already as an
assumption so finiteness of the initial and final entropies are not needed.
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Corollary 1.4. Let (X, d,m) be a strong CD(K,∞)-space. Then for every µ0, µ1 ∈ P2(X)
that are absolutely continuous with respect to m there is a unique π ∈ OptGeo(µ0, µ1) and it
is induced by a map.

Although Corollary 1.4 follows quite easily from the proof of [9, Theorem 3.3] together with
Theorem 1.1 we will give at the end of the paper an outline of the proof together with some
details that are different from the proof by Gigli.

In the classical situation of Euclidean spaces the existence of optimal transport maps was
proven by Brenier in [7]. Since then there have been several generalizations of this result. Most
relevant in the context of this paper are the generalizations of McCann [13] for Riemannian
manifolds, of Bertrand [6] for Alexandrov spaces, and the most recent results of Gigli [9] in
non-branching CD(K,N) and CD(K,∞)-spaces and of Ambrosio and the first author [5] in
strongly non-branching metric spaces. Notice that as in the approach by Gigli [9] our proof
for the existence of optimal transport maps does not use Kantorovich potentials.

2. Preliminaries

Let us first recall some definitions and results related to optimal mass transportation and
Ricci curvature lower bounds using optimal mass transportation. More details on this subject
can be found for example in the book by Villani [18].

In this paper we always work in a complete separable geodesic metric space (X, d) equipped
with a locally finite Borel measure m.

2.1. Optimal mass transportation. We write as P(X) the set of all the probability mea-
sures defined on the σ-algebra consisting of universally measurable sets of X. We denote by
P2(X) the subset of P(X) consisting of probability measures with finite second moments.
We equip the space P2(X) with the Wasserstein 2-distance which for any two measures
µ0, µ1 ∈ P2(X) is defined as

W2(µ0, µ1) =

(

inf

{
∫

X×X
d(x, y)2 dσ(x, y)

})1/2

, (2.1)

where the infimum is taken over all σ ∈ P2(X × X) with µ0 = (p1)#σ and µ1 = (p2)#σ.

Here, and later on, pk denotes the projection to the k-th coordinate.
We call a plan σ ∈ P2(X × X) that minimizes (2.1) an optimal plan. Optimal plans

exist under were mild assumptions. In contrast, the existence of optimal maps is rare. By
an optimal map we mean Borel T : X → X for which the plan G#µ0 given by the graph
G(x) = (x, T (x)) of T is optimal. For the arguments in this paper, it is crucial to notice that
any subplan of an optimal plan is also optimal in the sense that for σ optimal between µ0

and µ1 any σ̃ ≪ σ is optimal between (p1)#σ̃ and µ1 = (p2)#σ̃.
Any optimal plan is concentrated on a cyclically monotone set M ⊂ X ×X. This means

that for any family (x1, y1), . . . , (xn, yn) ∈ M and any permutation p : {1, . . . n} → {1, . . . n}
we have

n
∑

i=1

d(xi, yi)
2 ≤

n
∑

i=1

d(p(xi), yi)
2.

Intuitively this just means that optimal plans can not be improved.
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2.2. Geodesics. We denote by C([0, 1];X) the space of continuous curves γ : [0, 1] → X. All
the geodesics we consider in this paper are constant speed geodesics parametrized by the unit
interval [0, 1]. We denote the set of all such geodesics in X by Geo(X) ⊂ C([0, 1];X), and
for γ ∈ C([0, 1];X) and t ∈ [0, 1] we use the abbreviation γt = γ(t). The distance between
γ1, γ2 ∈ C([0, 1];X) is given by d

∗(γ1, γ2) = max{d(γ1t , γ
2
t ) : 0 ≤ t ≤ 1}. Notice that the

subspace (Geo(X), d∗), with d
∗ restricted to Geo(X) × Geo(X), is complete and separable

because the space (X, d) is. (This is because Geo(X) is a d
∗-closed subset of the separable

space C([0, 1];X).) We write l(γ) = d(γ0, γ1) for any geodesic γ ∈ Geo(X) .
We define for all s, t ∈ [0, 1] the restriction map restrts : C([0, 1];X) → C([0, 1];X) : γ 7→

γ ◦ f t
s with f t

s : [0, 1] → [0, 1] : x 7→ (t − s)x + s. Notice that restrts(Geo(X)) ⊂ Geo(X). We
call a set Γ ⊂ Geo(X) non-branching if for any γ, γ̃ ∈ Γ we have: if there exists t ∈ (0, 1) such
that restrt0γ = restrt0γ̃, then γ = γ̃. A measure π ∈ P(Geo(X)) is said to be concentrated
on a set of non-branching geodesics, if there exists a non-branching Borel set Γ ⊂ Geo(X)
so that π(Γ) = 1. The space consisting of all measures π ∈ P(Geo(X)) for which the
mapping t 7→ (et)#π is a geodesic in P(X) from µ0 = (e0)#π to µ1 = (e1)#π is denoted by
OptGeo(µ0, µ1). Here the evaluation map is defined as et : C([0, 1];X) → X : γ 7→ γt.

For every geodesic (µt) ∈ Geo(P2(X)) joining µ0 to µ1, there also exists a measure π ∈
OptGeo(µ0, µ1) with (et)#π = µt. See for instance [1, Theorem 2.10] for the proof of this
fact. Notice that the measure π is not necessarily unique.

Our proof is heavily based on restricting a given π ∈ OptGeo(µ0, µ1). Without mentioning
it every time, we use the fact that for a Borel f : Geo(X) → [0,∞) with

∫

Geo(X) f dπ = 1

we have fπ ∈ OptGeo((e0)#fπ, (e1)#fπ), analogously to the restrictions of optimal plans.
Another fact which we will repeatedly use is that (restrst)#π ∈ OptGeo((et)#π, (es)#π).

2.3. Ricci curvature lower bounds. The Ricci curvature lower bounds are defined using
the entropy functional Entm : P(X) → [−∞,∞]. It is defined as

Entm(µ) =

∫

X
ρ log ρdm

for any absolutely continuous measure µ = ρm ∈ P(X) for which the positive part of ρ log ρ
is integrable. For other measures in P(X) we define Entm(µ) = ∞. Notice that for an
absolutely continuous measure with support in a set of finite m-measure the negative part of
ρ log ρ is always integrable. As we will later see we may always assume the measures to be
supported in a set of finite m-measure in the proof of Theorem 1.1.

Following the definition in [16] we call a metric measure space (X, d,m) a (weak) CD(K,∞)-
space, with someK ∈ R, provided that for any µ0, µ1 ∈ P2(X) that are absolutely continuous
with respect to m there exists a geodesic (µt) ∈ Geo(P2(X)) along which Entm is K-convex,
that is

Entm(µt) ≤ (1− t)Entm(µ0) + tEntm(µ1)−
K

2
t(1− t)W 2

2 (µ0, µ1) (2.2)

holds for all t ∈ [0, 1]. We say that a functional is K-convex along π ∈ OptGeo(µ0, µ1) if it is
K-convex along the corresponding geodesic (et)#π. If the inequality (2.2) is required to hold
for all geodesics (µt) ∈ Geo(P2(X)) with endpoints absolutely continuous with respect to m,
the space is called a strong CD(K,∞)-space.

In the proofs we will need Entm to be convex along restrictions fπ. If the space (X, d,m)
would only be a weak CD(K,∞)-space, K-convexity along restrictions would not be guaran-
teed. However, in strong CD(K,∞)-spaces it follows directly from the definition.
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0 1t1 t2

Γ1

Γ2

Entm

log 2

Figure 1. The idea in the proof of Theorem 1.1 is to find two sets of geodesics
Γ1 and Γ2 so that the transport supported on the union of the geodesics is
a measure π satisfying the assumption of Theorem 1.1 and so that the two
sets of geodesics agree until time t1 and then branch out so that they become
totally separated after time t2. The entropies along the set Γ1 and along the
set Γ2 are illustrated by the solid K-convex graphs. The entropy along Γ1∪Γ2

is illustrated by the dashed graph. The non-K-convexity of this graph due to
the drop of log 2 in the entropy contradicts the assumption of the theorem.

3. Proof of Theorem 1.1

The idea of the proof is similar to the proof of [15, Theorem 4]. We prove the claim by
contradiction. First we find two geodesics in the Wasserstein space which start as the same
geodesic and then branch out to two completely disjoint ones. By comparing the two geodesics
separately and on the other hand their sum as one geodesic, we notice that there will be an
extra drop of log 2 in the entropy during the time interval when the branching occurs. In
order to arrive at a contradiction this branching has to happen in a small enough time interval
as in the Figure 1.

There are two difficult steps in the proof before we arrive at the contradiction mentioned
above. First of all we have to find the two geodesics that branch out to two completely separate
ones. Once we have found them, we have to restrict the measures so that branching happens
in a small enough interval. Here the difficulty is that when we restrict the measures, also
their marginals change. By choosing the correct restrictions we can overcome this problem.

Let us start the proof with a simple lemma. It allows us to select the two disjoint geodesics
needed for the contradiction. The geodesics will be selected using a probability measure on
the product space Geo(X)×Geo(X). Notice that the constant 1/5 in the lemma is not sharp,
however it is sufficient for our use.

Lemma 3.1. Let (X, d) be a separable metric space. Then for any σ ∈ P(X ×X) for which
σ({(x, x) : x ∈ X}) = 0 there exists E ⊂ X so that σ(E × (X \E)) > 1/5.
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Proof. We will first reduce the general case to the case where X is a finite set. Take ǫ > 0.
Because the diagonal {(x, x) : x ∈ X} has zero σ-measure, there exists δ > 0 so that

σ

({

(x, y) ∈ X ×X : d(x, y) < δ
})

< ǫ. (3.1)

Partition the space X into a countable collection of Borel sets (Qi)i with diameter at most
δ/2. Now there exists some n ∈ N so that

n
∑

i=1

(

(pk)#σ
)

(Qi) > 1− ǫ, for k = 1, 2. (3.2)

Therefore, by combining (3.1) and (3.2) we have

σ





⋃

1≤i,j≤n,i 6=j

Qi ×Qj



 ≥ 1− 3ǫ

and so by forgetting a part of the space with arbitrarily small measure we may assume the
space X to consist of n points.

The existence of the set E in the case where X consists of n points follows easily: There
are a total number of 2n− 2 ways to select a non-empty set E ( X and for any pair of points
(i, j) with i 6= j there are 2n−2 sets E ⊂ X with i ∈ E and j /∈ E. As a consequence

∑

E⊂X

σ

(

E × (X \ E)
)

= 2n−2

and so there has to be a set E ⊂ X with

σ

(

E × (X \ E)
)

≥
2n−2

2n − 2
>

1

4
.

Taking ǫ > 0 sufficiently small finishes the proof. �

Now we are ready to continue with the proof of Theorem 1.1. The first reduction steps
contain ideas which were used in the proofs of [9, Theorem 3.3] and [15, Theorem 4]. The
rest of the proof is then close to that of [15, Theorem 4].

Proof of Theorem 1.1. Let us give the idea behind each step of the proof. We will prove the
claim by contradiction, so we have a measure π that does not live on a non-branching set of
geodesics. The first step is to restrict the measures in time and space to live inside a sufficiently
small ball. This will help in the last step of the proof in estimates involving the extra term
coming from K-convexity when K 6= 0. In the second step we produce via disintegration a
measure σ on the product space Geo(X) ×Geo(X) which gives positive measure to pairs of
geodesics which start as the same but after some time T branch out.

In the third step we pushforward the measure σ on the product space to live on more
suitable pairs of geodesics. The pairs of geodesics which we want to avoid are the ones that
branch out and come back together infinitely often. This step will be needed only to achieve
the reductions in the next step. In the fourth step of the proof we restrict the measure to
geodesics which stay disjoint at least for some time δ > 0 (independent of the geodesics)
immediately after the branch out for the first time. We also restrict the measure so that its
marginals have bounded densities.

In the fifth step we find, for a given ǫ > 0, a time t so that during the time interval
[t, t + ǫ] the measure sees lots of branching. In the sixth step we first use Lemma 3.1 to
obtain two disjoint sets of geodesics so that their product has large measure. After this we
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further restrict the measure so that we can project the product measure to two measures πup

and π
down which have disjoint supports at time t+ ǫ. Finally in the last step, step seven we

compare the entropies along π
up, πdown and π

up +π
down to obtain a contradiction which we

already mentioned in the beginning of this section and in the Figure 1.
Step 1: Localization to a small ball.

Assume that Theorem 1.1 is not true. Then there exist µ0, µ1 ∈ P2(X) and an optimal
π ∈ OptGeo(µ0, µ1) that is not concentrated on non-branching geodesics. Because the space
(X, d) is separable and the measure m locally finite, we can cover (X, d) with a countable
collection of balls B(xi, li/4) so that

li ≤

√

log 2

6|K|+ 1
(3.3)

and m(B(xi, li)) < ∞. Since π is not concentrated on non-branching geodesics there exist
some i ∈ N and L > li so that π has some branching inside B(xi, li/4) along geodesics with
length at most L. That is, π(Γ) < 1 for every Γ ⊂ Geo(X) satisfying the following: if
γ1, γ2 ∈ Γ so that γ1s = γ2s for all s ∈ [0, t0] with γ1t0 ∈ B(xi, li/4) and l(γ1) ≤ L, then γ1s = γ2s
also for all s for which γ1s ∈ B(xi, li/4) or γ

2
s ∈ B(xi, li/4).

Therefore there exists t1 ∈ (0, 1 − li/(4L)) so that

π
r = (restr

li/(4L)
t1 )#

(

1

π(Γr)
π|Γr

)

,

with π(Γr) > 0 defined as

Γr =
{

γ ∈ Geo(X) : l(γ) ≤ L and γt1+li/(8L) ∈ B(xi, li/4)
}

,

is not concentrated on non-branching geodesics. Now the measure π
r is supported on a set

of geodesics that live inside the ball B(xi, li/2). Thus without loss of generality, we may
assume from the beginning that the original measure π is concentrated on geodesics living
inside some ball B(x, l/2) ⊂ X with l having the same bound from above as li in (3.3) and
m(B(x, l)) < ∞.

Step 2: Disintegrating the branching measure.

We claim that from the assumption that π is not concentrated on a non-branching set of
geodesics we know that there exists some T ∈ (0, 1) so that the measure πγ is not a Dirac
mass for a (restrT0 )#π-positive set of curves γ ∈ Geo(X), where {πγ} ⊂ P(Geo(X)) is the

disintegration of π with respect to restrT0 . The measure πγ not being a Dirac mass means that
it is concentrated on geodesics which coincide with γ in [0, T ] and that a set of πγ-positive
measure of geodesics do branch after time T . We prove the claim by contradiction. Assume
that it is not true so that for any T ∈ (0, 1) the measures πγ are Dirac for (restrT0 )#π-almost
every curve γ ∈ Geo(X). Take ǫ > 0. Since Geo(X) is separable there exists a countable
Borel decomposition of Geo(X) into disjointed sets (Ai,ǫ)i∈I with diam(Ai,ǫ) < ǫ. For each

i ∈ I the map Mi,ǫ,T : Geo(X) → [0, 1] : γ 7→ πγ(Ai,ǫ) is Borel measurable and so M−1
i,ǫ,T ({1})

is a Borel set. Since πγ are probability measures, (M−1
i,ǫ,T ({1}))i∈I are disjointed. By the

assumption that almost every πγ is a Dirac mass the Borel set

Γǫ,T =
⋃

i∈I

(

(restrT0 )
−1(M−1

i,ǫ,T ({1})) ∩Ai,ǫ

)
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t
t

X

X
X

TT

πγ
πγ × πγ

Figure 2. The measure σ is constructed by integrating up the measures
πγ × πγ . Since branching for πγ occurs only after time T , all the measures
πγ × πγ and hence also the measure σ live on the diagonal of X × X until
time T .

has full π-measure. Therefore also the Borel set

ΓT =
⋂

ǫ∈(0,1)∩Q

Γǫ,T

has full π-measure. Notice that for γ1, γ2 ∈ ΓT with γ1 6= γ2 there exists ǫ ∈ (0, 1) ∩ Q so
that γ1 ∈ Ai,ǫ and γ2 ∈ Aj,ǫ with i 6= j. Therefore restrT0 (γ

1) ∈ M−1
i,ǫ,T ({1}) and restrT0 (γ

2) ∈

M−1
j,ǫ,T ({1}) giving restrT0 (γ

1) 6= restrT0 (γ
2). This means that the set ΓT does not contain

geodesics that branch after time T . Thus the Borel set
⋂

T∈(0,1)∩Q

ΓT

is non-branching and has full π-measure, giving a contradiction.
Consider a measure σ ∈ P(Geo(X)×Geo(X)) obtained by integrating up the disintegrated

measure πγ as a product measure πγ × πγ . That is, for any Borel measurable f : Geo(X)×
Geo(X) → [0,∞] we have

∫

Geo(X)×Geo(X)
f(γ1, γ2) dσ(γ1, γ2)

=

∫

Geo(X)

∫

(restrT
0
)−1(γ)×(restrT

0
)−1(γ)

f(γ1, γ2) d(πγ × πγ)(γ
1, γ2) d(restrT0 )#π(γ).

The measures πγ × πγ are illustrated in Figure 2.
Step 3: Reducing the number of branching points of pairs of geodesics.

It might happen that part of the measure σ lives on pairs of geodesics (γ1, γ2) for which
the set {t ∈ [0, 1] : γ1t = γ2t } consists of infinitely many intervals. We want to exclude
this behaviour so that branching geodesics stay disjoint for a positive time immediately after
branching. We will do this by a measurable selection.
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We start by defining the subsets D,B,B1 of Geo(X)2. The first one is the diagonal set

D := {(γ1, γ2) ∈ Geo(X)2 : γ1 = γ2},

the second one the set of pairs of geodesics branching after time T

B := {(γ1, γ2) ∈ Geo(X)2 \D : restrT0 γ
1 = restrT0 γ

2}

and the final one the set of pairs of geodesics that branch exactly once after time T

B
1 :=

{

(γ1, γ2) ∈ B : the set {t ∈ [0, 1] : γ1t 6= γ2t } is an interval
}

.

The subsets D and B are clearly Borel. Let us show that B
1 is also Borel. For every

ǫ, t1, t2 > 0 define the closed sets

Bǫ,t1,t2 = {(γ1, γ2) ∈ B : there exist s ∈ [t1, t2] with γ1s = γ2s and

r1 ∈ [T, t1], r2 ∈ [t2, 1] such that d(γ1ri , γ
2
ri) ≥ ǫ for i = 1, 2}.

Now

B
1 = B \





⋃

ǫ,t1,t2∈(0,1]∩Q

Bǫ,t1,t2





and so B
1 is Borel.

Now define End : B1 → X3 : (γ1, γ2) 7→ (γ10 , γ
1
1 , γ

2
1) and let End−1 : End(B1) → B

1 be its
Suslin measurable right-inverse given by the Jankoff theorem [11]. (The set B

1 is a Suslin
space as a Borel subset of a Polish space. The mapping End is continuous and thus End(B1)
is also Suslin space. Suslin subsets of a Polish space are universally measurable and so Suslin-
measurability suffices for our considerations.)

Now consider the Suslin measurable map Br : Geo(X)2 → Geo(X)2 given by

Br(γ1, γ2) =

{

End−1(γ10 , γ
1
1 , γ

2
1) if (γ10 , γ

1
1 , γ

2
1) ∈ End(B1),

(γ1, γ2) otherwise.

The role of Br is to select an element from B
1 with the same starting point γ10 and endpoints

γ11 and γ21 , if there exists one, and otherwise to give the original pair. For any branching pair
of geodesics it gives a pair of geodesics that branches exactly once, like in Figure 3. (Such
geodesics exist: If γ11 6= γ21 , let s ∈ (0, 1) be the last time when γ1s = γ2s . Then defining
γ3|[0,s] = γ4|[0,s] = γ1|[0,s], γ

3|[s,1] = γ1|[s,1] and γ4|[s,1] = γ2|[s,1] gives you the desired pair

of geodesics (γ3, γ4). If γ11 = γ21 , take 0 < s1 < s2 ≤ 1 such that γ1s1 = γ2s2 , γ1s2 = γ2s2
and γ1s 6= γ2s for all s ∈ (s1, s2). Then define γ3|[0,s1]∪[s2,1] = γ4|[[0,s1]∪[s2,1] = γ1|[0,s1]∪[s2,1],

γ3|[s1,s2] = γ1|[s1,s2] and γ4|[s1,s2] = γ2|[s1,s2], and again you have the desired pair of geodesics

(γ3, γ4).) In other words Br(B) ⊂ B
1. Now the pushforward measure Br#σ gives B1 positive

measure and it has the same marginals as σ, in other words, (e0, e0)#(Br#σ) = (e0, e0)#σ
and (e1, e1)#(Br#σ) = (e1, e1)#σ. Therefore, after pushing forward the measure by Br if
necessary, we may assume that σ(B1) > 0.

Step 4: Further restrictions of the measure σ.

Next we will show that by restricting and rescaling the measure σ we may assume that there
exist S ∈ (T, 1), δ ∈ (0, (1 − S)/2) and C > 0 so that

d(e0)#(p1σ)

dm
,
d(e1)#(p1σ)

dm
,
d(e1)#(p2σ)

dm
< C (3.4)
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γ1

γ2

γ3

γ4

Br

Figure 3. The mapping Br takes a branching pair of geodesics (γ1, γ2) to
another pair of geodesics (γ3, γ4) that have the same endpoints, but branch
only once.

and for σ-almost every (γ1, γ2) there exists t ∈ [T, S] such that

restrt0(γ
1) = restrt0(γ

2) and γ1s 6= γ2s for all s ∈ (t, t+ δ). (3.5)

First of all we may select S ∈ (T, 1) such that

σ

({

(γ1, γ2) ∈ B
1 : restrS0 (γ

1) 6= restrS0 (γ
2)
})

> 0.

On the other hand the set
{

(γ1, γ2) ∈ B
1 : restrS0 (γ

1) 6= restrS0 (γ
2)
}

can be covered by a countable union of sets of the form

Aq =
{

(γ1, γ2) ∈ B
1 : there exists t ∈ [T, S] such that restrt0(γ

1) = restrt0(γ
2)

and γ1s 6= γ2s for all s ∈ (t, t+ q)
}

.

Therefore there exists a δ ∈ (0, (1 − S)/2) so that

σ(Aδ) > 0.

Notice that the sets Aq are Borel because they can be written as

Aq =
⋂

z∈(q,1)∩Q

⋃

t,ǫ∈(0,1−z]∩Q

{

(γ1, γ2) ∈ B
1 : d(γ1s , γ

2
s ) ≥ ǫ for all s ∈ [t, t+ z]

}

.

By restricting σ to Aδ we have then obtained (3.5). Since µ0 and µ1 are absolutely continuous
with respect to m a further restriction and finally rescaling yields (3.4).

Step 5: Selecting a time t where sufficient amount of branching occurs.

Define the function f : [0, 1] → [0, 1] as

f(t) = σ

({

(γ1, γ2) : restrt0γ
1 = restrt0γ

2
})

.

Notice that f is decreasing, f = 1 on [0, T ] and f = 0 on [S, 1]. Roughly speaking f(t) gives
the amount of branching that will occur after time t.

Take a small ǫ ∈ (0, δ) and let t ∈ [T, S] be such that f(t) − f(t + ǫ) > ǫ. Such t exists
because f decreases by 1 on the interval [T, S]. Define

F =
{

(γ1, γ2) : restrt0γ
1 = restrt0γ

2 and restrt+ǫ
0 γ1 6= restrt+ǫ

0 γ2
}

.

Now σ(F ) > ǫ by the choice of t and (3.5).
Step 6: Finding two measures completely branching out during [t, t+ ǫ].

By Lemma 3.1 there exists E ⊂ Geo(X) so that

σ

(

(

E × (Geo(X) \ E)
)

∩ F
)

>
σ(F )

5
>

ǫ

5
.
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Let η > 0 be such that

M := σ(A) >
σ

(

(

E × (Geo(X) \ E)
)

∩ F
)

2
>

ǫ

10
, (3.6)

where A =
{

(γ1, γ2) ∈
(

E × (Geo(X) \ E)
)

∩ F : d(γ1t+ǫ, γ
2
t+ǫ) > η

}

. Such η exists since

γ1t+ǫ 6= γ2t+ǫ for σ-almost every (γ1, γ2) by (3.5) and the fact that ǫ < δ.

Now define σ̃ = σ|A and using it π̃ = (p1)#σ̃. Write ρ̃sm = (es)#π̃ for all s ∈ [0, 1]. By

Jensen’s inequality and (3.6) we get

∫

ρ̃t+ǫ log ρ̃t+ǫ dm ≥ M log
M

m(B(x, l/2))
≥ M log

ǫ

10m
(

B(x, l/2)
) . (3.7)

Since X is separable we can decompose it into a countable collection {Qi} of disjointed
Borel sets with diameter less than η. We claim that for at least one Q ∈ {Qi} we have

w :=

∫

Q
ρ̃t+ǫ dm = π̃(G) > 0

for G = {γ ∈ Geo(X) : γt+ǫ ∈ Q} and

∫

ρupt+ǫ log ρ
up
t+ǫ dm ≥ w log

ǫ

10m
(

B(x, l/2)
) , (3.8)

where πup = π̃|G = (p1)#σ̃|G×Geo(X)
and µup

s = ρups m = (es)#π
up for all s ∈ [0, 1]. For if this

were not the case we would have

∫

ρ̃t+ǫ log ρ̃t+ǫ dm =
∑

i

∫

Qi

ρ̃t+ǫ log ρ̃t+ǫ dm <
∑

i

∫

Qi

ρ̃t+ǫ dm log
ǫ

10m
(

B(x, l/2)
)

= M log
ǫ

10m
(

B(x, l/2)
)

contradicting (3.7).
Define also π

down = (p2)#σ̃|G×Geo(X)
and µdown

s = ρdown
s m = (es)#π

down for all s ∈ [0, 1].

Notice that (restrt0)#π
up = (restrt0)#π

down and µup
t+ǫ ⊥ µdown

t+ǫ .
By (3.4) the estimate

∫

ρ log ρdm ≤ w logC (3.9)

holds for all ρ ∈ {ρdown
0 = ρup0 , ρdown

1 , ρup1 }.
Step 7: Comparing entropies along different geodesics.

Now, similarly as in [15] we can estimate using the K-convexity first along the measure
(πup + π

down)/(2w) between times 0, t and t + ǫ, and then separately along π
up/w and
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π
down/w between times t, t+ ǫ and 1 to get
∫

ρdown
t

w
log

ρdown
t

w
dm

≤
ǫ

t+ ǫ

∫

ρdown
0

w
log

ρdown
0

w
dm+

t

t+ ǫ

∫

ρdown
t+ǫ + ρupt+ǫ

2w
log

ρdown
t+ǫ + ρupt+ǫ

2w
dm+

|K|

2

t

t+ ǫ
l2

≤
ǫ

t+ ǫ
log

C

w
−

t

t+ ǫ
log 2

+
t

2(t+ ǫ)

(

∫

ρdown
t+ǫ

w
log

ρdown
t+ǫ

w
dm+

∫

ρupt+ǫ

w
log

ρupt+ǫ

w
dm

)

+
|K|

2

t

t+ ǫ
l2

≤
ǫ

t+ ǫ
log

C

w
−

t

t+ ǫ
log 2

+
t

2(t+ ǫ)

(

ǫ

1− t

∫

ρdown
1

w
log

ρdown
1

w
dm+

1− t− ǫ

1− t

∫

ρdown
t

w
log

ρdown
t

w
dm

)

+
t

2(t+ ǫ)

(

ǫ

1− t

∫

ρup1
w

log
ρup1
w

dm+
1− t− ǫ

1− t

∫

ρupt
w

log
ρupt
w

dm

)

+ |K|
t

t+ ǫ
l2

≤

(

ǫ

t+ ǫ
+

tǫ

(1− t)(t+ ǫ)

)

log
C

w
−

t

t+ ǫ
log 2

+
t(1− t− ǫ)

(t+ ǫ)(1− t)

∫

ρdown
t

w
log

ρdown
t

w
dm+ |K|

t

t+ ǫ
l2.

Moving the integral term from the right-hand side to the left and using (3.3) gives

ǫ

(t+ ǫ)(1 − t)

∫

ρdown
t

w
log

ρdown
t

w
dm

≤

(

ǫ

t+ ǫ
+

tǫ

(1− t)(t+ ǫ)

)

log
C

w
−

t

t+ ǫ
log 2 + |K|

t

t+ ǫ
l2

≤

(

ǫ

t+ ǫ
+

tǫ

(1− t)(t+ ǫ)

)

log
C

w
−

2t

3(t+ ǫ)
log 2

which is the same as
∫

ρdown
t

w
log

ρdown
t

w
dm ≤ log

C

w
−

2t(1− t)

3ǫ
log 2. (3.10)

Using convexity along π
up/w once more together with (3.10), (3.3) and the fact that ǫ ≤ t

yields
∫

ρupt+ǫ

w
log

ρupt+ǫ

w
dm ≤

ǫ

1− t
log

C

w
+

1− t− ǫ

1− t

∫

ρdown
t

w
log

ρdown
t

w
dm+

|K|

2
ǫ(1− t− ǫ)l2

≤ log
C

w
−

t(1− t− ǫ)

3ǫ
log 2.

When we combine this with (3.8) we have

3ǫ

(

log
ǫ

10m
(

B(x, l/2)
) − logC

)

≤ −t(1− t− ǫ) log 2 ≤ −
TS

2
log 2

which is a contradiction as the left-hand side goes to 0 when ǫ ↓ 0. �
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Remark 3.2. In the proof of Theorem 1.1 we worked with two fixed marginals µ0, µ1. There-
fore the assumption in Theorem 1.1 of being a strong CD(K,∞)-space could be weakened.
The slightly stronger (but more complicated-looking) version of Theorem 1.1 would be the
following.

Let µ0, µ1 ∈ P2(X) be absolutely continuous. Suppose that for every π ∈ OptGeo(µ0, µ1),
every t, s ∈ [0, 1] and any Borel function f : Geo(X) → [0,∞) with

∫

Geo(X) f dπ = 1 the

entropy Entm is K-convex along (restrts)#(fπ). Then any π ∈ OptGeo(µ0, µ1) is concentrated
on a set of non-branching geodesics.

4. Proof of Corollary 1.4

Let us now outline the proof of Corollary 1.4. As usual, it suffices to prove that every
optimal plan is given by a map. This implies uniqueness of optimal plans because for any
π
1,π2 ∈ OptGeo(µ0, µ1) also 1

2(π
1 + π

2) ∈ OptGeo(µ0, µ1). Suppose then that there are
two µ0, µ1 ∈ P2(X) which are absolutely continuous with respect to m and that there is
π ∈ OptGeo(µ0, µ1) which is not induced by an optimal map.

Because µ0 = ρ0m is absolutely continuous, the union
⋃

C≥0

ΓC , ΓC = {γ ∈ Geo(X) : ρ0(γ0) ≤ C}

has full π-measure. Therefore for some C ≥ 0 the measure π|ΓC
is not induced by a map.

Therefore we may assume µ0 to have bounded density. Similarly we may assume µ1 to have
bounded density. Emptying the space X with larger and larger balls we may also assume µ0

and µ1 to have bounded supports. Therefore we may assume Entm(µ0),Entm(µ1) ∈ R.
In the proof of [9, Theorem 3.3] Gigli finds two probability measures π

1,π2 ≪ π with
π
1 ⊥ π

2 and (e0)#π
1 = (e0)#π

2 = m|D for a compact D ⊂ X with m(D) > 0. But by [9,
Lemma 3.2], which holds also under the strong CD(K,∞) assumption, we have

lim inf
tց0

m({ρit > 0}) ≥ m(D), i = 1, 2

for the densities ρit of (et)#π
i. Therefore for some small time t ∈ (0, 1) the sets {ρ1t > 0} and

{ρ2t > 0} must intersect in a set E of positive m-measure.
So far we have followed the proof of [9, Theorem 3.3]. Now the final step in the case

of non-branching CD(K,∞)-spaces would be to say that no two different geodesics in the
support of an optimal transport can intersect. In the essentially non-branching spaces this
conclusion is not so clear, so we argue differently.

The heuristic idea is to mix the measures π
1 and π

2 so that at time t we are allowed to
change from the geodesics where π

1 lives to the geodesics where π
2 lives, and vice versa.

To write this more rigorously we first pushforward the combined measure π
1 + π

2 to the
left and right part from time t

π
left =

1

2

(

(restrt0)#π
1 + (restrt0)#π

2
)

, π
right =

1

2

(

(restr1t )#π
1 + (restr1t )#π

2
)

.

Now let {πleft
x } be the disintegration of πleft with respect to e1 and let {πright

x } be the disin-
tegration of πright with respect to e0.

Observe that the mapping

Sp: C([0, 1];X) →
{

(γ1, γ2) ∈ C([0, 1];X) × C([0, 1];X) : γ11 = γ20
}

: γ 7→ (restrt0γ, restr
1
t γ)
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is bi-Lipschitz. We define the collection of measures {πx} on C([0, 1];X) as pullbacks of the

product measures πleft
x × π

right
x under Sp, in other words as the pushforwards

πx = (Sp−1)#(π
left
x × π

right
x ).

Finally we integrate these up to a mixed measure πmix by requiring for all Borel f : C([0, 1];X) →
[0,∞] that

∫

C([0,1];X)
f(γ) dπmix(γ) =

∫

C([0,1];X)

∫

(et)−1(x)
f(γ) dπx(γ) d((e1)#π

left)(x).

Since π is optimal, there exists a set Γ ⊂ Geo(X) such that π(Γ) = 1 and the set {(γ0, γ1) :
γ ∈ Γ} is cyclically monotone. Because π

1,π2 ≪ π, also π
1(Γ) = π

2(Γ) = 1. For any pair
γ1, γ2 ∈ Γ with γ1t = γ2t we have by the cyclical monotonicity and the triangle inequality that

d
2(γ10 , γ

1
1) + d

2(γ20 , γ
2
1) ≤ d

2(γ10 , γ
2
1) + d

2(γ20 , γ
1
1)

≤
(

tl(γ1) + (1− t)l(γ2)
)2

+
(

tl(γ2) + (1− t)l(γ1)
)2

= l(γ1)2 + l(γ2)2 − 2t(1− t)
(

l(γ1)− l(γ2)
)2

≤ l(γ1)2 + l(γ2)2 = d
2(γ10 , γ

1
1) + d

2(γ20 , γ
2
1),

(4.1)

and so all the inequalities in the above chain (4.1) are equalities. Consequently l(γ1) = l(γ2)
meaning that for m-almost every x ∈ X there exists lx such that π

left
x is concentrated on

geodesics of length tlx and π
right
x is concentrated on geodesics of length (1−t)lx. The measure

π
mix is concentrated on
{

γ ∈ C([0, 1];X) : there exist γ1, γ2 ∈ Γ s.t. restrt0γ = restrt0γ
1 and restr1tγ = restr1t γ

2
}

,

which by the equalities in (4.1) is a subset of Geo(X).
Furthermore, since (ei)#π

mix = (ei)#
(

1
2 (π

1 + π
2)
)

for i = 0, 1 and

∫

Geo(X)

1

2
d
2(γ0, γ1) d(π

1 + π
2)(γ) =

∫

X

1

2
l2x d((et)#(π

1 + π
2))(x)

=

∫

X
l2x d((et)#π

mix)(x) =

∫

Geo(X)
d
2(γ0, γ1) dπ

mix(γ),

the measure π
mix is optimal.

Because π
1 ⊥ π

2 and because {ρ1t > 0} and {ρ2t > 0} intersect in the set E of positive

m-measure, we know that for m-almost every x ∈ E at least one of the measures πleft
x ,πright

x is
not a Dirac mass. Therefore πmix is not essentially non-branching or the time-inverse I#π

mix

defined via the mapping

I : Geo(X) → Geo(X) : γ 7→ (γ′ : [0, 1] → X : t 7→ γ1−t)

is not essentially non-branching. This contradicts Theorem 1.1.
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