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Abstract

We prove the Bochner-Weitzenböck formula for the (nonlinear) Laplacian on gen-
eral Finsler manifolds and derive Li-Yau type gradient estimates as well as parabolic
Harnack inequalities. Moreover, we deduce Bakry-Émery gradient estimates. All
these estimates depend on lower bounds for the weighted flag Ricci tensor.

1 Introduction

Geometry and analysis on singular spaces is an important topic of current research. Be-
sides Alexandrov spaces, Finsler manifolds constitute one of the most relevant classes of
explicit examples of metric measure spaces. Finsler spaces quite often occur naturally via
homogenization as scaling limits of discrete or Riemannian structures.

A Finsler manifold is a smooth manifoldM equipped with a norm – or, more generally,
a Minkowski norm – F (x, ·) on each tangent space TxM . The particular case of a Hilbert
norm leads to the important subclasses of Riemannian manifolds. In our previous paper
[OS1], we introduced and studied in detail the heat flow on a Finsler manifold. It can
equivalently be defined

• either as gradient flow in L2(M,m) for the energy 1
2

∫

M
F (∇u)2 dm;

• or as gradient flow in the L2-Wasserstein space (P2(M),W2) for the relative entropy
∫

M
u logu dm.

For this nonlinear evolution semigroup, we proved C1,α-regularity and Lp-contraction
estimates as well as integrated upper Gaussian estimates à la Davies ([OS1, Sections 3,
4]).

Various fine properties of the heat flow are intimately linked with the weighted flag

Ricci tensor RicN (with N ∈ [dimM,∞]) introduced in [Oh1]. In [Oh1], the first author
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proved that the curvature-dimension condition CD(K,N) in the sense of Lott-Sturm-
Villani for a weighted Finsler space (M,F,m) is equivalent to a lower bound K for RicN .
In particular, the relative entropy – regarded as a function on the L2-Wasserstein space –
is K-convex if and only if Ric∞ is bounded from below by K. In [OS1, Theorem 5.6], we
proved that lower bounds for the weighted flag Ricci curvature imply point-wise compar-
ison results à la Cheeger-Yau. Surprisingly enough, however, in [OS2] we observed that
exponential contraction/expansion bounds in Wasserstein distance

W2(Ptµ, Ptν) ≤ eCtW2(µ, ν) (1.1)

hold true if and only if we are in a Riemannian setting.

The main goal of this paper now is to derive the Bochner-Weitzenböck formula (The-
orems 3.3, 3.6)

∆∇u

(

F (∇u)2

2

)

−D(∆u)(∇u) = Ric∞(∇u) + ‖∇2u‖2HS(∇u). (1.2)

Here ∆∇u denotes the linearization of the Laplacian ∆ on M in direction ∇u. The
formula (1.2) a priori holds true only on the set {x ∈ M |∇u(x) 6= 0}. It extends to an
identity in distributional sense on entire M .

Formulation and proof of (1.2) – as well as applications of it – require lot of care due
to the lack of regularity. For instance, solutions to the heat equation ∆u = ∂u/∂t on M
will be C2 only if M is Riemannian ([OS1]). As a first striking application we deduce the
Bakry-Émery gradient estimate (Theorem 4.1)

F
(

∇Ptu(x)
)2
≤ e−2KtP∇u

0,t

(

F (∇u)2
)

(x). (1.3)

Here Pt denotes the (nonlinear) semigroup generated by the Laplacian ∆, whereas P∇u
0,t

denotes the (linear, symmetric) Markov transition operator on L2(M,m) with time-
dependent generator Ls, 0 < s < t, obtained by linearization of ∆ in direction ∇u(s, ·).
An immediate consequence of (1.3) is the growth bound for Lipschitz constants

Lip(Ptu) ≤ e−Kt Lip(u). (1.4)

Note that in the Riemannian setting (or more abstract linear frameworks), according to
the Kantorovich-Rubinstein duality, the bounds (1.1) and (1.4) are equivalent to each
other (with C = −K).

Finally, we prove the Li-Yau gradient estimate (Theorem 4.4) for positive solutions to
the heat equation on Finsler spaces which in the case RicN ≥ 0 simply reads as

F
(

∇(log u)(t, x)
)2
− ∂t(log u)(t, x) ≤

N

2t
,

and deduce as a corollary the famous Li-Yau type Harnack inequality (Theorem 4.5)

u(s, x) ≤ u(t, y) ·

(

t

s

)N/2

exp

(

d(x, y)2

4(t− s)

)

for any 0 < s < t and x, y ∈M .
For (1.3) and the subsequent estimates, M is required to be compact. It is an open

question whether this compactness assumption can be replaced by completeness.
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2 Finsler geometry

We briefly review the fundamentals of Finsler geometry, for which we refer to [BCS] and
[Sh], as well as some results from [Oh1] and [OS1].

2.1 Finsler manifolds

Let M be a connected, n-dimensional C∞-manifold without boundary. Given a local
coordinate (xi)ni=1 on an open set U ⊂ M , we will always use the coordinate (xi, vi)ni=1 of
TU such that

v =

n
∑

i=1

vi
∂

∂xi

∣

∣

∣

x
∈ TxM, x ∈ U.

Definition 2.1 (Finsler structures) We say that a nonnegative function F : TM −→
[0,∞) is a C∞-Finsler structure of M if the following three conditions hold:

(1) (Regularity) F is C∞ on TM \ 0, where 0 stands for the zero section.

(2) (Positive 1-homogeneity) It holds F (cv) = cF (v) for all v ∈ TM and c ≥ 0.

(3) (Strong convexity) The n× n matrix

(

gij(v)
)n

i,j=1
:=

(

1

2

∂2(F 2)

∂vi∂vj
(v)

)n

i,j=1

(2.1)

is positive-definite for all v ∈ TxM \ 0.

We call such a pair (M,F ) a C∞-Finsler manifold.

In other words, F provides a Minkowski norm on each tangent space which varies
smoothly in the horizontal direction. For x, y ∈M , we define the distance from x to y in
a natural way by

d(x, y) := inf
η

∫ 1

0

F
(

η̇(t)
)

dt,

where the infimum is taken over all C1-curves η : [0, 1] −→ M such that η(0) = x and
η(1) = y. Note that d(y, x) 6= d(x, y) may happen since F is only positively homogeneous.
A C∞-curve η on M is called a geodesic if it is locally minimizing and has a constant speed
(i.e., F (η̇) is constant). See (2.6) below for the precise geodesic equation. For v ∈ TxM ,
if there is a geodesic η : [0, 1] −→ M with η̇(0) = v, then we define the exponential map

by expx(v) := η(1). We say that (M,F ) is forward complete if the exponential map is
defined on whole TM . Then the Hopf-Rinow theorem ensures that any pair of points is
connected by a minimal geodesic (cf. [BCS, Theorem 6.6.1]).

For each v ∈ TxM \ 0, the positive-definite matrix (gij(v))
n
i,j=1 in (2.1) induces the

Riemannian structure gv of TxM via

gv

( n
∑

i=1

ai
∂

∂xi

∣

∣

∣

x
,

n
∑

j=1

bj
∂

∂xj

∣

∣

∣

x

)

:=

n
∑

i,j=1

gij(v)aibj . (2.2)
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This is regarded as the best Riemannian approximation of F |TxM in the direction v. In
fact, the unit sphere of gv is tangent to that of F |TxM at v/F (v) up to the second order.
In particular, we have gv(v, v) = F (v)2. The Cartan tensor

Aijk(v) :=
F (v)

2

∂gij
∂vk

(v), v ∈ TM \ 0,

is a quantity appearing only in the Finsler context. Indeed, Aijk vanishes everywhere on
TM \ 0 if and only if F comes from a Riemannian metric. We will repeatedly use the
next useful fact on homogeneous functions.

Theorem 2.2 (cf. [BCS, Theorem 1.2.1]) Suppose that a differentiable function H : Rn \
0 −→ R satisfies H(cv) = crH(v) for some r ∈ R and all c > 0 and v ∈ R

n \ 0 (in other

words, H is positively r-homogeneous). Then we have

n
∑

i=1

∂H

∂vi
(v)vi = rH(v)

for all v ∈ R
n \ 0.

Observe that gij is positively 0-homogeneous on each TxM , and hence

n
∑

i=1

Aijk(v)v
i =

n
∑

j=1

Aijk(v)v
j =

n
∑

k=1

Aijk(v)v
k = 0 (2.3)

for all v ∈ TM \ 0 and i, j, k = 1, 2, . . . , n. Define the formal Christoffel symbol

γi
jk(v) :=

1

2

n
∑

l=1

gil(v)

{

∂gjl
∂xk

(v) +
∂glk
∂xj

(v)−
∂gjk
∂xl

(v)

}

for v ∈ TM \ 0, where (gij) stands for the inverse matrix of (gij). We also introduce the
geodesic spray coefficients and the nonlinear connection

Gi(v) :=
n

∑

j,k=1

γi
jk(v)v

jvk, N i
j(v) :=

1

2

∂Gi

∂vj
(v)

for v ∈ TM \ 0, and Gi(0) = N i
j(0) := 0 by convention. Note that Gi is positively

2-homogeneous, so that Theorem 2.2 implies
∑n

j=1N
i
j(v)v

j = Gi(v).

By using the nonlinear connections N i
j , the coefficients of the Chern connection is

given by

Γi
jk := γi

jk −

n
∑

l,m=1

gil

F
(AjlmN

m
k + AlkmN

m
j −AjkmN

m
l ) (2.4)

on TM \ 0. Namely, the corresponding covariant derivative of a vector field X =
∑n

i=1X
i(∂/∂xi) by v ∈ TxM with reference vector w ∈ TxM \ 0 is defined by

Dw
v X(x) :=

n
∑

i,j=1

{

vj
∂X i

∂xj
(x) +

n
∑

k=1

Γi
jk(w)v

jXk(x)

}

∂

∂xi

∣

∣

∣

x
. (2.5)
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Then the geodesic equation is written as, with the help of (2.3),

Dη̇
η̇ η̇(t) =

n
∑

i=1

{

η̈i(t) +Gi
(

η̇(t)
)} ∂

∂xi

∣

∣

∣

η(t)
= 0. (2.6)

2.2 Nonlinear Laplacian and the associated heat flow

Let us denote by L∗ : T ∗M −→ TM the Legendre transform. Precisely, L∗ is sending
α ∈ T ∗

xM to the unique element v ∈ TxM such that α(v) = F ∗(α)2 and F (v) = F ∗(α),
where F ∗ stands for the dual norm of F . Note that L∗|T ∗

xM becomes a linear operator
only when F |TxM is an inner product. For a differentiable function u : M −→ R, the
gradient vector of u at x is defined as the Legendre transform of the derivative of u,
∇u(x) := L∗(Du(x)) ∈ TxM . If Du(x) = 0, then clearly ∇u(x) = 0. If Du(x) 6= 0, then
we can write in coordinates

∇u =

n
∑

i,j=1

gij(∇u)
∂u

∂xj

∂

∂xi
.

We must be careful when Du(x) = 0, because gij(∇u(x)) is not defined as well as the
Legendre transform L∗ being only continuous at the zero section. For later convenience
we set in general

MV := {x ∈M | V (x) 6= 0} (2.7)

for a vector field V on M , and Mu := M∇u. For a differentiable vector field V on M and
x ∈MV , we define ∇V (x) ∈ T ∗

xM ⊗ TxM by using the covariant derivative (2.5) as

∇V (v) := DV
v V (x) ∈ TxM, v ∈ TxM. (2.8)

We also set ∇
2u(x) := ∇(∇u)(x) for a twice differentiable function u : M −→ R and

x ∈Mu.

Lemma 2.3 ∇
2u(x) is symmetric in the sense that g∇u(∇

2u(v), w) = g∇u(∇
2u(w), v)

for all v, w ∈ TxM .

Proof. This can be checked by hand. Indeed, choosing a coordinate {(∂/∂xi)|x}
n
i=1 or-

thonormal with respect to g∇u(x), we see by calculation

∇
2u

(

∂

∂xi

)

= D∇u
∂/∂xi

( n
∑

j,k=1

gjk
(

∇u(x)
) ∂u

∂xk
(x)

∂

∂xj

)

=

n
∑

j=1

{

∂2u

∂xi∂xj
(x)−

n
∑

k=1

Γk
ij

(

∇u(x)
) ∂u

∂xk
(x)

}

∂

∂xj
.

✷

From now on, we fix an arbitrary positive C∞-measure m on M as our base measure.
Define the divergence of a differentiable vector field V on M with respect to m by

divm V :=

n
∑

i=1

(

∂Vi

∂xi
+ Vi

∂Φ

∂xi

)

,
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where we decompose m in coordinates as dm = eΦ dx1dx2 · · · dxn. This can be rewritten
(and extended to weakly differentiable vector fields) in the weak form as

∫

M

φ divm V dm = −

∫

M

Dφ(V ) dm

for all φ ∈ C∞c (M). Then we define the distributional Laplacian of u ∈ H1
loc(M) by

∆u := divm(∇u) in the weak sense that
∫

M

φ∆u dm := −

∫

M

Dφ(∇u) dm

for φ ∈ C∞c (M). We remark that H1
loc(M) (and L2

loc(M) etc.) is defined solely in terms of
the differentiable structure of M .

Given a vector field V such that V 6= 0 on Mu, we can define the gradient vector and
the Laplacian on the weighted Riemannian manifold (M, gV , m) by

∇V u :=











n
∑

i,j=1

gij(V )
∂u

∂xj

∂

∂xi
on Mu,

0 on M \Mu,

∆V u := divm(∇
V u),

where the latter should be read in the sense of distributions. Note that, in the definition
of ∆V u, we used the divergence with respect to m rather than the volume form of gV . It
is not difficult to see ∇∇uu = ∇u and ∆∇uu = ∆u ([OS1, Lemma 2.4]). We also observe
for later use that, given u, f1 and f2,

Df2(∇
∇uf1) = g∇u(∇

∇uf1,∇
∇uf2) = Df1(∇

∇uf2). (2.9)

In [OS1], we have studied the associated nonlinear heat equation ∂u/∂t = ∆u. The
nonlinearity is inherited from the Legendre transform. Given an open set Ω ⊂ M , define
the Dirichlet energy of u ∈ H1

loc(Ω) by

EΩ(u) :=
1

2

∫

Ω

F (∇u)2 dm.

We will suppress Ω if Ω = M , namely E = EM . Set

H1(Ω) := {u ∈ H1
loc(Ω) ∩ L2(Ω, m) | EΩ(u) <∞},

and let H1
0 (Ω) be the closure of C

∞
c (Ω) with respect to the (Minkowski) norm ‖u‖H1(Ω) :=

‖u‖L2(Ω) + EΩ(u)
1/2.

Definition 2.4 (Global and local solutions) (1) For T > 0, we say that a function
u on [0, T ] ×M is a global solution to the heat equation if u ∈ L2([0, T ], H1

0(M)) ∩
H1([0, T ], H−1(M)) and if

∫

M

φ
∂ut

∂t
dm = −

∫

M

Dφ(∇ut) dm

holds for all t ∈ [0, T ] and φ ∈ C∞c (M), where we set ut := u(t, ·).
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(2) Given an open interval I ⊂ R and an open set Ω ⊂ M , we say that a function
u on I × Ω is a local solution to the heat equation on I × Ω if u ∈ L2

loc(I × Ω),
F (∇u) ∈ L2

loc(I × Ω) and if
∫

I

∫

Ω

u
∂φ

∂t
dmdt =

∫

I

∫

Ω

Dφ(∇u) dmdt

holds for all φ ∈ C∞c (I × Ω).

Global solutions can be constructed as the gradient flow of the energy functional E in
L2(M,m). We summarize the existence and regularity properties established in [OS1] in
the next theorem.

Theorem 2.5 ([OS1, Sections 3,4])

(i) For each u0 ∈ H1
0 (M) and T > 0, there exists a global solution u to the heat equation

on [0, T ] ×M , and the distributional Laplacian ∆ut is absolutely continuous with

respect to m for all t ∈ (0, T ). If M is compact, then such a global solution is

uniquely determined by its initial datum u0.

(ii) Given an open set Ω ⊂M , the continuous version of any local solution u to the heat

equation on Ω enjoys the H2
loc-regularity in x as well as the C1,α-regularity in both t

and x. Furthermore, the distributional time derivative ∂tu lies in H1
loc(Ω) ∩ C(Ω).

We remark that the mild smoothness assumption [OS1, (4.4)] clearly holds true for
our C∞-smooth F and m.

2.3 Ricci curvature

The Ricci curvature (as the trace of the flag curvature) on a Finsler manifold is defined
by using the Chern connection (and is in fact independent of the choice of connection).
Instead of giving a precise definition in coordinates, here we explain a useful interpretation
due to Shen [Sh, §6.2]. Given a unit vector v ∈ TxM (i.e., F (v) = 1), we extend it to
a C∞-vector field V on a neighborhood of x in such a way that every integral curve of
V is geodesic, and consider the Riemannian structure gV induced from (2.2). Then the
Ricci curvature Ric(v) of v with respect to F coincides with the Ricci curvature of v with
respect to gV (in particular, it is independent of the choice of V ).

Inspired by the above interpretation of the Ricci curvature, the weighted Ricci curva-

ture for (M,F,m) is introduced in [Oh1] as follows.

Definition 2.6 (Weighted Ricci curvature) Given a unit vector v ∈ TxM , let η :
(−ε, ε) −→ M be the geodesic such that η̇(0) = v. We decompose m as m = e−Ψ volη̇
along η, where volη̇ is the volume form of gη̇. Define

(1) Ricn(v) :=

{

Ric(v) + (Ψ ◦ η)′′(0) if (Ψ ◦ η)′(0) = 0,
−∞ otherwise,

(2) RicN(v) := Ric(v) + (Ψ ◦ η)′′(0)−
(Ψ ◦ η)′(0)2

N − n
for N ∈ (n,∞),

7



(3) Ric∞(v) := Ric(v) + (Ψ ◦ η)′′(0).

For c ≥ 0 and N ∈ [n,∞], we define RicN(cv) := c2RicN (v).

It is established in [Oh1, Theorem 1.2] that, for K ∈ R, the bound RicN(v) ≥ KF (v)2

is equivalent to Lott, Villani and the second author’s curvature-dimension condition

CD(K,N). This extends the corresponding result on (weighted) Riemannian manifolds
(due to [vRS], [St1], [St2], [St3], [LV2], [LV3]), and has many analytic and geometric
applications (see [Oh1], [OS1] or a survey [Oh2]).

Remark 2.7 (a) In contrast to ∆∇uu = ∆u, RicN(∇u) may not coincide with the
weighted Ricci curvature Ric∇u

N (∇u) of the weighted Riemannian manifold (M, g∇u, m).
Indeed, on a Minkowski space (Rn, ‖ · ‖), it is easy to see that (Rn, g∇u) is not flat for
some function u.

(b) For a Riemannian manifold (M, g, volg) endowed with the Riemannian volume
measure, clearly we have Ψ ≡ 0 and hence RicN = Ric for all N ∈ [n,∞]. It is also
known that, for Finsler manifolds of Berwald type (i.e., Γk

ij is constant on each TxM), the
Busemann-Hausdorff measure satisfies (Ψ ◦ η)′ ≡ 0 (in other words, Shen’s S-curvature
vanishes, see [Sh, §7.3]). In general, however, there may not exist any measure with
vanishing S-curvature (see [Oh3] for such an example). This is a reason why we begin
with an arbitrary measure m.

For later convenience, we introduce the following notations.

Definition 2.8 (Reverse Finsler structure) Define the reverse Finsler structure
←−
F

of F by
←−
F (v) := F (−v). We say that F is reversible if

←−
F = F . We will put an arrow ←

on those quantities associated with
←−
F , for example,

←−
d(x, y) = d(y, x),

←−
∇u = −∇(−u)

and
←−
RicN(v) = RicN(−v).

We say that (M,F ) is backward complete if (M,
←−
F ) is forward complete. Compact

Finsler manifolds are both forward and backward complete.

3 Bochner-Weitzenböck formula

In this section, we prove the Bochner-Weitzenböck formula. For the sake of simplicity,
we first derive a general formula for vector fields V , and then apply it to gradient vector
fields of functions. We start with a point-wise calculation on MV (recall (2.7)) followed
by an integrated formula.

3.1 Point-wise calculation

We follow the argumentation in [Vi, Chapter 14] in the Riemannian situation, with the
help of [Oh1] and [OS1].

As in the previous section, let (M,F ) be an n-dimensional C∞-Finsler manifold and
m be a positive C∞-measure on M . Fix a C∞-vector field V on M and x ∈ MV . For

8



t ∈ (0, δ] with sufficiently small δ > 0, we introduce the map Tt and the vector field Vt on
a neighborhood of x by

Tt(y) := expy[tV (y)], Vt

(

Tt(y)
)

:=
∂Tt
∂t

(y). (3.1)

As the curve σ(t) := Tt(y) is geodesic, taking the covariant differentiation Dσ̇
σ̇ of t 7−→

Vt(σ(t)) yields the pressureless Euler equation

∂Vt

∂t
+DVt

Vt
Vt = 0, (3.2)

where we abbreviated as

∂Vt

∂t
=

n
∑

i=1

∂V i
t

∂t

∂

∂xi
, with Vt =

n
∑

i=1

V i
t

∂

∂xi
.

Now we put η(t) := Tt(x), take an orthonormal basis {ei}
n
i=1 of (TxM, gV ) such that

en = η̇(0)/F (η̇(0)), and consider the vector field along η

Ei(t) := D(Tt)x(ei) ∈ Tη(t)M, i = 1, 2, . . . , n.

Then each Ei is a Jacobi field along η. (Note that En(t) 6= η̇(t)/F (η̇(t)) in general, since
Tt(η(s)) 6= η(s+ t) for s, t > 0.) We set E ′

i(t) := Dη̇
η̇Ei(t) for simplicity. Define the n× n

matrix-valued function B(t) by E ′
i(t) =

∑n
j=1 bij(t)Ej(t). (This B corresponds to U in

[Vi, Chapter 14].) Along the discussion in [Oh1, Lemma 7.2], we obtain the following
Riccati type equation.

Lemma 3.1 (Riccati type equation) For η and B as above, we have

d(trB)

dt
(t) + tr

(

B(t)2
)

+ Ric
(

η̇(t)
)

= 0, t ≥ 0.

Proof. We give only an outline of the proof, see [Oh1] for details. Consider the matrix-
valued function A(t) = (gη̇(Ei(t), Ej(t))) and observe A′ = BA+ ABT by definition (BT

is the transpose of B). Since each Ei is a Jacobi field, we have (BA−ABT )′ ≡ 0, so that

BA− ABT ≡ B(0)− B(0)T , A′ = 2BA− B(0) +B(0)T .

We also deduce from the Jacobi equation for Ei that

A′′ = −2Ricη̇ +2BABT = −2Ricη̇ +2B2A− 2B
(

B(0)− B(0)T
)

,

where (Ricη̇)ij := gη̇(R
η̇(Ei, η̇)η̇, Ej) and Rη̇ is the curvature tensor. Comparing this with

A′′ = 2B′A + 2BA′, we find B′ = −Ricη̇ A
−1 − B2. Taking the trace with respect to gη̇

completes the proof. ✷

Lemma 3.2 (i) We have B(t) = ∇Vt(η(t)) in the sense that, for each i = 1, 2, . . . , n,
∇Vt(Ei(t)) =

∑n
j=1 bij(t)Ej(t).
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(ii) It holds that tr(B(t)) = divm Vt(η(t)) +DΨ(η̇(t)), where m = e−Ψ volη̇ along η such

that volη̇ denotes the Riemannian volume measure of gη̇.

Proof. (i) By the definition (2.8), ∇Vt(Ei(t)) = DVt

Ei(t)
Vt(η(t)). Setting

Ei(t) =
∂

∂δ

[

Tt(expx δei)
]
∣

∣

∣

δ=0
=:

n
∑

k=1

Ek
i (t)

∂

∂xk

∣

∣

∣

η(t)
,

we have

E ′
i(t) =

n
∑

k=1

dEk
i

dt
(t)

∂

∂xk
+

n
∑

j,k,l=1

Γl
jk

(

η̇(t)
)

η̇j(t)Ek
i (t)

∂

∂xl
,

where η̇(t) =
∑n

j=1 η̇
j(t)(∂/∂xj)|η(t). Exchanging the order of differentiations (by δ and

t) in the first term, we deduce from (3.1) that

dEk
i

dt
(t) =

∂

∂δ

[

V k
t

(

Tt(expx δei)
)

]
∣

∣

∣

δ=0
.

Therefore we obtain E ′
i(t) = DVt

Ei(t)
Vt(η(t)) = ∇Vt(Ei(t)) and complete the proof.

(ii) Choose a coordinate (xi)ni=1 around η(t) such that {(∂/∂xi)|η(t)}
n
i=1 is an orthonor-

mal basis of (Tη(t)M, gVt
). We will suppress evaluations at η(t). Recall first that

∇Vt

(

∂

∂xi

)

= DVt

∂/∂xiVt =
n

∑

k=1

{

∂V k
t

∂xi
+

n
∑

j=1

Γk
ij(Vt)V

j
t

}

∂

∂xk
.

Thus we have

tr
(

B(t)
)

= tr(∇Vt) =

n
∑

i=1

{

∂V i
t

∂xi
+

n
∑

j=1

Γi
ij(Vt)V

j
t

}

.

We also find, by (2.4) and (2.3),

n
∑

j=1

Γi
ij(Vt)V

j
t =

n
∑

j=1

{

1

2

∂gii
∂xj

(Vt)V
j
t − Aiij(Vt)

Gj(Vt)

F (Vt)

}

.

Next we observe from dm = e−Ψ
√

det gVt
dx1dx2 · · · dxn on η that

divm Vt

(

η(t)
)

+DΨ
(

η̇(t)
)

=
n

∑

i=1

{

∂V i
t

∂xi
+ V i

t

∂(log
√

det gVt
)

∂xi

}

.

Note that

∂(log
√

det gVt
)

∂xi
=

1

2
tr

(

∂gVt

∂xi
· g−1

Vt

)

=
1

2

n
∑

j=1

{

∂gjj
∂xi

(Vt) +

n
∑

k=1

∂gjj
∂vk

(Vt)
∂V k

t

∂xi

}

.
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This yields, together with (3.1),

n
∑

i=1

V i
t

∂(log
√

det gVt
)

∂xi
=

1

2

n
∑

i,j=1

{

∂gjj
∂xi

(Vt)V
i
t +

∂gjj
∂vi

(Vt)η̈
i(t)

}

=
n

∑

i,j=1

{

1

2

∂gjj
∂xi

(Vt)V
i
t −

Ajji(Vt)

F (Vt)
Gi(Vt)

}

=

n
∑

i,j=1

Γi
ij(Vt)V

j
t .

We used the geodesic equation (2.6) of η in the second line. This completes the proof. ✷

We deduce from Lemmas 3.1, 3.2(ii) that

d

dt

∣

∣

∣

t=0+

[

divm Vt

(

η(t)
)

]

+ tr
(

B(0)2
)

+ Ric∞
(

η̇(0)
)

= 0.

Thanks to (3.2), we have

d

dt

∣

∣

∣

t=0+

[

divm Vt

(

η(t)
)

]

= D(divm V )
(

η̇(0)
)

+ divm

(

∂Vt

∂t

∣

∣

∣

t=0+

)

(x)

= D(divm V )
(

η̇(0)
)

− divm(D
V
V V )(x).

Combining these, we obtain

divm(D
V
V V )−D(divm V )(V ) = Ric∞(V ) + tr

(

B(0)2
)

(3.3)

at x.
Now, we take u ∈ C∞(M) and x ∈Mu, and apply (3.3) to V = ∇u. Then the symme-

try of ∇2u (Lemma 2.3) allows us to simplify (3.3) in two respects. First, Lemma 3.2(i)
immediately yields tr(B(0)2) = ‖∇2u(x)‖2HS(∇u), where ‖ · ‖HS(∇u) stands for the Hilbert-
Schmidt norm with respect to g∇u. Second, for each i = 1, 2, . . . , n,

g∇u

(

D∇u
∇u(∇u),

∂

∂xi

)

= g∇u

(

∇u,D∇u
∂/∂xi(∇u)

)

=
∂

∂xi

(

g∇u(∇u,∇u)

2

)

.

This implies

D∇u
∇u(∇u) =

n
∑

i,j=1

gji(∇u)g∇u

(

D∇u
∇u(∇u),

∂

∂xi

)

∂

∂xj
= ∇∇u

(

F (∇u)2

2

)

.

Plugging these into (3.3), we obtain (3.4) below on Mu.

Theorem 3.3 (Point-wise Bochner-Weitzenböck formula) Given u ∈ C∞(M), we
have

∆∇u

(

F (∇u)2

2

)

−D(∆u)(∇u) = Ric∞(∇u) + ‖∇2u‖2HS(∇u) (3.4)

as well as

∆∇u

(

F (∇u)2

2

)

−D(∆u)(∇u) ≥ RicN(∇u) +
(∆u)2

N
(3.5)

for N ∈ [n,∞], point-wise on Mu.

11



Proof. We have seen that (3.4) holds on Mu. The second assertion is clear if N = ∞.
For N ∈ (n,∞), we observe from Lemma 3.2 that, as {ei}

n
i=1 is orthonormal so that B(0)

is symmetric,

‖∇2u‖2HS(∇u) = tr
(

B(0)2
)

=
(trB(0))2

n
+

∥

∥

∥

∥

B(0)−
trB(0)

n
In

∥

∥

∥

∥

2

HS

≥
(∆u+DΨ(∇u))2

n
.

Plugging a = ∆u and b = DΨ(∇u) into

(a+ b)2

n
=

a2

N
−

b2

N − n
+

N(N − n)

n

(

a

N
+

b

N − n

)2

,

we obtain
(∆u+DΨ(∇u))2

n
≥

(∆u)2

N
−

DΨ(∇u)2

N − n
.

Together with (3.4), this yields the desired estimate (3.5). The remaining case of N = n
is derived as the limit. ✷

Remark 3.4 Our Bochner-Weitzenböck formula (3.4) can not be simply derived from the
formula of the weighted Riemannian manifold (M, g∇u, m). This is because Ric∞(∇u)
and ‖∇2u‖2HS(∇u) are different from those for g∇u (unless all integral curves of ∇u are

geodesic), while D(∆u)(∇u) and ∆∇u(F (∇u)2/2) are same for F and g∇u. Recall Re-
mark 2.7(a) and note that ∇2u(v) 6= (∇∇u)2u(v) in general (for v 6= ∇u).

Let us close the subsection with additional comments on the situation of V = ∇u
with u ∈ C∞c (M). A little knowledge of optimal transport theory is necessary for which
we refer to [Vi] and [Oh1]. A potential function ϕt of the vector field Vt (i.e., ∇ϕt = Vt)
is given by

ϕt(y) := inf
x∈M

{

d(x, y)2

2t
+ u(x)

}

. (3.6)

This is the Hopf-Lax formula providing a (viscosity) solution to the Hamilton-Jacobi

equation
∂ϕt

∂t
+

F (∇ϕt)
2

2
= 0 (3.7)

that corresponds to (3.2). Indeed, we can apply the proof of [LV1, Theorem 2.5] verbatim
to see (3.7), although our distance is nonsymmetric. In view of optimal transport theory,
(3.6) is rewritten as

tϕt(y) = inf
x∈M

{

d(x, y)2

2
−

(

− tu(x)
)

}

= (−tu)c(y),

where (−tu)c stands for the c-transform of the function −tu for the cost c(x, y) =
d(x, y)2/2. Thus, if we put η(t) = expx[t∇u(x)], then it holds that

η̇(t) = −
←−
∇(−ϕt)

(

η(t)
)

= ∇ϕt

(

η(t)
)

.
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Hence, in terms of Wasserstein geometry, the vector field∇ϕt is the tangent vector at time
t of the geodesic (exp[t∇u]♯µ)t∈[0,δ] starting from any absolutely continuous probability
measure µ (whereas δ depends on u), where exp[t∇u]♯µ denotes the push-forward of µ by
the map exp[t∇u].

3.2 Integrated formula

We need to be careful in extending the point-wise estimate (3.5) to a global one (in the
weak sense), because some quantities are undefined on M \Mu. We prove an auxiliary
lemma to overcome this difficulty.

Lemma 3.5 Let L be a locally uniformly elliptic, linear second order differential operator

in divergence form on a Riemannian manifold. Let EL denote the associated Dirichlet form

with domain H1
0 (M) and with intrinsic gradient denoted by ∇L, i.e.,

EL(h, h) = −

∫

M

h · Lh dm =

∫

M

|∇Lh|2 dm, h ∈ H1
0 (M).

Then we have the following.

(i) For each h ∈ H1
0 (M), it holds ∇Lh = 0 a.e. on h−1(0).

(ii) If h ∈ H1
0 (M) ∩ L∞(M), then ∇L(h2/2) = h∇Lh = 0 a.e. on h−1(0).

(iii) The assertions in (i) and (ii) also hold true if h merely lies locally in the respective

spaces.

Proof. (i) is a particular case of the general fact that, for local regular Dirichlet forms
with square field operator Γ,

EL(h, h) =

∫

M

Γ(h, h) dm =

∫

{h 6=0}

Γ(h, h) dm.

(In the monograph [BH], this is called the energy image density.)
(ii) follows from the chain rule.
(iii) Given an arbitrary open relatively compact set U ⊂M , choose a cut-off function

φ ∈ H1
c (M) ∩ L∞(M) such that φ ≡ 1 on U . Then, for each h ∈ H1

loc(M), it holds
hφ ∈ H1

0 (M) and we have ∇L(hφ) = ∇Lφ a.e. on (hφ)−1(0) ∩ U = φ−1(0) ∩ U . Thus we
can reduce the claim to (i), and it is similar for (ii). ✷

Theorem 3.6 (Integrated Bochner-Weitzenböck formula) Given u ∈ H2
loc(M) ∩

C1(M) with ∆u ∈ H1
loc(M), we have

−

∫

M

Dφ

(

∇∇u

(

F (∇u)2

2

))

dm

=

∫

M

φ
{

D(∆u)(∇u) + Ric∞(∇u) + ‖∇2u‖2HS(∇u)

}

dm
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for all φ ∈ H1
c (M) ∩ L∞(M), and

−

∫

M

Dφ

(

∇∇u

(

F (∇u)2

2

))

dm ≥

∫

M

φ

{

D(∆u)(∇u)+RicN(∇u)+
(∆u)2

N

}

dm (3.8)

for N ∈ [n,∞] and all nonnegative functions φ ∈ H1
c (M) ∩ L∞(M).

Proof. As the proofs are common, we consider only (3.8) with N <∞.
(I) Let us first treat the case of u ∈ C∞(M). If φ ∈ H1

c (Mu), then (3.8) follows from
(3.5) via integration by parts.

For an arbitrary bounded nonnegative function φ ∈ H1
c (M) ∩ L∞(M), set

φk := min
{

φ, k2F (∇u)2
}

, k ∈ N.

Then φk ∈ H1
c (Mu) and limk→∞ φk(x) = φ(x) for all x ∈Mu. Hence we have

−

∫

M

Dφk

(

∇∇u

(

F (∇u)2

2

))

dm ≥

∫

M

φk

{

D(∆u)(∇u) + RicN (∇u) +
(∆u)2

N

}

dm.

(3.9)
In the limit as k goes to infinity, the right hand side converges to

∫

Mu

φ

{

D(∆u)(∇u) + RicN(∇u) +
(∆u)2

N

}

dm.

The first two terms of the integrand obviously vanish on the set M \Mu. In order to
see that also the third term vanishes, let us fix a local coordinate (xi)ni=1 and apply
Lemma 3.5 to the function h := ∂u/∂xi ∈ H1

loc(M). It implies that ∂h/∂xj = 0 a.e. on
h−1(0) for all j = 1, 2, . . . , n. In other words, ∂2u/∂xi∂xj = 0 for all i, j = 1, 2, . . . , n on
⋂n

i=1{∂u/∂x
i = 0}. Hence, in particular, ∆u = 0 a.e. on M \Mu.

To see the passage to the limit on the left hand side of (3.9), we observe from
Lemma 3.5 that ∇∇u(F (∇u)2) = 2F (∇u)∇∇u(F (∇u)) vanishes a.e. on M \Mu. Thus,
putting

Ωk :=
{

x ∈Mu

∣

∣φ(x) > k2F
(

∇u(x)
)2}

= {x ∈Mu | φ(x) 6= φk(x)},

we find
∣

∣

∣

∣

∫

M

D(φ− φk)
(

∇∇u
(

F (∇u)2
)

)

dm

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

Ωk

Dφ
(

∇∇u
(

F (∇u)2
)

)

dm

∣

∣

∣

∣

+ k2

∫

Ωk

D
(

F (∇u)2
)

(

∇∇u
(

F (∇u)2
)

)

dm.

The first term of the right hand side tends to zero since Ωk decreases to a null set as k
goes to infinity. For the second term, note that

D
(

F (∇u)2
)

(

∇∇u
(

F (∇u)2
)

)

= 4F (∇u)2 ·D
(

F (∇u)
)

(

∇∇u
(

F (∇u)
)

)
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on Mu. Therefore, by the choice of Ωk, we obtain

k2

∫

Ωk

D
(

F (∇u)2
)

(

∇∇u
(

F (∇u)2
)

)

dm ≤ 4

∫

Ωk

φ ·D
(

F (∇u)
)

(

∇∇u
(

F (∇u)
)

)

dm

→ 0 (k →∞).

Hence, as k goes to infinity, the left hand side of (3.9) converges to

−

∫

M

Dφ

(

∇∇u

(

F (∇u)2

2

))

dm.

This proves the claim for u ∈ C∞(M).
(II) Now let us consider the general case of u ∈ H2

loc(M)∩C1(M) with ∆u ∈ H1
loc(M).

Choose uk ∈ C
∞(M) with uk → u locally in the H2-norm as k → ∞. Using integration

by parts, we rewrite (3.8) for the function uk in the form

−

∫

M

Dφ

(

∇∇uk

(

F (∇uk)
2

2

))

dm

≥ −

∫

M

divm(φ∇uk)∆uk dm+

∫

M

φ

{

RicN(∇uk) +
(∆uk)

2

N

}

dm.

As k goes to infinity, each of the terms appearing in this inequality converges towards the
repective term with u in the place of uk. This finally proves the claim for general u. ✷

4 Applications

In linear semigroup theory, the estimates as in Theorems 3.3, 3.6 are also called the Γ2-

inequality or the Bakry-Émery curvature-dimension condition (after [BE]). Applying it
to solutions to the heat equation, we obtain Bakry-Émery and Li-Yau type estimates (for
N = ∞ and N < ∞, respectively). We remark that Theorem 2.5 ensures that solutions
to the heat equation enjoy enough regularity for applying Theorem 3.6. Throughout
the section, we assume the compactness of M . We will consider only global solutions
u : [0, T ] ×M −→ R to the heat equation (more precisely, their continuous versions on
(0, T ]×M) for simplicity.

Given a global solution u : [0, T ]×M −→ R to the heat equation, let us fix a measurable
one-parameter family of non-vanishing vector fields {Vr}r∈[0,T ] on M such that Vr = ∇ur

on Mur
. For 0 ≤ s < t ≤ T , denote by P∇u

s,t the (linear, symmetric) Markov transition
operator on L2(M,m) associated with the time-dependent generator ∆V . Precisely, for
each h ∈ L2(M,m), ht = P∇u

s,t h for t ∈ [s, T ] is the weak solution to ∂ht/∂t = ∆Vtht with
hs = h.

Theorem 4.1 (Bakry-Émery gradient estimate) Let (M,F,m) be compact and sat-

isfy Ric∞ ≥ K for some K ∈ R, and let u : [0, T ]×M −→ R be a global solution to the

heat equation. Then we have

F
(

∇ut(x)
)2
≤ e−2K(t−s)P∇u

s,t

(

F (∇us)
2
)

(x) (4.1)

for all 0 ≤ s < t ≤ T and x ∈M .
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Proof. For fixed t ∈ (0, T ], u as above and for an arbitrary nonnegative function h ∈
C(M), we set

H(s) := e2Ks

∫

M

P∇u
s,t h ·

F (∇us)
2

2
dm, 0 ≤ s ≤ t.

Then we deduce from the definition of P∇u
s,t that

H ′(s) = e2Ks

∫

M

D

(

F (∇us)
2

2

)

(

∇∇us(P∇u
s,t h)

)

dm

+ e2Ks

∫

M

P∇u
s,t h ·

∂

∂s

(

F (∇us)
2

2

)

dm+ 2KH(s).

Note that, thanks to Lemma 3.5, the integrals in the right hand side are well-defined. By
(2.9), the first term in the right hand side coincides with

e2Ks

∫

M

D(P∇u
s,t h)

(

∇∇us

(

F (∇us)
2

2

))

dm.

The other terms are calculated as, with the help of Theorem 2.2,

e2Ks

∫

M

P∇u
s,t h

{

D

(

∂us

∂s

)

(∇us) +KF (∇us)
2

}

dm

= e2Ks

∫

M

P∇u
s,t h

{

D(∆us)(∇us) +KF (∇us)
2

}

dm.

To be precise, we used the positive 0-homogeneity of gij to see, on Mus
,

∂

∂s

(

F (∇us)
2

2

)

=
∂

∂s

[

1

2

n
∑

i,j=1

gij(∇us)
∂us

∂xi

∂us

∂xj

]

=
n

∑

i,j=1

gij(∇us)
∂us

∂xi

∂2us

∂s∂xj
+

1

2

n
∑

i,j,k=1

∂gij

∂vk
(∇us)

∂(∇us)k
∂s

∂us

∂xi

∂us

∂xj

= D

(

∂us

∂s

)

(∇us)−
1

2

∑

i,j,k

∂gij
∂vk

(∇us)(∇us)i(∇us)j
∂(∇us)k

∂s

= D

(

∂us

∂s

)

(∇us), where ∇us =

n
∑

i=1

(∇u)i
∂

∂xi
. (4.2)

Therefore we haveH ′(s) ≤ 0 by the weak formulation of the Bochner-Weitzenböck formula
(3.8) (for φ = P∇u

s,t h and N =∞) together with the hypothesis Ric∞ ≥ K.
Thus H is non-increasing and, in particular,

e2Kt

∫

M

h
F (∇ut)

2

2
dm ≤ e2Ks

∫

M

P∇u
s,t h ·

F (∇us)
2

2
dm

= e2Ks

∫

M

h · P∇u
s,t

(

F (∇us)
2

2

)

dm.

Since this holds true for any nonnegative h, we obtain the claimed inequality (4.1) for a.e.
x ∈ M . The Hölder continuity in x of both sides of (4.1) finally allows to deduce it for
every x ∈M . ✷
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We stress that it is used in (4.1) the mixture of the nonlinear operator us 7−→ ut and
the linear one P∇u

s,t . As an immediate corollary to Theorem 4.1, we obtain a growth bound
for Lipschitz constants. For a continuous function u ∈ C(M), define

Lip(u) := sup
x,y∈M

f(y)− f(x)

d(x, y)
.

Corollary 4.2 Assume that (M,F,m) is compact and satisfies Ric∞ ≥ K for some K ∈
R, and let u : [0, T ]×M −→ R be a global solution to the heat equation. Then we have

‖F (∇ut)‖L∞ ≤ e−Kt‖F (∇u0)‖L∞

and, if u0 ∈ C(M),
Lip(ut) ≤ e−Kt Lip(u0)

for all t ∈ [0, T ].

Remark 4.3 In the Riemannian case, each of the properties in Corollary 4.2 character-
izes manifolds with Ric∞ ≥ K ([vRS, Theorem 1.3]), and Ric∞ ≥ K is also equivalent to
the K-contraction property of heat flow in the L2-Wasserstein space ([vRS, Corollary 1.4],
see (1.1)). The equivalence between the gradient estimate and the contraction property is
known to hold for more general linear semigroups by Kuwada’s duality [Ku]. Comparing
Theorem 4.1 and Corollary 4.2 with the non-contraction property of heat flow estab-
lished in [OS2], we observe that a completely different phenomenon occurs for nonlinear
semigroups.

Next we consider Li-Yau type estimates for N <∞ (cf. [LY] and [Da]).

Theorem 4.4 (Li-Yau gradient estimate) Let us assume that (M,F,m) is compact

and satisfies RicN ≥ K for some N ∈ [n,∞) and K ∈ R, put K ′ := min{K, 0} and take

a positive global solution u : [0, T ]×M −→ R to the heat equation. Then we have

F
(

∇(log u)(t, x)
)2
− θ∂t(log u)(t, x) ≤ Nθ2

(

1

2t
−

K ′

4(θ − 1)

)

on (0, T ]×M for any θ > 1.

Proof. We follow the argumentation in [Da, Lemmas 5.3.2, 5.3.3] and focus on the modifi-
cations required because of nonlinearity and the lack of higher order regularity. Through-
out the proof, we fix a measurable one-parameter family of non-vanishing vector fields
{Vr}r∈[0,T ] as described in the paragraph preceding to Theorem 4.1. We divide the proof
into five steps. Note that it suffices to show the claim for t = T .

(I) First consider the function f := log u which is H2 in space and C1,α in both space
and time. As u solves the heat equation, f satisfies

∆ft + F (∇ft)
2 = ∂tft (4.3)

for every t in the weak sense that
∫

M

{−Dφ(∇ft) + φF (∇ft)
2} dm =

∫

M

φ ∂tft dm
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for each φ ∈ H1(M). Note also that g∇ft = g∇ut
a.e. on Mut

and ∆ft ∈ H1(M) for each
t.

(II) Next we verify that the function σ(t, x) := t∂tf(t, x) (∈ H1(M) by Theorem 2.5)
satisfies

∆V σ − ∂tσ +
σ

t
+ 2Dσ(∇f) = 0 (4.4)

in the sense of distributions on (0, T )×M . Indeed, for each φ ∈ H1
0 ((0, T )×M),

∫ T

0

∫

M

{

−Dφ(∇V σ) + ∂tφ · σ +
φσ

t
+ 2φDσ(∇f)

}

dmdt

=

∫ T

0

∫

M

{

−D(tφ)
(

∇V (∂tf)
)

+ ∂t(tφ)∂tf + 2tφD(∂tf)(∇f)
}

dmdt

=

∫ T

0

∫

M

{

D
(

∂t(tφ)
)

(∇f) + ∂t(tφ)
(

∆f + F (∇f)2
)

+ tφ∂t
(

F (∇f)2
)}

dmdt

= 0,

where we used (4.3) and (4.2) in the second equality. To be precise, a calculation similar
to (4.2) ensures

∂t
(

D(tφ)(∇f)
)

= D
(

∂t(tφ)
)

(∇f) +D(tφ)
(

∇V (∂tf)
)

.

(III) Now let us consider the function α(t, x) := t{F (∇f(t, x))2 − θ∂tf(t, x)}. It lies
in H1(M) for each t and is Hölder continuous in both space and time. Using the previous
identity (4.4) for σ as well as our version of the Bochner-Weitzenböck formula, we shall
deduce that

∆V α + 2Dα(∇f)− ∂tα ≥ β (4.5)

again in the distributional sense on (0, T )×M , where β denotes the continuous function

β(t, x) := −
α

t
+ 2t

{

1

N

(

F (∇f)2 − ∂tf
)2

+KF (∇f)2
}

.

Indeed, for each nonnegative φ ∈ H1
0 ((0, T )×M), (4.4), (4.2) and (4.3) show

∫ T

0

∫

M

{

−Dφ(∇V α) + 2φDα(∇f) + ∂tφ · α +
φα

t

}

dmdt

=

∫ T

0

∫

M

{

− tDφ
(

∇∇u
(

F (∇f)2
)

)

+ 2tφD
(

F (∇f)2
)

(∇f)

− φ
{

F (∇f)2 + 2tD(∂tf)(∇f)
}

+ φF (∇f)2
}

dmdt

=

∫ T

0

∫

M

{

− tDφ
(

∇∇u
(

F (∇f)2
)

)

− 2tφD(∆f)(∇f)
}

dmdt.

Thanks to (3.8) and the hypothesis RicN ≥ K, this is estimated from below by

2t

∫ T

0

∫

M

φ

{

KF (∇f)2 +
(∆f)2

N

}

dmdt
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and (4.3) completes the proof of (4.5).
(IV) Let (s, x) denote the maximizer of α on [0, T ] ×M (note that M is compact).

Without restriction, α(s, x) > 0 and thus s > 0 (otherwise, the assertion of the theorem is
obvious). We shall claim that this implies β(s, x) ≤ 0. Assume the contrary, β(s, x) > 0.
It would imply β > 0 on a neighborhood of (s, x). Hence, according to (4.5) on such
a neighborhood, the function α would be a strict sub-solution to the linear parabolic
operator

divm(∇
V α) + 2Dα(∇f)− ∂tα.

Therefore, α(s, x) would be strictly less than the supremum of α on the boundary of any
small parabolic cylinder [s − δ, s] × Bδ(x), where Bδ(x) := {y ∈ M | d(x, y) < δ}. In
particular, α could not be maximal at (s, x).

(V) The conclusion of the previous step is that β(s, x) ≤ 0. In other words,

α ≥ 2s2
{

1

N

(

F (∇f)2 − ∂tf
)2

+KF (∇f)2
}

at the maximum point (s, x) of α. Following the reasoning of [Da, Lemma 5.3.3], we
conclude

α(s, x) ≤
Nθ2

2

(

1−
K ′s

2(θ − 1)

)

and thus, since K ′ ≤ 0,

α(T, y) ≤ α(s, x) ≤
Nθ2

2

(

1−
K ′T

2(θ − 1)

)

for all y ∈M . This completes the proof. ✷

We proceed along the line of [Da, Theorem 5.3.5] and obtain the Harnack inequality.

Theorem 4.5 (Li-Yau Harnack inequality) Assume that (M,F,m) is compact and

satisfies RicN ≥ K for some N ∈ [n,∞) and K ∈ R, put K ′ := min{K, 0} and take a

nonnegative global solution u : [0, T ]×M −→ R to the heat equation. Then we have

u(s, x) ≤ u(t, y) ·

(

t

s

)θN/2

exp

(

θd(x, y)2

4(t− s)
−

θK ′N(t− s)

4(θ − 1)

)

for any θ > 1, 0 < s < t ≤ T and x, y ∈ M .

Proof. Replacing u by u + ε if necessary, we may assume without restriction that u is
positive. Let η(τ) = expx(τv) for τ ∈ [s, t] be the minimal geodesic from x = η(s) to
y = η(t) with suitable v ∈ TxM . Then obviously F (η̇(τ)) = d(x, y)/(t− s) for all τ . We
also put f := log u,

Θ :=
θd(x, y)2

4(t− s)2
−

θK ′N

4(θ − 1)
, σ(τ) := f

(

τ, η(τ)
)

+
θN

2
log τ +Θτ.
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Then we have, by Theorem 4.4,

∂τσ(τ) = Df(η̇) + ∂tf +
θN

2τ
+Θ

≥ −F (∇f)F (η̇) +
F (∇f)2

θ
−Nθ

(

1

2t
−

K ′

4(θ − 1)

)

+
θN

2τ
+Θ

≥ −F (∇f)
d(x, y)

t− s
+

F (∇f)2

θ
+

θd(x, y)2

4(t− s)2
≥ 0.

Hence we obtain

u(s, x) · sθN/2eΘs = eσ(s) ≤ eσ(t) = u(t, y) · tθN/2eΘt

which proves the claim. ✷

In both Theorems 4.4 and 4.5, we can choose θ = 1 if K ′ = 0. Thus we have the following.

Corollary 4.6 Let (M,m, F ) be compact with RicN ≥ 0 for some N ∈ [n,∞), and take

a nonnegative global solution u : [0, T ]×M −→ R to the heat equation. Then we have

u(s, x) ≤ u(t, y) ·

(

t

s

)N/2

exp

(

d(x, y)2

4(t− s)

)

for any 0 < s < t ≤ T and x, y ∈M .
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