Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions

Karl-Theodor Sturm

Abstract

Given a strictly increasing, continuous function $\vartheta : \mathbb{R}_+ \to \mathbb{R}_+$, based on the cost functional $\int_{X \times X} \vartheta (d(x, y)) dq(x, y)$, we define the L^{ϑ} -Wasserstein distance $W_{\vartheta}(\mu, \nu)$ between probability measures μ, ν on some metric space (X, d). The function ϑ will be assumed to admit a representation $\vartheta = \varphi \circ \psi$ as a composition of a convex and a concave function φ and ψ , resp. Besides convex functions and concave functions this includes all \mathcal{C}^2 functions.

For such functions ϑ we extend the concept of Orlicz spaces, defining the metric space $L^{\vartheta}(X,m)$ of measurable functions $f: X \to \mathbb{R}$ such that, for instance,

$$d_{\vartheta}(f,g) \le 1 \quad \Longleftrightarrow \quad \int_{X} \vartheta(|f(x) - g(x)|) \, d\mu(x) \le 1.$$

1 Convex-Concave Compositions

Throughout this paper, ϑ will be a strictly increasing, continuous function from \mathbb{R}_+ to \mathbb{R}_+ with $\vartheta(0) = 0$.

Definition 1.1. ϑ will be called ccc function ("convex-concave composition") iff there exist two strictly increasing continuous functions $\varphi, \psi : \mathbb{R}_+ \to \mathbb{R}_+$ with $\varphi(0) = \psi(0) = 0$ s.t. φ is convex, ψ is concave and

 $\vartheta = \varphi \circ \psi.$

The pair (φ, ψ) will be called convex-concave factorization of ϑ .

The factorization is called minimal (or non-redundant) if for any other factorization $(\tilde{\varphi}, \tilde{\psi})$ the function $\varphi^{-1} \circ \tilde{\varphi}$ is convex.

Two minimal factorizations of a given function ϑ differ only by a linear change of variables. Indeed, if $\varphi^{-1} \circ \tilde{\varphi}$ is convex and also $\tilde{\varphi}^{-1} \circ \varphi$ is convex then there exists a $\lambda \in (0, \infty)$ s.t. $\tilde{\varphi}(t) = \varphi(\lambda t)$ and $\tilde{\psi}(t) = \frac{1}{\lambda}\psi(t)$.

For each convex, concave or ccc function $f : \mathbb{R}_+ \to \mathbb{R}_+$ put $f'(t) := f'(t+) := \lim_{h \searrow 0} \frac{1}{h} [f(t+h) - f(t)].$

Lemma 1.2. (i) For any ccc function ϑ , the function $\log \vartheta'$ is locally of bounded variation and the distribution $(\log \vartheta')'$ defines a signed Radon measure on $(0, \infty)$, henceforth denoted by $d(\log \vartheta')$.

(ii) A pair (φ, ψ) of strictly increasing convex or concave, resp., continuous functions with $\varphi(0) = \psi(0) = 0$ is a factorization of ϑ iff

$$d(\log \vartheta') = \psi_*^{-1} d(\log \varphi') + d(\log \psi') \tag{1}$$

in the sense of signed Radon measures.

(iii) The factorization (φ, ψ) is minimal iff for any other factorization $(\tilde{\varphi}, \tilde{\psi})$

$$-d(\log\psi') \le -d(\log\psi')$$

in the sense of nonnegative Radon measures on $(0, \infty)$.

(iv) Every ccc function ϑ admits a minimal factorization $(\check{\vartheta}, \hat{\vartheta})$ given by $\check{\vartheta} := \vartheta \circ \hat{\vartheta}^{-1}$ and

$$\hat{\vartheta}(x) := \int_0^x \exp\left(-\int_1^y d\nu_-(z)\right) dy$$

where $d\nu_{-}(z)$ denotes the negative part of the Radon measure $d\nu(z) = d(\log \vartheta')(z)$.

Proof. (i), (ii): The chain rule for convex/concave functions yields

$$\vartheta'(t) = \varphi'(\psi(t)) \cdot \psi'(t)$$

for each factorization (φ, ψ) of a ccc function ϑ . Taking logarithms it implies that $\log \vartheta'$ locally is a BV function (as a difference of two increasing functions) and, hence, that the associated Radon measures satisfy

$$d(\log \vartheta') = d(\log \varphi' \circ \psi) + d(\log \psi')$$

= $\psi_*^{-1} d(\log \varphi') + d(\log \psi').$

(iii): The factorization (φ, ψ) is minimal if and only if for any other factorization $(\tilde{\varphi}, \tilde{\psi})$ the function $u = \varphi^{-1} \circ \varphi = \psi \circ \tilde{\psi}^{-1}$ is convex. Since $\log \psi' = \log u'(\tilde{\psi}) + \log \tilde{\psi}'$, the latter is equivalent to

$$d(\log \psi') \ge d(\log \tilde{\psi}')$$

which is the claim.

(iv): Define $\hat{\vartheta}$ as above. It remains to verify that $\hat{\vartheta} < \infty$. Let (φ, ψ) be any convex-concave factorization of ϑ . Without restriction assume $\psi'(1) = 1$. Then the Hahn decomposition of (1) yields

$$d\nu_{-} \le -d(\log\psi'). \tag{2}$$

Hence, for all $0 \le x \le 1$

$$\begin{aligned} 0 &\leq \hat{\vartheta}(x) &= \int_0^x \exp\left(\int_y^1 d\nu_-(z)\right) dy \\ &\leq \int_0^x \exp\left(-\int_y^1 d(\log\psi')(z)\right) dy = \psi(x) < \infty \end{aligned}$$

This already implies that $\hat{\vartheta}$ is finite, strictly increasing and continuous on $[0, \infty)$. (For instance, for x > 1 it follows $\hat{\vartheta}(x) \leq \hat{\vartheta}(1) + x - 1$.) Moreover, one easily verifies that $\hat{\vartheta}$ is concave.

Since ν_+, ν_- are the minimal nonnegative measures in the ('Hahn' or 'Jordan') decomposition of $\nu = \nu_+ - \nu_-$, it follows that $(\check{\vartheta}, \hat{\vartheta})$ is a minimal cc decomposition of ϑ .

- **Examples 1.3.** Each convex function ϑ is a ccc function. A minimal factorization is given by (ϑ, Id) .
 - Each concave function ϑ is a ccc function. A minimal factorization is given by (Id, ϑ) .
 - Each C^2 function ϑ with $\vartheta'(0+) > 0$ is a ccc function. The minimal factorization is given by

$$\hat{\vartheta}(x) := \int_0^x \exp\left(\int_1^y \frac{\vartheta''(z) \wedge 0}{\vartheta'(z)} dz\right) dy$$

and $\check{\vartheta} := \vartheta \circ \hat{\vartheta}^{-1}$. (The condition $\vartheta'(0+) > 0$ can be replaced by the strictly weaker requirement that the previous integral defining $\hat{\vartheta}$ is finite.)

2 The Metric Space $L^{\vartheta}(X,\mu)$

Let (X, Ξ, μ) be a σ -finite measure space and (φ, ψ) a minimal ccc factorization of a given function ϑ . Then $L^{\vartheta}(X, \mu)$ will denote the space of all measurable functions $f: X \to \mathbb{R}$ such that

$$\int_X \varphi\left(\frac{1}{t}\psi(|f|)\right) \, d\mu < \infty$$

for some $t \in (0, \infty)$ where as usual functions which agree almost everywhere are identified. Note that - due to the fact that $r \mapsto \varphi(r)$ for large r grows at least linearly – the previous condition is equivalent to the condition $\int_X \varphi\left(\frac{1}{t}\psi(|f|)\right) d\mu \leq 1$ for some $t \in (0, \infty)$.

Theorem 2.1. $L^{\vartheta}(X,\mu)$ is a complete metric space with the metric

$$d_{\vartheta}(f,g) = \inf \left\{ t \in (0,\infty) : \int_{X} \varphi \left(\frac{1}{t} \psi(|f-g|) \right) d\mu \le 1 \right\}.$$

The definition of this metric does not depend on the choice of the minimal ccc factorization of the function ϑ . However, choosing an arbitrary convex-concave factorization of ϑ might change the value of d_{ϑ} .

Note that always $d_{\vartheta}(f,g) = d_{\vartheta}(f-g,0)$.

Proof. Let $f, g, h \in L^{\vartheta}(X, \mu)$ be given and choose r, s > 0 with $d_{\vartheta}(f, g) < r$ and $d_{\vartheta}(g, h) < s$. The latter implies

$$\int_X \varphi\left(\frac{1}{r}\psi(|f-g|)\right) d\mu \le 1, \qquad \int_X \varphi\left(\frac{1}{s}\psi(|g-h|)\right) d\mu \le 1.$$

Concavity of ψ yields $\psi(|f-h|) \leq \psi(|f-g|) + \psi(|g-h|)$. Put t = r + s. Then convexity of φ implies

$$\varphi\left(\frac{1}{t}\psi(|f-h|)\right) \leq \varphi\left(\frac{r}{t} \cdot \frac{\psi(|f-g|)}{r} + \frac{s}{t} \cdot \frac{\psi(|g-h|)}{s}\right) \leq \frac{r}{t} \cdot \varphi\left(\frac{\psi(|f-g|)}{r}\right) + \frac{s}{t} \cdot \varphi\left(\frac{\psi(|g-h|)}{s}\right).$$

Hence,

$$\int_X \varphi\left(\frac{1}{t}\psi(|f-h|)\right) d\mu \le \frac{r}{t} \cdot \int_X \varphi\left(\frac{\psi(|f-g|)}{r}\right) d\mu + \frac{s}{t} \cdot \int_X \varphi\left(\frac{\psi(|g-h|)}{s}\right) d\mu \le \frac{r}{t} \cdot 1 + \frac{s}{t} \cdot 1 = 1$$

and thus $d_{\vartheta}(f,h) \leq t$. This proves that $d_{\vartheta}(f,h) \leq d_{\vartheta}(f,g) + d_{\vartheta}(g,h)$.

In order to prove the completeness of the metric, let $(f_n)_n$ be a Cauchy sequence in L^{ϑ} . Then $d_{\vartheta}(f_n, f_m) < \epsilon_n$ for all n, m with $m \ge n$ and suitable $\epsilon_n \searrow 0$. Choose an increasing sequence of measurable sets $X_k, k \in \mathbb{N}$, with $\mu(X_k) < \infty$ and $\bigcup_k X_k = X$. Then

$$\int_{X_k} \varphi\left(\frac{1}{\epsilon_n}\psi(|f_n - f_m|)\right) \, d\mu \le 1$$

for all k, m, n with $m \ge n$. Jensen's inequality implies

$$\varphi\left(\frac{1}{\mu(X_k)}\int_{X_k}\frac{1}{\epsilon_n}\psi(|f_n - f_m|)\,d\mu\right) \le \frac{1}{\mu(X_k)}$$

and thus

$$\int_{X_k} |\psi(f_n) - \psi(f_m)| \ d\mu \le \epsilon_n \cdot \mu(X_k) \cdot \varphi^{-1} \left(\frac{1}{\mu(X_k)}\right)$$

In other words, $(\psi(f_n))_n$ is a Cauchy sequence in $L^1(X_k, \mu)$. It follows that it has a subsequence $(\psi(f_{n_i}))_i$ which converges μ -almost everywhere on X_k . In particular, $(f_{n_i})_i$ converges almost everywhere on X_k towards some limiting function f (which easily is shown to be independent of k).

Finally, Fatou's lemma now implies

$$\int_{X_k} \varphi\left(\frac{1}{\epsilon_n}\psi(|f_n - f|)\right) d\mu \le \liminf_{m \to \infty} \int_{X_k} \varphi\left(\frac{1}{\epsilon_n}\psi(|f_n - f_m|)\right) d\mu \le 1$$

 $\in \mathbb{N}.$ Hence,

 $\int_{X} \varphi\left(\frac{1}{\epsilon_n}\psi(|f_n - f|)\right) \, d\mu \le 1,$

that is,

for each k and n

$$d_{\vartheta}(f_n, f) \le \epsilon_n$$

which proves the claim.

Finally, it remains to verify that

$$d_{\vartheta}(f,g) = 0 \quad \iff \quad f = g \ \mu\text{-a.e. on } X.$$

The implication \Leftarrow is trivial. For the reverse implication, we may argue as in the previous completeness proof: $d_{\vartheta}(f,g) = 0$ will yield $\int_{X_k} \varphi\left(\frac{1}{t}\psi(|f-g|)\right) d\mu \leq 1$ for all $k \in \mathbb{N}$ and all t > 0 which in turn implies $\int_{X_k} |\psi(f) - \psi(g)| d\mu = 0$. The latter proves $f = g \mu$ -a.e. on X which is the claim. \Box

Examples 2.2. If $\vartheta(r) = r^p$ for some $p \in (0, \infty)$ then

$$d_{\vartheta}(f,g) = \left(\int_X |f-g|^p \, d\mu\right)^{1/p}$$

with $p^* := p \text{ if } p \ge 1 \text{ and } p^* := 1 \text{ if } p \le 1.$

Proposition 2.3. (i) If ϑ is convex then $||f||_{L^{\vartheta}(X,\mu)} := d_{\vartheta}(f,0)$ is indeed a norm and $L^{\vartheta}(X,\mu)$ is a Banach space, called Orlicz space. The norm is called Luxemburg norm.

(ii) If ϑ is concave then

$$d_{\vartheta}(f,g) = \int_{X} \vartheta(|f-g|) \, d\mu \ge \|\vartheta(f) - \vartheta(g)\|_{L^{1}(X,\mu)}$$

(iii) For general ccc function $\vartheta = \varphi \circ \psi$

$$d_{\vartheta}(f,g) = \|\psi(|f-g|)\|_{L^{\varphi}(X,\mu)}.$$

(iv) If $\mu(M) = 1$ then for each strictly increasing, convex function $\Phi : \mathbb{R}_+ \to \mathbb{R}_+$ with $\Phi^{-1}(1) = 1$

$$d_{\Phi \circ \vartheta}(f,g) \ge d_{\vartheta}(f,g)$$

("Jensen's inequality").

Proof. (i) If $\psi(r) = cr$ then obviously $d_{\vartheta}(tf, 0) = t \cdot d_{\vartheta}(f, 0)$. See also standard literature [2].

- (ii) Concavity of ϑ implies $\vartheta(|f g|) \ge |\vartheta(f) \vartheta(g)|$.
- (iv) Assume that $d_{\Phi \circ \vartheta}(f,g) < t$ for some $t \in (0,\infty)$. It implies

$$\int_X \Phi\left(\varphi\left(\frac{1}{t}\psi(|f-g|)\right)\right) \, d\mu \le 1.$$

Classical Jensen inequality for integrals yields

$$\Phi\left(\int_X \varphi\left(\frac{1}{t}\psi(|f-g|)\right) \, d\mu\right) \le 1$$

which – due to the fact that $\Phi^{-1}(1) = 1$ – in turn implies $d_{\vartheta}(f,g) \leq t$.

3 The L^{ϑ} -Wasserstein Space

Let (X, d) be a complete separable metric space and ϑ a ccc function with minimal factorization (φ, ψ) . The L^{ϑ} -Wasserstein space $\mathcal{P}_{\vartheta}(X)$ is defined as the space of all probability measures μ on X – equipped with its Borel σ -field – s.t.

$$\int_X \varphi\left(\frac{1}{t}\psi(d(x,y))\right) \, d\mu(x) < \infty$$

for some $y \in X$ and some $t \in (0, \infty)$. The L^{ϑ} -Wasserstein distance of two probability measures $\mu, \nu \in \mathcal{P}_{\vartheta}(X)$ is defined as

$$W_{\vartheta}(\mu,\nu) = \inf \left\{ t > 0: \inf_{q \in \Pi(\mu,\nu)} \int_{X \times X} \varphi\left(\frac{1}{t}\psi(d(x,y))\right) dq(x,y) \le 1 \right\}$$

where $\Pi(\mu, \nu)$ denotes the set of all couplings of μ and ν , i.e. the set of all probability measures q on $X \times X$ s.t. $q(A \times X) = \mu(A), q(X \times A) = \nu(A)$ for all Borel sets $A \subset X$.

Given two probability measures $\mu, \nu \in \mathcal{P}_{\vartheta}(X)$, a coupling q of them is called *optimal* iff

$$\int_{X \times X} \varphi\left(\frac{1}{w}\psi(d(x,y))\right) \, dq(x,y) \le 1$$

for $w := W_{\vartheta}(\mu, \nu)$.

Proposition 3.1. For each pair of probability measures $\mu, \nu \in \mathcal{P}_{\vartheta}(X)$ there exists an optimal coupling q. *Proof.* For $t \in (0, \infty)$ define the cost function $c_t(x, y) = \varphi(\frac{1}{t}\psi(d(x, y)))$. Note that $t \mapsto c_t(x, y)$ is continuous and decreasing.

Given μ, ν s.t. $w := W_{\vartheta}(\mu, \nu) < \infty$. Then for all t > w the measures μ and ν have finite c_t -transportation costs. More precisely,

$$\inf_{q\in\Pi(\mu,\nu)}\int_{X\times X}c_t(x,y)\,dq(x,y)\leq 1.$$

Hence, there exists $q_n \in \Pi(\mu, \nu)$ s.t.

$$\int_{X \times X} c_{w + \frac{1}{n}}(x, y) \, dq_n(x, y) \le 1 + \frac{1}{n}$$

In particular, $\int_{X \times X} c_{w+1}(x, y) dq_n(x, y) \leq 2$ for all $n \in \mathbb{N}$. Hence, the family $(q_n)_n$ is tight ([3], Lemma 4.4). Therefore, there exists a converging subsequence $(q_{n_k})_k$ with limit $q \in \Pi(\mu, \nu)$ satisfying

$$\int_{X \times X} c_{w + \frac{1}{n}}(x, y) \, dq(x, y) \le 1 + \frac{1}{n}$$

for all n ([3], Lemma 4.3) and thus

$$\int_{X \times X} c_w(x, y) \, dq(x, y) \le 1.$$

Proposition 3.2. W_{ϑ} is a complete metric on $\mathcal{P}_{\vartheta}(X)$.

The triangle inequality for W_{ϑ} is valid not only on $\mathcal{P}_{\vartheta}(X)$ but on the whole space $\mathcal{P}(X)$ of probability measures on X. The triangle inequality implies that $W_{\vartheta}(\mu, \nu) < \infty$ for all $\mu, \nu \in \mathcal{P}_{\vartheta}(X)$.

Proof. Given three probability measures μ_1, μ_2, μ_3 on X and numbers r, s with $W_{\vartheta}(\mu_1, \mu_2) < r$ and $W_{\vartheta}(\mu_2, \mu_3) < s$. Then there exist a coupling q_{12} of μ_1 and μ_2 and a coupling q_{23} of μ_2 and μ_3 s.t.

$$\int \varphi\left(\frac{1}{r}\psi \circ d\right) \, dq_{12} \le 1, \qquad \int \varphi\left(\frac{1}{s}\psi \circ d\right) \, dq_{23} \le 1$$

Let q_{123} be the gluing of the two couplings q_{12} and q_{23} , see e.g. [1], Lemma 11.8.3. That is, q_{123} is a probability measure on $X \times X \times X$ s.t. the projection onto the first two factors coincides with q_{12} and the projection onto the last two factors coincides with q_{23} . Let q_{13} denote the projection of q_{123} onto the first and third factor. In particular, this will be a coupling of μ_1 and μ_3 . Then for t := r + s

$$\begin{split} &\int_{X \times X} \varphi\left(\frac{1}{t}\psi(d(x,z))\right) \, dq_{13}(x,z) \\ &\leq \int_{X \times X \times X} \varphi\left(\frac{1}{t}\psi(d(x,y) + d(y,z))\right) \, dq_{123}(x,y,z) \\ &\leq \int_{X \times X \times X} \varphi\left(\frac{r}{t}\frac{\psi(d(x,y))}{r} + \frac{s}{t}\frac{\psi(d(y,z))}{s}\right) \, dq_{123}(x,y,z) \\ &\leq \frac{r}{t}\int_{X \times X \times X} \varphi\left(\frac{\psi(d(x,y))}{r}\right) \, dq_{123}(x,y,z) + \frac{s}{t}\int_{X \times X \times X} \varphi\left(\frac{\psi(d(y,z))}{s}\right) \, dq_{123}(x,y,z) \\ &\leq \frac{r}{t} \cdot 1 + \frac{s}{t} \cdot 1 = 1. \end{split}$$

Hence, $W_{\vartheta}(\mu_1, \mu_3) \leq t$. This proves the triangle inequality.

To prove completeness, assume that $(\mu_k)_k$ is a W_{ϑ} -Cauchy sequence, say $W_{\vartheta}(\mu_n, \mu_k) \leq t_n$ for all $k \geq n$ with $t_n \to 0$ as $n \to \infty$. Then there exist couplings $q_{n,k}$ of μ_n and μ_k s.t.

$$\int \varphi\left(\frac{1}{t_n}\psi(d(x,y))\right) \, dq_{n,k}(x,y) \le 1. \tag{3}$$

Jensen's inequality implies

$$\int \tilde{d}(x,y) \, dq_{n,k}(x,y) \le t_n \cdot \varphi^{-1}(1)$$

with $\tilde{d}(x, y) := \psi(d(x, y))$. The latter is a complete metric on X with the same topology as d. That is, $(\mu_k)_k$ is a Cauchy sequence w.r.t. the L^1 -Wasserstein distance on $\mathcal{P}(X, \tilde{d})$. Because of completeness of $\mathcal{P}_1(X, \tilde{d})$, we thus obtian an accumulation point μ and a converging subsequence $(\mu_{ki})_i$. According to [3], Lemma 4.4, this also yields an accumulation point q_n of the sequence $(q_{n,k_i})_i$. Continuity of the involved cost functions – together with Fatou's lemma – allows to pass to the limit in (3) to derive

$$\int \varphi\left(\frac{1}{t_n}\psi(d(x,y))\right) \, dq_n(x,y) \le 1$$

which proves that $W_{\vartheta}(\mu, \mu_n) \leq t_n \to 0$ as $n \to \infty$.

With a similar argument, one verifies that $W_{\vartheta}(\mu, \nu) = 0$ if and only if $\mu = \nu$.

Remark 3.3. For each pair of probability measures μ, ν on X

$$W_{\vartheta}(\mu,\nu) \le 1 \quad \Longleftrightarrow \quad \inf_{q \in \Pi(\mu,\nu)} \int_{X \times X} \vartheta(d(x,y)) \, dq(x,y) \le 1.$$

References

- [1] R.M. DUDLEY: Real analysis and probability. Cambridge Univ Pr, 2002.
- [2] M.M. RAO, Z.D. REN: Theory of Orlicz Spaces. Pure and Applied Mathematics, Marcel Dekker (1991).
- [3] C. VILLANI: *Optimal Transport, old and new.* Grundlehren der mathematischen Wissenschaften 338 (2009), Springer Berlin · Heidelberg.