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Abstract

We study contractivity properties of gradient flows for functions on normed
spaces or, more generally, on Finsler manifolds. Contractivity of the flows turns out
to be equivalent to a new notion of convexity for the functions. This is different
from the usual convexity along geodesics in Finsler manifolds. As an application, we
show that heat flow on Minkowski normed spaces other than inner product spaces
is not contractive with respect to the quadratic Wasserstein distance.

1 Introduction

The main goal of this article is to prove that, for the heat flow on a Minkowski normed
space, no bound for the exponential growth of the L2-Wasserstein distance exists, unless
the space is an inner product space. This is rather surprising, in particular, in view
of the fact that the heat flow is the gradient flow in the L2-Wasserstein space P2 of
the relative entropy and the fact that the latter is known to be a convex function on
P2. In order to find an explanation for this phenomenon, we will first of all study the
contraction of the gradient flow of a function on a Finsler manifold. A Finsler manifold is
a manifold carrying a Minkowski norm on each tangent space, instead of inner products
for Riemannian manifolds. A Minkowski norm is a generalization of usual norms, and is
not necessarily centrally symmetric.

In Riemannian manifolds, given K ∈ R, it is well-known that the K-convexity of a
function f along geodesics γ (i.e., (f◦γ)′′ ≥ K in the weak sense) implies the K-contraction
of the gradient flow of f , namely

d
(
ξ(t), ζ(t)

)
≤ e−Ktd

(
ξ(0), ζ(0)

)
holds for all t ≥ 0 and ξ, ζ solving ξ̇(t) = ∇(−f)(ξ(t)), ζ̇(t) = ∇(−f)(ζ(t)). This is
obtained via the first variation formulas for the distance d(ξ(t), ζ(t)) and the function f .
In Finsler manifolds or even in normed spaces, however, it has been unclear whether the
gradient flows of convex functions are contractive (cf. [AGS, Introduction]).
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The point is that, although these variational formulas do exist also in the Finsler
setting, they use different approximate inner products (see the paragraph following Def-
inition 3.1). Keeping this in mind, we introduce a new notion of convexity, called the
skew convexity, which is equivalent to the usual convexity in Riemannian manifolds. We
show that the K-skew convexity of a function on a Finsler manifold is equivalent to the
K-contraction of its gradient flow (Theorem 3.2). A difference between the skew con-
vexity and the convexity along geodesics is observed by considering distance functions
(Section 4). For instance, the squared norm is 2-skew convex in every Minkowski space,
while it is only K-convex for some K ≥ 0.

In the second part of the article, we apply our technique to heat flow on Minkowski
spaces. Due to celebrated work of Jordan et al [JKO], heat flow on Euclidean spaces is
regarded as the gradient flow of the relative entropy in the L2-Wasserstein space. This
provides a somewhat geometric interpretation of the non-expansion (0-contraction) of heat
flow with respect to the Wasserstein distance, as the relative entropy is known to be convex
(also called displacement convex, [Mc]). More generally, on Riemannian manifolds, both
the K-convexity of the relative entropy and the K-contraction of heat flow are equivalent
to the lower Ricci curvature bound Ric ≥ K ([vRS]). Note that the Wasserstein space
over a Riemannian manifold possesses a sort of Riemannian structure, for which the first
variation formulas are available (see [Ot], [Oh1], [GO], [Sav], [Vi]). We also remark that
Gigli [Gi] recently showed the uniqueness of the gradient flow of the relative entropy (with
respect to a probability measure) for metric measure spaces such that the relative entropy
is K-convex for some K ∈ R, without relying on the contractivity.

In our previous work [Oh3], [OS], we have extended the equivalence between the Ricci
curvature bound and the convexity of the relative entropy, as well as the identification of
(nonlinear) heat flow with the gradient flow of the relative entropy with respect to the
reverse Wasserstein distance, to (compact) Finsler manifolds. In particular, the relative
entropy on any Minkowski space is convex (see also [Vi, page 908]). Then it is natural to
ask whether heat flow on Minkowski spaces is contractive or not. Our main result gives
a complete answer to this question.

Theorem 1.1 The heat flow on a Minkowski space (Rn, ‖ · ‖) is not K-contractive with
respect to the reverse L2-Wasserstein distance for any K ∈ R, unless (Rn, ‖ · ‖) is an
inner product space.

Our proof uses a geometric characterization of inner products among Minkowski norms
(Claims 6.1, 6.2).

Theorem 1.1 means that the Wasserstein contraction implies that the space must be
Riemannian. This makes a contrast with the aforementioned fact that the convexity of
the relative entropy (as well as the curvature-dimension condition) works well for general
Finsler manifolds. Among other characterizations of lower Ricci curvature bounds for
Riemannian manifolds, the Bochner formula/inequality would make sense in some, but
not all non-Riemannian Finsler manifolds (work in progress of the authors).

The article is organized as follows. After preliminaries for Minkowski and Finsler
geometries, we introduce the skew convexity in Section 3, and study the skew convexity
of distance functions in Section 4. In Section 5, we discuss heat flow on Minkowski
spaces. We give a detailed explanation on how to identify it with the gradient flow of the
relative entropy, because some results in [OS] are not directly applicable to noncompact
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spaces. Finally, Section 6 is devoted to a proof of Theorem 1.1. We remark that only
Subsection 2.1 and Section 5 are necessary for understanding Section 6.

2 Preliminaries

We review the basics of Minkowski spaces and Finsler manifolds. We refer to [BCS] and
[Sh] for Finsler geometry, and to [BCS, Chapter 14] for Minkowski spaces.

2.1 Minkowski spaces

In this article, a Minkowski norm will mean a nonnegative function ‖ · ‖ : Rn −→ [0,∞)
satisfying the following conditions.

(1) (Positive homogeneity) ‖cx‖ = c‖x‖ holds for all x ∈ Rn and c ≥ 0.

(2) (Strong convexity) The function ‖ · ‖2/2 is twice differentiable on Rn \ {0}, and the
symmetric matrix (

gij(x)
)n

i,j=1
:=

(
1

2

∂2(‖ · ‖2)

∂xi∂xj
(x)

)n

i,j=1

(2.1)

is measurable in x and uniformly elliptic in the sense that there are constants λ, Λ > 0
such that

λ
n∑

i=1

(ai)2 ≤
n∑

i,j=1

gij(x)aiaj ≤ Λ
n∑

i=1

(ai)2 (2.2)

holds for all x ∈ Rn \ {0} and (ai) ∈ Rn. In particular, ‖x‖ > 0 for all x 6= 0.

We call (Rn, ‖ · ‖) a Minkowski space. Note that the homogeneity is imposed only in
positive direction, so that ‖−x‖ 6= ‖x‖ is allowed. We also remark that the function ‖·‖2/2
is twice differentiable at the origin only in inner product spaces. Given x ∈ Rn \ {0}, the
matrix (2.1) defines the inner product gx of Rn by

gx

(
(ai), (bj)

)
:=

n∑
i,j=1

gij(x)aibj. (2.3)

This is the best approximation of the norm in the direction x in the sense that the unit
sphere of gx is tangent to that of ‖ · ‖ at x/‖x‖ up to the second order (Figure 1). In
particular, we have gx(x, x) = ‖x‖2. If the original norm comes from an inner product,
then gx coincides with it for all x.
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Figure 1

6

--x/‖x‖

gx(·, ·) = 1

‖ · ‖ = 1

We define the 2-uniform convexity and smoothness constants C,S ∈ [1,∞) as the least
constants satisfying ∥∥∥∥x + y

2

∥∥∥∥2

≤ 1

2
‖x‖2 +

1

2
‖y‖2 − 1

4C2
‖x − y‖2,∥∥∥∥x + y

2

∥∥∥∥2

≥ 1

2
‖x‖2 +

1

2
‖y‖2 − S2

4
‖x − y‖2

for all x, y ∈ Rn. In other words, C−2 and S2 are the moduli of convexity and concavity
of ‖ · ‖2/2, respectively. Thanks to (2.2), C < ∞ and S < ∞ hold. Indeed, we know

C = sup
x,y∈Rn\{0}

‖y‖
gx(y, y)1/2

, S = sup
x,y∈Rn\{0}

gx(y, y)1/2

‖y‖
(2.4)

(cf. [Oh2, Proposition 4.6]). Note also that C = 1 or S = 1 holds if and only if the norm
is an inner product.

We denote by ‖ · ‖∗ the dual norm of ‖ · ‖. The Legendre transform L : (Rn, ‖ · ‖) −→
(Rn, ‖ · ‖∗) associates x with L(x) satisfying ‖L(x)‖∗ = ‖x‖ and [L(x)](x) = ‖x‖2. Note
that (2.2) ensures that L(x) is indeed uniquely determined, and it is explicitly written as

L(x) =

( n∑
i=1

gij(x)xi

)n

j=1

. (2.5)

The Legendre transform of inverse direction L∗ : (Rn, ‖ · ‖∗) −→ (Rn, ‖ · ‖) is nothing but
the inverse map L∗ = L−1 by definition. For a function f : Rn −→ R and x ∈ Rn at where
f is differentiable, we define the gradient vector of f at x by ∇f(x) := L∗(Df(x)) ∈ TxRn.

Remark 2.1 We need the strong convexity to formulate and investigate the skew convex-
ity as well as the heat equation, while the characterization of inner products (Claim 6.2) is
valid among merely ‘convex’ Minkowski norms (i.e., its closed unit ball is a closed convex
set containing the origin as an inner point).
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2.2 Finsler manifolds

Let M be a connected C∞-manifold without boundary. A nonnegative function F :
TM −→ [0,∞) is called a C∞-Finsler structure if it is C∞ on TM \ {0} ({0} stands for
the zero section) and if F |TxM is a Minkowski norm for all x ∈ M . We call (M,F ) a
C∞-Finsler manifold. (We will consider only C∞-structures for simplicity.)

For each v ∈ TxM \ {0}, we define the inner product gv on TxM like (2.3). That is
to say, given a local coordinate (xi)n

i=1 on an open set U containing x, we consider the
coordinate of TxM as v =

∑n
i=1 vi(∂/∂xi)|x and define

gij(v) :=
1

2

∂2(F 2)

∂vi∂vj
(v), gv

( n∑
i=1

ai
∂

∂xi

∣∣∣
x
,

n∑
j=1

bj
∂

∂xj

∣∣∣
x

)
:=

n∑
i,j=1

aibjgij(v).

We denote by C(x) and S(x) the 2-uniform convexity and smoothness constants of F |TxM ,
respectively. For a function f : M −→ R differentiable at x ∈ M , define the gradient
vector of f at x by ∇f(x) := L∗(Df(x)) via the Legendre transform L∗ : T ∗

xM −→ TxM .

The distance from x to y is naturally defined as d(x, y) := infγ

∫ 1

0
F (γ̇) dt, where

γ : [0, 1] −→ M runs over all differentiable curves from x to y. We remark that d is
nonsymmetric in general, namely d(y, x) 6= d(x, y) may happen. A geodesic γ : [0, l] −→
M is a locally length minimizing curve of constant speed (i.e., F (γ̇) is constant). We say
that (M,F ) is forward complete if any geodesic γ : [0, l] −→ M is extended to a geodesic
γ : [0,∞) −→ M . Then, for any x, y ∈ M , there is a minimal geodesic from x to y.

Along a geodesic γ : [0, l] −→ M , γ(s) with s ∈ (0, l) is called a cut point of γ(0)
if γ|[0,s] is minimal and if γ|[0,s+ε] is not minimal for any ε > 0. Suppose that γ(s) is
not a cut point of γ(0) for all s ∈ (0, l], and let ξ and ζ be differentiable curves with
ξ(0) = γ(0) and ζ(0) = γ(l). Then we have the following first variation formula ([BCS,
Exercise 5.2.4]):

lim
t↓0

d(ξ(t), ζ(t)) − d(ξ(0), ζ(0))

t
=

gγ̇(l)(γ̇(l), ζ̇(0)) − gγ̇(0)(γ̇(0), ξ̇(0))

l−1 · d(γ(0), γ(l))
. (2.6)

As usual in discussing the contraction property, this formula will play a vital role.

It is sometimes useful to consider the reverse Finsler structure
←−
F (v) := F (−v). We

will put an arrow ← on those associated with
←−
F , for example,

←−
d (x, y) = d(y, x) and

←−
∇f = −∇(−f).

3 Skew convex functions

We introduce skew convex functions on a C∞-Finsler manifold (M,F ), and will see that
it is equivalent to the contractivity of their gradient flows. Although we shall work with
C1-functions for simplicity, the same technique is applicable to other classes of functions
(e.g., locally semi-convex functions, see Remark 3.3 below).

Let us begin with the standard notion of convexity along geodesics. A function f :
M −→ [−∞,∞] is said to be K-convex (or geodesically K-convex ) for K ∈ R if

f
(
γ(t)

)
≤ (1 − t)f

(
γ(0)

)
+ tf

(
γ(1)

)
− K

2
(1 − t)td

(
γ(0), γ(1)

)2
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holds for all geodesics γ : [0, 1] −→ M and t ≥ 0. If f is C2, then this is equivalent to
∂2[f ◦ γ]/∂t2 ≥ Kd(γ(0), γ(1))2 and to

∂

∂t

[
Df

(
γ(t)

)(
γ̇(t)

)]
≥ Kd

(
γ(0), γ(1)

)2
.

Now, instead of Df(γ)(γ̇) = −g∇(−f)(γ)(∇(−f)(γ), γ̇) in the left hand side, we employ
−L(γ̇)(∇(−f)(γ)) = −gγ̇(∇(−f)(γ), γ̇) for the skew convexity.

Definition 3.1 (Skew convex functions) Let f : M −→ R be a C1-function. We say
that f is K-skew convex for K ∈ R if, for any pair of distinct points x, y ∈ M , there is a
minimal geodesic γ : [0, 1] −→ M from x to y such that

gγ̇(1)

(
γ̇(1),∇(−f)(y)

)
− gγ̇(0)

(
γ̇(0),∇(−f)(x)

)
≤ −Kd(x, y)2. (3.1)

Recall that, on a Riemannian manifold (M, g), it holds gγ̇ = g and (3.1) indeed implies
the K-convexity of f . In the Finsler setting, however, gγ̇ is different from g∇(−f)(γ) (see
Subsection 4.1). Compare (3.1) with (2.6).

For a C1-function f : M −→ R and any point x ∈ M , there exists a C1-curve
ξ : [0,∞) −→ M satisfying ξ(0) = x and ξ̇(t) = ∇(−f)(ξ(t)) for all t. We call such ξ a
gradient curve of f . For K ∈ R, we say that the gradient flow of f is K-contractive if

d
(
ξ(t), ζ(t)

)
≤ e−Ktd

(
ξ(0), ζ(0)

)
holds for all gradient curves ξ, ζ and t ∈ [0,∞).

Theorem 3.2 Let (M,F ) be a forward complete Finsler manifold, and let f : M −→ R
be a C1-function. Then the gradient flow of f is K-contractive if and only if f is K-skew
convex.

Proof. We first assume that f is K-skew convex. Fix two gradient curves ξ, ζ : [0,∞) −→
M of f and set l(t) := d(ξ(t), ζ(t)). Given t > 0, let γ : [0, 1] −→ M be a minimal geodesic
from ξ(t) to ζ(t) such that (3.1) holds. Note that γ(1/2) (ζ(t), resp.) is not a cut point
of ξ(t) (γ(1/2), resp.). Thus the first variation formula (2.6) shows that, together with
the triangle inequality,

l′(t) ≤ lim
ε↓0

d(ξ(t + ε), γ(1/2)) − d(ξ(t), γ(1/2))

ε

+ lim
ε↓0

d(γ(1/2), ζ(t + ε)) − d(γ(1/2), ζ(t))

ε

= −gγ̇(0)

(
γ̇(0)/l(t), ξ̇(t)

)
+ gγ̇(1)

(
γ̇(1)/l(t), ζ̇(t)

)
.

By hypothesis, this yields l′(t) ≤ −Kl(t). Therefore d(ξ(t), ζ(t)) ≤ e−Ktd(ξ(0), ζ(0))
follows from Gronwall’s lemma.

To see the converse, suppose that the gradient flow of f is K-contractive and take a
minimal geodesic γ : [0, 1] −→ M . Dividing γ into γ|[0,1/2] and γ|[1/2,1] if necessary, we
can assume that γ(s) is not a cut point of γ(0) for all s ∈ (0, 1]. Consider gradient curves
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ξ, ζ : [0,∞) −→ M of f with ξ(0) = γ(0) and ζ(0) = γ(1), and put l(t) := d(ξ(t), ζ(t))
again. Then we deduce from the assumption that

d

dt

∣∣∣
t=0+

[
eKtl(t)

]
≤ 0.

This immediately implies the K-skew convexity, as the first variation formula (2.6) shows

d

dt

∣∣∣
t=0+

[
eKtl(t)

]
= Kl(0) +

d

dt

∣∣∣
t=0+

l(t)

= Kl(0) + gγ̇(1)

(
γ̇(1)/l(0), ζ̇(0)

)
− gγ̇(0)

(
γ̇(0)/l(0), ξ̇(0)

)
.

We complete the proof. 2

Remark 3.3 We can replace the C1-regularity in Definition 3.1 with the local semi-
convexity as follows (cf., e.g., [Oh1] for details). We say that a function f : M −→ R is
locally semi-convex if, for any x ∈ M , there are an open set U 3 x and K ∈ R such that
f |U is K-convex along any geodesic γ : [0, 1] −→ U in the weak sense. Define the local
slope of f at x ∈ M as

|∇−f |(x) := lim sup
y→x

max{f(x) − f(y), 0}
d(x, y)

. (3.2)

For each x ∈ M with |∇−f |(x) > 0, there exists a unique unit vector v ∈ TxM satisfying
limt↓0{f(γ(t)) − f(x)}/t = −|∇−f |(x), where γ is the geodesic with γ̇(0) = v. We define
∇−f(x) := |∇−f |(x) · v, and ∇−f(x) := 0 if |∇−f |(x) = 0. Then there is a gradient curve
(solving ξ̇(t) = ∇−f(ξ(t)) at a.e. t) starting from any point. The K-skew convexity can be
defined by using ∇−f in (3.1) instead of ∇(−f), and the analogue of Theorem 3.2 holds
by the same argument.

4 Skew convexity of distance functions

We study the skew convexity of the squared distance function. It is closely related to
upper bounds of the sectional curvature in the Riemannian case. In our Finsler setting,
we need two more quantities to control the distance function. See [Oh2] and [Sh] for
related work on the usual convexity and concavity along geodesics.

4.1 In Minkowski spaces

Before considering general Finsler manifolds, we discuss Minkowski spaces. Let (Rn, ‖ · ‖)
be a Minkowski space and set f(x) := ‖− x‖2/2. We observe ∇(−f)(x) = −x, so that
the gradient curve ξ of f with ξ(0) = x is given by ξ(t) = e−tx. Thus we see that the
gradient flow of f is always 1-contractive, which shows that f is 1-skew convex. Indeed,
for any v ∈ Rn \ {0}, we have

gv

(
v,∇(−f)(x + v)

)
− gv

(
v,∇(−f)(x)

)
= −gv(v, v) = −‖v‖2.

In contrast, f̃(x) := 〈x, x〉/2 associated with the Euclidean inner product 〈·, ·〉 of Rn

may not be K-skew convex with respect to ‖ · ‖ even for negative K, though f̃ is convex
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along straight lines. To see this, we observe Df̃(x) = x and ∇(−f̃)(x) = L∗(−x) by
identifying both TxRn and T ∗

x Rn with Rn. Choosing v = −x 6= 0, we have

gv

(
v,∇(−f̃)(x + v)

)
− gv

(
v,∇(−f̃)(x)

)
= −gv

(
v,L∗(v)

)
= −〈L(v),L∗(v)〉.

We used (2.5) in the last equality. However, −〈L(v),L∗(v)〉/‖v‖2 can be arbitrarily large
for general ‖ · ‖. An example is illustrated in Figure 2. The rounded parallelogram drawn
by thick line is the unit sphere of the original norm ‖ · ‖. By making the parallelogram
longer (as drawn by thin line), we have −〈L(v),L∗(v)〉 → ∞ while ‖v‖ = 1.

Figure 2

6

-

Á
:

6¸
I

‖ · ‖ = 1

v
L(v)

L∗(v)

· ·
·

· ·
·

· · ·

This observation (as well as Theorem 1.1) reveals that the skew convexity has no
(obvious) relation with the usual convexity.

4.2 In Finsler manifolds

We need some more terminologies to discuss the Finsler case, see [BCS] for details. For
a C1-vector field X on M and tangent vectors v, w ∈ TxM with w 6= 0, we define the
covariant derivative of X with reference vector w as

(Dw
v X)(x) :=

n∑
i,j=1

{
vj ∂X i

∂xj
(x) +

n∑
k=1

Γi
jk(w)vjXk(x)

}
∂

∂xi

∣∣∣
x
,

where Γi
jk is the Christoffel symbol. If Γi

jk(w) depends only on the point x and independent
of the choice of w ∈ TxM \ {0} for all x ∈ M , then we say that (M,F ) is of Berwald
type. In a Berwald space, all tangent spaces are isometric to each other. For instance,
Riemannian manifolds and Minkowski spaces are of Berwald type.

By using the covariant derivative, the geodesic equation is written in a canonical way
as Dγ̇

γ̇ γ̇ ≡ 0. We will use the following formula borrowed from [BCS, Exercise 10.1.2]:

d

dt
gV (V,W ) = gV (DV

γ̇ V,W ) + gV (V,DV
γ̇ W ) (4.1)
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for any C1-curve γ and C1-vector fields V,W along γ.
A C∞-vector field V along a geodesic γ : [0, l] −→ M is called a Jacobi field if it

satisfies the equation Dγ̇
γ̇Dγ̇

γV + R(V, γ̇)γ̇ ≡ 0, where R : TM ⊗ TM −→ T ∗M ⊗ TM
is the curvature tensor. Similarly to the Riemannian case, the variational vector field of
a geodesic variation is a Jacobi field (and vice versa). For linearly independent vectors
v, w ∈ TxM , the flag curvature is defined by

K(v, w) :=
gv(R(v, w)w, v)

F (v)2gv(w,w) − gv(v, w)2
.

We remark that K(v, w) depends not only on the plane in TxM spanned by v and w
(flag), but also on the choice of v in it (flagpole).

In order to state our theorem, we introduce the condition

gV (V,DV
W DV

W V − DW
W DW

W V ) ≥ −δF (V )2F (W )2 (4.2)

for C∞-vector fields V,W and δ ≥ 0. This clearly holds with δ = 0 for Berwald spaces.
Therefore δ measures how the tangent spaces are distorted as one moves (in M) along
w. The injectivity radius inj(z) at z ∈ M is the supremum of R > 0 such that any
unit speed geodesic γ : [0, R) −→ M with γ(0) = z contains no cut point of z. We set
B(x, r) := {y ∈ M | d(x, y) < r} for x ∈ M and r > 0.

Theorem 4.1 Let (M,F ) be a forward complete Finsler manifold and suppose that K ≤
k, S ≤ S and (4.2) hold for some k ≥ 0, S ≥ 1 and δ ≥ 0. Then the function f(x) :=

d(x, z)2/2 is K(k, S, δ, r)-skew convex in
←−
B (z, r) for all z ∈ M and r ∈ (0, R), where we

set
K(k, S, δ, r) :=

√
kS2 + δr · cot(

√
kS2 + δr)

and R := min{←−inj(z), π/
√

kS2 + δ}. In particular, if K ≤ 0, then f is (
√

δr cot(
√

δr))-

skew convex in
←−
B (z, r) for r ∈ (0, min{←−inj(z), π/

√
δ}) regardless S.

Proof. Fix a unit speed minimal geodesic γ : [0, l] −→
←−
B (z, r) with r < R, and let

σ : [0, l] × [0, 1] −→ M be the C∞-variation such that σs := σ(s, ·) is the unique minimal
geodesic from γ(s) to z. Put T (s, t) := ∂tσ(s, t) and V(s, t) := ∂sσ(s, t). Observe that
γ̇(s) = V(s, 0) and ∇(−f)(γ(s)) = T (s, 0). Hence we need to bound the following:

∂

∂s

[
gV

(
V(s, 0), T (s, 0)

)]
= gV

(
V(s, 0), DV

s T (s, 0)
)
. (4.3)

We used (4.1) and the geodesic equation DV
s V(s, 0) ≡ 0. As DV

s T = DV
t V (cf. [BCS,

Exercise 5.2.1]), we deduce from (4.1) that

gV
(
V(s, 0), DV

s T (s, 0)
)

=
1

2

∂

∂t
[gV(V,V)](s, 0) =

1

2

∂[F (V)2]

∂t
(s, 0). (4.4)

9



Again due to (4.1), we observe

∂2[F (V)]

∂t2
=

∂

∂t

[
gV(V , DV

t V)

F (V)

]
=

gV(V , DV
t DV

t V) + gV(DV
t V , DV

t V)

F (V)
− gV(V , DV

t V)2

F (V)3

=
gV(V , DV

t DV
t V)

F (V)
+

F (V)2gV(DV
t V , DV

t V) − gV(V, DV
t V)2

F (V)3
.

The second term is nonnegative by the Cauchy-Schwarz inequality. Moreover, by the
assumption (4.2), we have

gV(V , DV
t DV

t V) ≥ gV(V , DT
t DT

t V) − δF (V)2F (T )2.

Since V(s, ·) is a Jacobi field, it holds DT
t DT

t V = −R(V , T )T and hence

∂2[F (V)]

∂t2
≥ −K(V, T )

F (V)2gV(T , T ) − gV(V , T )2

F (V)
− δF (V)F (T )2

≥ −k
F (V)2gV(T , T ) − gV(V , T )2

F (V)
− δF (V)F (T )2.

As k ≥ 0, it follows from S ≤ S that (recall (2.4))

−k{F (V)2gV(T , T ) − gV(V , T )2} ≥ −kF (V)2gV(T , T ) ≥ −kS2F (V)2F (T )2.

Hence we obtain, together with F (T ) ≤ r,

∂2[F (V)]

∂t2
≥ −(kS2 + δ)r2F (V).

The above inequality shows that the function

∂[F (V)]

∂t
sin

(√
kS2 + δr(1 − t)

)
− F (V)

∂

∂t

[
sin

(√
kS2 + δr(1 − t)

)]
is non-decreasing in t ∈ [0, 1], so that it is nonpositive for all t. Thus we have

1

2

∂[F (V)2]

∂t
= F (V)

∂[F (V)]

∂t
≤ −

√
kS2 + δr · cot

(√
kS2 + δr(1 − t)

)
F (V)2. (4.5)

Combining (4.3), (4.4), (4.5) and F (V(s, 0)) = F (γ̇(s)) = 1, we conclude

∂

∂s

[
gV

(
V(s, 0), T (s, 0)

)]
≤ −

√
kS2 + δr · cot(

√
kS2 + δr).

This completes the proof. 2

Interestingly enough, what appears in Theorem 4.1 is not the 2-uniform convexity
constant C, but the smoothness constant S. Compare this with the usual convexity
([Oh2, Theorem 5.1]).

Corollary 4.2 Assume that (M,F ) is forward complete and of Berwald type, and that
K ≤ k and S ≤ S hold for some k ≥ 0 and S ≥ 1. Then the function f(x) := d(x, z)2/2 is

(
√

kSr cot(
√

kSr))-skew convex in
←−
B (z, r) for all z ∈ M and r ∈ (0, min{←−inj(z), π/

√
kS}).

In particular, if K ≤ 0, then f is 1-skew convex in
←−
B (z,

←−
inj(z)) regardless S.

This recovers the 1-skew convexity of f(x) = ‖− x‖2/2 on Minkowski spaces.
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5 Heat flow on Minkowski spaces

In order to apply our technique to heat flow on Minkowski spaces, we regard it as the
gradient flow of the relative entropy with respect to the reverse Wasserstein distance.
We refer to [AGS] and [Vi] for Wasserstein geometry as well as the gradient flow theory.
Throughout the section, let (Rn, ‖·‖) be a Minkowski space in the sense of Subsection 2.1.

5.1 Wasserstein geometry over Minkowski spaces

Let P(Rn) be the set of Borel probability measures on Rn. Define P2(Rn) ⊂ P(Rn) as the
set of measures µ such that

∫
Rn ‖x‖2 dµ < ∞ (note that then

∫
Rn ‖− x‖2 dµ < ∞ holds

as well), where dx stands for the Lebesgue measure. The subset of absolutely continuous
measures with respect to dx is denoted by Pac(Rn) ⊂ P(Rn).

Given µ, ν ∈ P2(Rn), a probability measure π ∈ P(Rn × Rn) is called a coupling of µ
and ν if π(A × Rn) = µ(A) and π(Rn × A) = ν(A) hold for all measurable sets A ⊂ Rn.
We define the L2-Wasserstein distance from µ to ν by

W2(µ, ν) := inf
π

( ∫
Rn×Rn

‖y − x‖2 dπ(x, y)

)1/2

,

where π runs over all couplings of µ and ν. We call (P2(Rn),W2) the L2-Wasserstein
space over (Rn, ‖ · ‖).

Remark 5.1 (a) Thanks to (2.2), our norm is comparable to an inner product. In fact,
(2.4) yields C−1‖y‖ ≤

√
gx(y, y) ≤ S‖y‖. Then, if we denote by W gx

2 the Wasserstein
distance with respect to gx, we have C−1W2(µ, ν) ≤ W gx

2 (µ, ν) ≤ SW2(µ, ν). This relation
is sometimes useful to apply known results in the Euclidean case.

(b) Unlike John’s theorem for symmetric norms (c ≤ n), the least constant c ≥ 1
satisfying ‖y‖2 ≤ 〈y, y〉 ≤ c‖y‖2 for some inner product 〈·, ·〉 and all y ∈ Rn can not be
bounded only by the dimension n. Consider the norm whose unit sphere is the standard
unit sphere, but with the center (1 − ε, 0, . . . , 0). Letting ε ↓ 0, we have c → ∞ (and
C,S → ∞).

For µ ∈ Pac
2 (Rn) and ν ∈ P2(Rn), there exists a semi-convex function ϕ on an open set

Ω ⊂ Rn with µ(Ω) = 1 such that π := (idRn ×T1)]µ provides the unique optimal coupling
of µ and ν, where we set Tt(x) := x + t∇ϕ(x) for t ∈ [0, 1] (by, e.g., [Vi, Theorem 10.26]
with (locLip), (SC), (H∞)). Moreover, µt := (Tt)]µ is the unique minimal geodesic
from µ0 = µ to µ1 = ν. Note that ϕ is twice differentiable a.e. on Ω in the sense of
Alexandrov, thus Tt is well-defined and differentiable a.e. on Ω.

We introduce a Finsler structure of the Wasserstein space along the line of [Ot], see
[OS] for more details in the case of compact Finsler manifolds. We set

T̂P := {Φ = ∇ϕ |ϕ ∈ C∞
c (Rn)}

and define the tangent space (TµP , Fµ) at µ ∈ P2(Rn) as the completion of T̂P with
respect to the Minkowski norm

Fµ(Φ) :=

( ∫
Rn

‖Φ‖2 dµ

)1/2

.
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Similarly, the cotangent space (T ∗
µP , F ∗

µ) is defined as the completion of T̂ ∗P := {α =

Dϕ |ϕ ∈ C∞
c (Rn)} with respect to F ∗

µ(α) := (
∫

Rn ‖α‖2
∗ dµ)1/2. We define the Legendre

transform L∗
µ : T ∗

µP −→ TµP in the pointwise way that L∗
µ(Dϕ) = ∇ϕ. The exponential

map expµ : TµP −→ P2(Rn) is defined by expµ(Φ) := (exp Φ)]µ, where (exp Φ)(x) :=
x + Φ(x).

We say that a curve (µt)t∈I ⊂ P2(Rn) on an open interval I ⊂ R is (2-)absolutely
continuous if there is some h ∈ L2(I) such that

W2(µt, µτ ) ≤
∫ τ

t

h(r) dr

holds for all t, τ ∈ I with t < τ . Note that an absolutely continuous curve is continuous.
Given an absolutely continuous curve (µt)t∈I , the forward absolute gradient

|µ̇t| := lim
τ→t

W2(µmin{τ,t}, µmax{τ,t})

|τ − t|

is well-defined for a.e. t ∈ I ([AGS, Theorem 1.1.2], [OS, Lemma 7.1]). We can associate
(µt)t∈I with a Borel vector field Φ on I × Rn (with Φt(x) := Φ(t, x) ∈ TxRn) satisfying
Φt ∈ TµtP at a.e. t ∈ I, and solving the continuity equation ∂tµt + div(Φtµt) = 0 in the
weak sense that ∫

I

∫
Rn

{∂tψ + Dψ(Φ)} dµtdt = 0 (5.1)

for all ψ ∈ C∞
c (I ×Rn) ([AGS, Theorem 8.3.1], [OS, Theorem 7.3]). Such a vector field is

unique up to a difference on a null measure set with respect to dµtdt (under the condition
Φt ∈ TµtP), and we have Fµt(Φt) = |µ̇t| for a.e. t ∈ I. We will call Φ the tangent vector
field of the curve (µt)t∈I and write µ̇t = Φt.

Now, consider a function Q : P2(Rn) −→ [−∞,∞]. We say that Q is differentiable at
µ ∈ P2(Rn) if −∞ < Q(µ) < ∞ and if there is α ∈ T ∗

µP such that∫
Rn

α(Φ) dµ = lim
t↓0

Q(expµ(tΦ)) − Q(µ)

t
(5.2)

holds for all Φ = ∇ϕ ∈ T̂P . Such a one-form α is unique in T ∗
µP up to a difference on a

µ-null measure set. Thus we write DQ(µ) = α and define the gradient vector of Q at µ
by ∇W Q(µ) := L∗

µ(DQ(µ)).

Definition 5.2 (Gradient curves in (P2(Rn),W2)) We say that an absolutely contin-
uous curve (µt)t∈[0,T ) ⊂ P2(Rn) with T ∈ (0,∞] is a gradient curve of Q if µ̇t =
∇W (−Q)(µt) holds for a.e. t ∈ (0, T ).

We remark that the differentiability of −Q (or, equivalently, Q) at a.e. t ∈ (0, T ) is
included in the above definition.

5.2 Nonlinear heat equation and global solutions

We define the (distributional) Finsler Laplacian ∆ acting on u ∈ H1
loc(Rn) by∫

Rn

ψ∆u dx = −
∫

Rn

Dψ(∇u) dx

12



for all ψ ∈ C∞
c (Rn). Note that ∆ is a nonlinear operator since the Legendre transform is

nonlinear. We consider the associated heat equation ∂tu = ∆u also in the weak form. We
saw in [OS, Theorem 3.4] that, given u0 ∈ H1

0 (Rn) and T > 0, there exists a unique global
solution u ∈ L2([0, T ], H1

0 (Rn)) ∩ H1([0, T ], L2(M)) to ∂tu = ∆u in the weak sense that∫
Rn

ψ∂tu dx = −
∫

Rn

Dψ(∇u) dx (5.3)

holds for all t ∈ [0, T ] and ψ ∈ H1
0 (Rn). The distributional Laplacian ∆ut is absolutely

continuous for each t ∈ (0, T ].
We can also regard (ut)t∈[0,T ] as a weak solution to the heat equation ∂tv = ∆∇uv

associated with the linear second order differential operator

∆∇uv := div

( n∑
i,j=1

gij(∇u)
∂v

∂xi

∂

∂xj

)
,

where (gij) is the inverse matrix of (gij) and ∇u(x) is replaced with some nonzero vector if
∇u(x) = 0 (in a measurable way in x). By virtue of (2.2), (gij(∇u)) is globally uniformly
elliptic with respect to the Euclidean inner product. Therefore the classical theory due to
Nash [Na], Moser [Mo], Aronson [Ar] and others yields the parabolic Harnack inequality
as well as the Gaussian estimates from both sides for fundamental solutions (see also [Sal]
for the Riemannian case). Moreover, the continuous version of u is H2

loc in x and C1,α in
both t and x ([OS, Theorems 4.6, 4.9]).

Remark 5.3 In the Riemannian case, a second integration by parts allows to rewrite
(5.3) as an equation without spatial derivatives of u. In the Finsler case, however, this
leads to

∫
Rn ψ∂tu dx =

∫
Rn ∆∇uψ u dx. Thus we do need the (weak) differentiability of u

to formulate the heat equation. This causes some difficulties when one intends to start
from a purely metric approach of gradient flows.

The following lemma allows us to consider (ut dx) as a curve in P2(Rn).

Lemma 5.4 Let (ut)t≥0 ⊂ H1
0 (Rn) be a global solution to the heat equation. Then we

have the following.

(i) (Mass preserving) If u0 dx ∈ P(Rn), then ut dx ∈ P(Rn) for all t > 0.

(ii) (Weak/Narrow continuity) Suppose u0 dx ∈ P(Rn). Then, for any bounded contin-
uous function f , it holds that limt↓0

∫
Rn fut dx =

∫
Rn fu0 dx.

(iii) If u0 dx ∈ P2(Rn), then ut dx ∈ P2(Rn) for all t > 0.

Proof. (i) This easily follows from the existence of the fundamental solution qu to the
equation ∂tv = ∆∇uv. Precisely, ut(x) =

∫
Rn qu(t, x; 0, y)u0(y) dy and

∫
Rn qu(t, x; 0, y) dx =

1 imply
∫

Rn ut dx = 1.
(ii) Thanks to (i) and [AGS, Remark 5.1.6], it is sufficient to show the convergence for

f ∈ C∞
c (Rn). This immediately follows from (5.3), indeed, the Cauchy-Schwarz inequality

yields ∣∣∣∣ ∫ T

0

∫
Rn

f∂tu dxdt

∣∣∣∣ ≤ (
T

∫
Rn

‖Df‖2
∗ dx

)1/2( ∫ T

0

∫
Rn

‖∇ut‖2 dxdt

)1/2

→ 0
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as T tends to zero.
(iii) By virtue of the upper Gaussian bound (cf. [Sal, Corollary 6.2]), we have

qu(t, x; 0, y) ≤ C1t
−n/2 exp

(
− |x − y|2

C2t

)
,

where | · | stands for the Euclidean norm. Thus we obtain∫
Rn

‖x‖2ut(x) dx ≤
∫

Rn

∫
Rn

2(‖x − y‖2 + ‖y‖2)qu(t, x; 0, y)u0(y) dydx

≤ 2C1t
−n/2

∫
Rn

∫
Rn

‖x − y‖2 exp

(
− |x − y|2

C2t

)
u0(y) dxdy + 2

∫
Rn

‖y‖2u0(y) dy

≤ C3t + 2

∫
Rn

‖y‖2u0(y) dy < ∞,

where C3 depends only on ‖ · ‖. 2

5.3 Relative entropy and heat flow as its gradient flow

We define the relative entropy (with respect to the Lebesgue measure) by

Ent(µ) :=

∫
Rn

ρ log ρ dx ∈ (−∞,∞]

for µ = ρ dx ∈ Pac
2 (Rn), and Ent(µ) := ∞ otherwise. See [JKO, Section 4] (and Re-

mark 5.1(a)) for the fact Ent > −∞ on Pac
2 (Rn). We know that Ent is convex along

geodesics in (P2(Rn),W2) ([Vi, page 908], [Oh3, Theorem 1.2]). There is a well estab-
lished theory on gradient flows of such convex functionals, for which we refer to [AGS].
Here we explain that a global solution to the heat equation gives the gradient flow of the
relative entropy, along the lines of [OS] and [AGS]. The next lemma corresponds to [OS,
Proposition 7.7] (see also [AGS, Theorem 10.4.17]).

Lemma 5.5 For µ = ρ dx ∈ Pac
2 (Rn) with Ent(ρ dx) < ∞ and ρ ∈ H1

0 (Rn) ∩ L∞(Rn),
−Ent is differentiable at µ if and only if ‖∇(−ρ)‖/ρ ∈ L2(Rn, µ), and then we have

∇W (−Ent)(µ) =
∇(−ρ)

ρ
∈ TµP .

Proof. By a similar calculation to [OS, Proposition 7.7], we obtain that (5.2) holds with
Q = −Ent and α = D(−ρ)/ρ. We first show the “if” part, for which it suffices to verify
D(−ρ)/ρ ∈ T ∗

µP . As ρ ∈ H1
0 (Rn), ρ is approximated by some {fk}k∈N ⊂ C∞

c (Rn) with
respect to the Sobolev norm. For k ∈ N, take εk > 0 such that∫

Rn\Ωk

‖D(−ρ)‖2
∗

ρ
dx ≤ k−1,

∫
Rn\Ωk

‖Dρ‖2
∗ dµ ≤ k−2,

where Ωk := {x ∈ Rn | ‖x‖ < ε−1
k , ρ(x) > εk} (note that dµ ≤ ‖ρ‖∞ dx). Extracting a

subsequence of {fk} if necessary, we can assume

sup
Ωk

|ρ − fk| ≤ k−1,

∫
Rn

‖D(fk − ρ)‖2
∗ dµ ≤ k−2,

∫
Ωk∩{fk<k−1/2}

‖D(−ρ)‖2
∗

ρ
dx ≤ k−1.
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Put hk := − log(max{fk, k
−1/2}) − (log k)/2 (≥ 0), and note that Dhk ∈ T ∗

µP and∫
Rn\(Ωk∩{fk≥k−1/2})

‖D(−hk)‖2
∗ dµ ≤

∫
Rn\Ωk

(
‖Dfk‖∗

max{fk, k−1/2}

)2

dµ

≤ 2k

∫
Rn\Ωk

{‖D(fk − ρ)‖2
∗ + ‖Dρ‖2

∗} dµ ≤ 4k−1.

Moreover, we have∫
Ωk∩{fk≥k−1/2}

∥∥∥∥D(−ρ)

ρ
− Dhk

∥∥∥∥2

∗
dµ

≤ 2

∫
Ωk

(
‖D(fk − ρ)‖∗

max{fk, k−1/2}

)2

dµ + 2C
∫

Ωk

‖D(−ρ)‖2
∗

(
|max{fk, k

−1/2} − ρ|
ρ max{fk, k−1/2}

)2

dµ

≤ 2
k−2

k−1
+ 2C

(
k−1

k−1/2

)2 ∫
Ωk

‖D(−ρ)‖2
∗

ρ
dx → 0 as k → ∞.

We used ‖− x‖ ≤ C
√

gx(−x,−x) = C‖x‖ in the first inequality (for x such that ρ(x) >
max{fk(x), k−1/2}). Hence D(−ρ)/ρ ∈ T ∗

µP as required.
The “only if” part is proved similarly. Indeed, if ‖∇(−ρ)‖/ρ 6∈ L2(Rn, µ), then we set

Ωk := {x ∈ Rn | ‖x‖ < k, ρ(x) > k−1} and choose {fk}k∈N ⊂ C∞
c (Rn) such that

sup
Ωk

|ρ − fk| ≤ k−1

( ∫
Ωk

‖D(−ρ)‖2
∗

ρ
dx

)−1/2

,

∫
Rn

‖D(fk − ρ)‖2
∗ dµ ≤ k−2.

Note that {fk > k−1/2} ⊂ Ωk for large k. Define hk in the same way as the “if” part, and
observe limk→∞

∫
{fk>k−1/2} ‖D(−ρ)/ρ − Dhk‖2

∗ dµ = 0. Taking ϕk ∈ C∞
c ({fk > k−1/2})

such that ∇ϕk approximates Fµ(∇hk)
−1∇hk with respect to Fµ, we obtain

lim
k→∞

lim
t↓0

Ent(µ) − Ent(expµ(t∇ϕk))

t
= lim

k→∞

∫
{fk>k−1/2}

D(−ρ)

ρ

(
∇hk

Fµ(∇hk)

)
dµ = ∞.

Therefore −Ent is not differentiable at µ. 2

The following theorem is a slight modification of [OS, Theorem 7.8] adapted to non-
compact spaces. For the sake of simplicity, we are concerned with the reverse heat equa-
tion, that is the heat equation with respect to the reverse norm ‖x‖← := ‖− x‖. Since
←−
∇u = −∇(−u), we can write it as∫

Rn

ψ∂tu dx = −
∫

Rn

Dψ(
←−
∇u) dx =

∫
Rn

Dψ
(
∇(−u)

)
dx. (5.4)

We remark that, due to the Harnack inequality, any nonnegative global L2-solution ut is
bounded on Rn for each t > 0 (cf. [Sal, Theorem 5.1]).

Theorem 5.6 (Heat flow as gradient flow) (i) Let (ρt)t≥0 ⊂ H1
0 (Rn) be a global

solution to the reverse heat equation with ρ0 dx ∈ Pac
2 (Rn) and Ent(ρ0 dx) < ∞.

Then µt := ρt dx is a gradient curve of the relative entropy (in the sense of Defini-
tion 5.2).
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(ii) Conversely, let (µt)t≥0 ⊂ Pac
2 (Rn) be a gradient curve of the relative entropy, put

µt = ρt dx and assume that ρt ∈ H1
0 (Rn) for a.e. t. Then ρt is a global solution to

the reverse heat equation.

Proof. (i) It follows from the reverse heat equation (5.4) that ∇(−ρ)/ρ satisfies the
continuity equation (5.1) along the curve (µt)t≥0, namely∫ ∞

0

∫
Rn

{∂tψ · ρt + Dψ
(
∇(−ρt)

)
} dxdt = 0 (5.5)

for all ψ ∈ C∞
c ([0,∞)×Rn). Then we have, by choosing a test function ψ approximating

log(max{ρt, ε}) − log ε (as in Lemma 5.5) and then letting ε ↓ 0,∫ T

0

∫
Rn

‖∇(−ρt)‖2

ρt

dxdt = Ent(µ0) − Ent(µT ) < ∞.

Hence Ent(µt) < ∞ and ‖∇(−ρt)‖/ρt ∈ L2(Rn, µt) at a.e. t, which implies that −Ent
is differentiable at µt and ∇W (−Ent)(µt) = ∇(−ρt)/ρt ∈ TµtP for a.e. t (Lemma 5.5).
Combining this with (5.5), we conclude µ̇t = ∇(−ρt)/ρt and that (µt) is a gradient curve
of Ent in the sense of Definition 5.2.

(ii) Note that the “only if” part of Lemma 5.5 ensures µ̇t = ∇W (−Ent)(µt) =
∇(−ρt)/ρt for a.e. t. This implies the continuity equation (5.5), from which the reverse
heat equation is straightforward. 2

Remark 5.7 The formula ∇W (−Ent)(µ) = ∇(−ρ)/ρ in Lemma 5.5 has an extra impor-
tance in the Finsler/Minkowski setting. The reverse heat equation (5.4) is rewritten via
Remark 5.3 as

∫
Rn ψ∂tρ dx =

∫
Rn ∆∇(−ρ)ψ ρ dx, and the fact g∇(−ρ) = g∇(−ρ)/ρ guarantees

that a formal calculation with respect to the time-dependent Riemannian structure g∇(−ρ)

verifies Theorem 5.6 (cf. [Oh1, Theorem 6.6]).

5.4 Skew convexity and Wasserstein contraction

To show an analogous result to Theorem 3.2 for the relative entropy, we prove the first
variation formula for the Wasserstein distance along heat flow (along the line of [AGS,
Section 10.2]).

Proposition 5.8 (First variation formula along heat flow) Given any global solu-
tions (ρt)t≥0, (σt)t≥0 ⊂ H1

0 (Rn) to the reverse heat equation (5.4) such that µt = ρt dx ∈
Pac

2 (Rn) and νt = σt dx ∈ Pac
2 (Rn), we have

lim
τ↓t

W2(µτ , ντ )
2 − W2(µt, νt)

2

2(τ − t)
=

∫
Rn

gω̇1(ω̇1, ν̇t) dνt −
∫

Rn

gω̇0(ω̇0, µ̇t) dµt (5.6)

for all t > 0, where ω : [0, 1] −→ P2(Rn) is the minimal geodesic from µt to νt.

Proof. Set l(t) := W2(µt, νt), fix δ > 0 and define Γ̃ as the set of continuous curves
ξ : [t, t + δ] −→ Rn endowed with the uniform topology. For τ ∈ [t, t + δ], we define the

evaluation map eτ : Γ̃ −→ Rn by eτ (ξ) := ξ(τ). Then there exist probability measures
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Π, Ξ ∈ P(Γ̃) such that (eτ )]Π = µτ , (eτ )]Ξ = ντ for all τ ∈ [t, t + δ] and that Π, Ξ are
concentrated on the set of absolutely continuous curves ξ, ζ solving

ξ̇(τ) = [∇(−ρτ )/ρτ ]
(
ξ(τ)

)
, ζ̇(τ) = [∇(−στ )/στ ]

(
ζ(τ)

)
,

respectively (cf. [AGS, Theorem 8.2.1]).
To see “≤” of (5.6), we disintegrate Π and Ξ by using µt and νt as dΠ = dΠt

xdµt(x)
and dΞ = dΞt

ydνt(y). Take the unique minimal geodesic ω : [0, 1] −→ P2(Rn) from µt

to νt, and let πt be the unique optimal coupling of µt and νt. Then we find, for each
τ ∈ [t, t + δ],

l(τ)2 ≤
∫

Rn×Rn

∫
eΓ×eΓ

‖ζ(τ) − ξ(τ)‖2 dΠt
x(ξ)dΞt

y(ζ)dπt(x, y).

We deduce from the first variation formula (2.6) on the underlying space (Rn, ‖ · ‖) that

lim
τ↓t

‖ζ(τ) − ξ(τ)‖2 − ‖ζ(t) − ξ(t)‖2

τ − t

= 2
{
gζ(t)−ξ(t)

(
ζ(t) − ξ(t), ζ̇(t)

)
− gζ(t)−ξ(t)

(
ζ(t) − ξ(t), ξ̇(t)

)}
= 2gζ(t)−ξ(t)

(
ζ(t) − ξ(t),

∇(−σt)

σt

(
ζ(t)

)
− ∇(−ρt)

ρt

(
ξ(t)

))
for Π-a.e. ξ and Ξ-a.e. ζ. Since ρ and σ are C1,α, this convergence is uniform on

Ωε := {x ∈ Rn | ‖x‖ < ε−1, ρt(x) > ε, σt(x) > ε}

for each ε > 0. In order to see that the effect of Rn \ Ωε is negligible as ε tends to zero,
we observe from

‖ζ(τ) − ξ(τ)‖2 − ‖ζ(t) − ξ(t)‖2

≤ (‖ζ(τ) − ξ(τ)‖ + ‖ζ(t) − ξ(t)‖)(‖ζ(τ) − ζ(t)‖ + ‖ξ(t) − ξ(τ)‖)

that ∫
Rn×Rn

∫
eΓ×eΓ

‖ζ(τ) − ξ(τ)‖2 − ‖ζ(t) − ξ(t)‖2

τ − t
dΠt

x(ξ)dΞt
y(ζ)dπt(x, y)

≤
(

2

∫
Rn×Rn

∫
eΓ×eΓ

{‖ζ(τ) − ξ(τ)‖2 + ‖ζ(t) − ξ(t)‖2} dΠt
x(ξ)dΞt

y(ζ)dπt(x, y)

)1/2

×
(

2

(τ − t)2

∫
eΓ

‖ζ(τ) − ζ(t)‖2 dΞ(ζ) +
2

(τ − t)2

∫
eΓ

‖ξ(t) − ξ(τ)‖2 dΠ(ξ)

)1/2

.

This is finite uniformly in τ ∈ (t, t + δ], because

1

(τ − t)2

∫
eΓ

‖ζ(τ) − ζ(t)‖2 dΞ(ζ) ≤ 1

(τ − t)2

∫
eΓ

( ∫ τ

t

‖ζ̇(s)‖ ds

)2

dΞ(ζ)

≤ 1

τ − t

∫
eΓ

∫ τ

t

‖ζ̇(s)‖2 dsdΞ(ζ) =
1

τ − t

∫ τ

t

|ν̇s|2 ds.
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Therefore we obtain

lim sup
τ↓t

l(τ)2 − l(t)2

2(τ − t)
≤

∫
Rn×Rn

∫
eΓ×eΓ

gy−x

(
y − x, ζ̇(t) − ξ̇(t)

)
dΠt

x(ξ)dΞt
y(ζ)dπt(x, y).

Note that∫
Rn×Rn

∫
eΓ

gy−x

(
y − x, ξ̇(t)

)
dΠt

x(ξ)dπt(x, y) =

∫
Rn

∫
eΓ

gω̇0(x)

(
ω̇0(x), ξ̇(t)

)
dΠt

x(ξ)dµt(x)

=

∫
Rn

gω̇0(ω̇0, µ̇t) dµt.

Hence we have

lim sup
τ↓t

l(τ)2 − l(t)2

2(τ − t)
≤

∫
Rn

gω̇1(ω̇1, ν̇t) dνt −
∫

Rn

gω̇0(ω̇0, µ̇t) dµt.

To see the reverse inequality, we fix τ ∈ (t, t + δ), take the optimal coupling πτ of µτ

and ντ , and disintegrate Π and Ξ as dΠ = dΠτ
xdµτ (x) and dΞ = dΞτ

ydντ (y). Observe that

l(τ)2 − l(t)2 ≥
∫

Rn×Rn

∫
eΓ×eΓ

{‖ζ(τ) − ξ(τ)‖2 − ‖ζ(t) − ξ(t)‖2} dΠτ
x(ξ)dΞτ

y(ζ)dπτ (x, y).

Since the function

[0, 1] 3 s 7−→ ‖{(1 − s)ζ(t) + sζ(τ)} − {(1 − s)ξ(t) + sξ(τ)}‖2

is convex, the first variation formula (2.6) (at s = 0) yields that

‖ζ(τ) − ξ(τ)‖2 − ‖ζ(t) − ξ(t)‖2 ≥ 2gζ(t)−ξ(t)

(
ζ(t) − ξ(t), {ζ(τ) − ζ(t)} − {ξ(τ) − ξ(t)}

)
.

Thus we find

l(τ)2 − l(t)2

2(τ − t)

≥
∫

Rn×Rn

∫
eΓ×eΓ

gζ(t)−ξ(t)

(
ζ(t) − ξ(t),

ζ(τ) − ζ(t)

τ − t
− ξ(τ) − ξ(t)

τ − t

)
dΠτ

x(ξ)dΞτ
y(ζ)dπτ (x, y).

Recall that (ξ(τ) − ξ(t))/(τ − t) converges to ξ̇(t) = [∇(−ρt)/ρt](ξ(t)) uniformly on Ωε.
Moreover,

dπ̃τ
t := (et × et)]

[ ∫
Rn×Rn

dΠτ
xdΞτ

ydπτ (x, y)

]
∈ P2(Rn × Rn)

weakly converges to πt as τ ↓ t due to [AGS, Lemma 10.2.8]. Precisely, as π̃τ
t is a coupling

of µt and νt, the family {π̃τ
t }τ∈(t,t+δ) is relatively compact (cf. [AGS, Remark 5.2.3]).

Combining this with the simple estimate( ∫
Rn×Rn

‖y − x‖2 dπ̃τ
t (x, y)

)1/2

≤
( ∫

eΓ

‖ζ(t) − ζ(τ)‖2 dΞ(ζ)

)1/2

+ W2(µτ , ντ ) +

( ∫
eΓ

‖ξ(τ) − ξ(t)‖2 dΠ(ξ)

)1/2

→ W2(µt, νt) (τ ↓ t)
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and the uniqueness of the optimal coupling πt, we see that the limit of π̃τ
t must be πt.

Therefore we obtain

lim inf
τ↓t

l(τ)2 − l(t)2

2(τ − t)
≥

∫
Rn×Rn

gy−x

(
y − x,

∇(−σt)

σt

(y) − ∇(−ρt)

ρt

(x)

)
dπt(x, y)

and complete the proof. 2

Now, the following is shown in a similar way to Theorem 3.2.

Proposition 5.9 (Skew convexity versus Wasserstein contraction) The following
are equivalent for each K ∈ R.

(I) The relative entropy is K-skew convex in the sense that, for any µ, ν ∈ Pac
2 (Rn) at

where −Ent is differentiable and for the minimal geodesic ω : [0, 1] −→ P2(Rn) from µ to
ν, it holds∫

Rn

gω̇1

(
ω̇1,∇W (−Ent)(ν)

)
dν −

∫
Rn

gω̇0

(
ω̇0,∇W (−Ent)(µ)

)
dµ ≤ −KW2(µ, ν)2. (5.7)

(II) The reverse heat flow is K-contractive in the sense that, for any global solu-
tions (ρt)t≥0, (σt)t≥0 ⊂ H1

0 (Rn) to the reverse heat equation (5.4) such that µt = ρt dx ∈
Pac

2 (Rn), νt = σt dx ∈ Pac
2 (Rn), Ent(µ0) < ∞ and that Ent(ν0) < ∞, we have

W2(µt, νt) ≤ e−KtW2(µ0, ν0) for all t ∈ [0,∞). (5.8)

As a corollary to Proposition 5.9, we obtain the 0-contraction of gradient curves in a
special class of measures (compare this with Step 1 in the next section).

Corollary 5.10 (Non-expansion among Gaussian measures) Let (Rn, ‖ · ‖) be a
(symmetric) normed space, i.e., ‖− x‖ = ‖x‖. Take two measures of Gaussian form

dµ0(x) = Ca−n/2 exp

(
− ‖x − y‖2

4a

)
dx, dν0(x) = Cb−n/2 exp

(
− ‖x − z‖2

4b

)
dx

for some a, b > 0, y, z ∈ Rn and the fixed normalizing constant C > 0. Then the gradient
curves (µt)t≥0, (νt)t≥0 of Ent starting from them satisfies W2(µt, νt) ≤ W2(µ0, ν0) for all
t ≥ 0.

Proof. For brevity, we assume y = 0 and a ≥ b. Solving the heat equation, we observe

dµt(x) = C(t + a)−n/2 exp

(
− ‖x‖2

4(t + a)

)
dx, dνt(x) = C(t + b)−n/2 exp

(
− ‖x − z‖2

4(t + b)

)
dx.

Note also that the unique minimal geodesic (ωs)s∈[0,1] from µt to νt is given by (Ts)]µt,
where

Ts(x) := (1 − s)x + s

(
z +

√
t + b

t + a
x

)
.

We can explicitly write as

dωs(x) = C
(
t + (1 − s)a + sb

)−n/2
exp

(
− ‖x − sz‖2

4(t + (1 − s)a + sb)

)
dx.
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It follows from Lemma 5.5 that∫
Rn

gω̇s

(
ω̇s,∇W (−Ent)(ωs)

)
dωs

=

∫
Rn

gT1(x)−x

(
T1(x) − x,

[
∇W (−Ent)(ωs)

]
(Ts(x))

)
dµt(x)

=
1

2(t + (1 − s)a + sb)

∫
Rn

gT1(x)−x

(
T1(x) − x, Ts(x) − sz

)
dµt(x)

= −
(1 − s) + s

√
(t + b)/(t + a)

2(t + (1 − s)a + sb)

∫
Rn

gT1(x)−x

(
x − T1(x), x

)
dµt(x).

Observe that the coefficient of the last line is non-increasing in s. Hence it suffices to show
that Θ :=

∫
Rn gT1(x)−x(x − T1(x), x) dµt(x) (which is independent of s) is nonnegative. If

a = b, then we find T1(x) − x ≡ z and Θ = 0 by the symmetry of µt. If a > b, then we
put z′ = s′z = {1 −

√
(t + b)/(t + a)}−1z and deduce Ts′(x) ≡ z′. Thus we have

gT1(x)−x

(
x − T1(x), x

)
=

1

s′
gz′−x(x − z′, x) =

1

2s′
[D(‖z′ − ·‖2)(x)](x),

and [D(‖z′−·‖2)(x)](x)+ [D(‖z′−·‖2)(−x)](−x) ≥ 0 by the convexity of ‖z′−·‖2 (along
with the symmetry of ‖ · ‖). Therefore we obtain Θ ≥ 0, and Proposition 5.9 completes
the proof. 2

6 Non-contraction of heat flow

This last section is devoted to a proof of Theorem 1.1. For notational simplicity, we prove
this for the reverse norm, i.e., global solutions to the reverse heat equation (5.3) (in other
words, gradient curves of Ent in (P2(Rn),W2), recall Theorem 5.6) are not K-contractive
with respect to W2.

Fix µ = ρ dx ∈ Pac
2 (Rn) with ρ ∈ H1

0 (Rn), Ent(µ) < ∞ and ‖∇(−ρ)‖/ρ ∈ L2(Rn, µ).
For T > 1, we set

ωs = ρsdx := (Fs/T )]µ, Fs/T (x) :=

(
1 − s

T

)
x for s ∈ [0, T ].

Then (ωs)s∈[0,T ] is the unique minimal geodesic from µ to the Dirac measure δO at the
origin O, and its tangent vector field ω̇s is simply given by ω̇s(x) = −x/(T − s). Put
ν = ω1. We will show that (5.7) is false for any K ∈ R (i.e., Ent is not K-skew convex)
by choosing suitable ρ.

We deduce from ∇W (−Ent)(ωs) = ∇(−ρs)/ρs (Lemma 5.5) that∫
Rn

gω̇s

(
ω̇s,∇W (−Ent)(ωs)

)
dωs = − 1

T − s

∫
supp ρs

g−x

(
x,∇(−ρs)(x)

)
dx.

It follows from ρs(x) = (T/(T − s))nρ(Tx/(T − s)) and the change of variables formula
that∫

supp ρs

g−x

(
x,∇(−ρs)(x)

)
dx =

∫
supp ρs

g−x

(
x,

(
T

T − s

)n+1

∇(−ρ)

(
Tx

T − s

))
dx

=

∫
supp ρ

g−x

(
x,∇(−ρ)(x)

)
dx.
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Thus we have∫
Rn

gω̇s

(
ω̇s,∇W (−Ent)(ωs)

)
dωs = − 1

T − s

∫
supp ρ

g−x

(
x,∇(−ρ)(x)

)
dx,

and hence

d

ds

[ ∫
Rn

gω̇s

(
ω̇s,∇W (−Ent)(ωs)

)
dωs

]
= − 1

(T − s)2

∫
supp ρ

g−x(x,∇(−ρ)(x)) dx.

Note that W2(ω0, ω1)
2 = T−2

∫
Rn ‖− x‖2ρ(x) dx and

g−x

(
x,∇(−ρ)(x)

)
= −[D(−‖− ·‖2/2)(x)]

(
∇(−ρ)(x)

)
= ‖− x‖ · [D(‖− ·‖)(x)]

(
∇(−ρ)(x)

)
.

We set

Θ(ρ) :=

∫
supp ρ

‖− x‖ · [D(‖− ·‖)(x)](∇(−ρ)(x)) dx∫
Rn ‖− x‖2ρ(x) dx

(6.1)

and shall demonstrate that Θ(ρ) can be negative (Steps 1–3 below) and even arbitrarily
small (Step 4) by choosing suitable ρ, unless ‖ · ‖ is an inner product. This means that
(5.7) is false for any K ∈ R, and completes the proof of Theorem 1.1.

Step 1 (The model case of `2
p with 2 < p < ∞) Let ‖ · ‖ be the `p-norm of R2 such

that 2 < p < ∞. Take the unit vectors a = (−1, 0), b = (2−1/p, 2−1/p), c = (2−1/p,−2−1/p)
and let 4ABC be the triangle tangent to the unit sphere of ‖ · ‖ at a, b, c. Precisely,
A = (21−1/p, 0), B = (−1,−1 − 21−1/p) and C = (−1, 1 + 21−1/p) (Figure 3).

Figure 3

µ

R

¾ A(21−1/p, 0)

B(−1,−1 − 21−1/p)

C(−1, 1 + 21−1/p)

a(−1, 0)

b(2−1/p, 2−1/p)

c(2−1/p,−2−1/p)

O

Define the nonnegative function ρ̂ : R2 −→ [0,∞) by ρ̂ := 0 outside 4ABC and by
ρ̂(tx) := (1−t)σ for a point x on the edges of 4ABC and for t ∈ [0, 1], where the constant
σ > 0 is chosen so that

∫
R2 ρ̂ dx = 1. Note that the gradient vector ∇(−ρ̂) is σ ·a = (−σ, 0)
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inside 4OBC, σ · b = (2−1/pσ, 2−1/pσ) inside 4OAC, and σ · c = (2−1/pσ,−2−1/pσ) inside
4OAB. Hence we have∫

4ABC

∇(−ρ̂) dx = (1 + 21−1/p) · (−σ, 0) + 21−1/p(1 + 21−1/p) · (2−1/pσ, 0)

= (1 + 21−1/p)σ · (21−2/p − 1, 0). (6.2)

Note that 21−2/p − 1 > 0 since p > 2.
Now, for large T > 1, we consider the function ρ̂T (x) := ρ̂(x + (T, 0)). Then it follows

from (6.2) that

lim
T→∞

∫
supp ρ̂T

‖− x‖
T

· [D(‖− ·‖)(x)]
(
∇(−ρ̂T )(x)

)
dx = −(1 + 21−1/p)(21−2/p − 1)σ < 0.

Therefore, by taking a smooth approximation of ρ̂T for sufficiently large T , we find ρ
satisfying Θ(ρ) < 0.

Step 2 (General two-dimensional case) The argument in Step 1 yields the following
claim. We will denote by S(1) the unit sphere of the norm ‖ · ‖.

Claim 6.1 Suppose that a Minkowski space (R2, ‖ ·‖) admits a triangle 4ABC such that
edges AB,BC,CA are tangent to S(1) at points c, a, b, respectively, and that the vector

|4OAB| · c + |4OBC| · a + |4OCA| · b (6.3)

is nonzero, where |4OAB| denotes the area of 4OAB with respect to the Lebesgue mea-
sure of R2. Then there exists a function ρ for which Θ(ρ) as in (6.1) is negative.

Note that (6.3) is always zero in inner product spaces. (Indeed, for the standard inner
product, it holds that 〈|4OAB| · c + |4OBC| · a + |4OCA| · b, ei〉 = 0 for e1 = (1, 0),
e2 = (0, 1) by the fundamental theorem of calculus applied to the function ρ defined as in
Step 1.) Claim 6.1 is sharp enough for our purpose, as we certainly verify the following.

Claim 6.2 We can find a triangle 4ABC satisfying the condition in Claim 6.1 unless
‖ · ‖ is an inner product.

Although this claim should be a known fact (and there would be a simpler proof),
we give a proof for completeness. We first treat the easier case of nonsymmetric norms.
Choose a pair a, b ∈ S(1) such that b = −λa with λ 6= 1. If the tangent lines of S(1) at
a and b are not parallel in R2, then we draw a triangle 4ABC in such a way that the
edge AB is parallel to ba. As the vectors a and c are linearly independent, (6.3) is not
zero. In the other case where the tangent lines of S(1) at a and b are parallel, we take
C ′ such that OC ′ is parallel to these tangent lines, and draw the triangle 4A′B′C ′ such
that A′B′ is parallel to b′a′. By letting C ′ go to infinity, a′ and b′ can be arbitrary close
to a and b, respectively. Then we observe that |4OA′B′| is much smaller than |4OB′C ′|
and |4OC ′A′|, and that the ratio |4OC ′A′|/|4OB′C ′| is close to λ. Thus we have

|4OA′B′| · c′ + |4OB′C ′| · a′ + |4OC ′A′| · b′ ≈ |4OB′C ′|(1 − λ2) · a 6= 0.
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Next we consider symmetric norms. We suppose that the sum (6.3) is always zero,
and shall see that ‖ · ‖ must be an inner product. Take a, b ∈ S(1) with b = −a such
that |a| = supx∈S(1) |x|, where | · | is the Euclidean norm. Then the tangent lines of S(1)
at a and b are perpendicular to ab with respect to the Eulidean inner product. As in the
nonsymmentric case, we take C so that OC is parallel to these tangent lines, and consider
the triangle 4A′B′C for some fixed c. Let C diverge to infinity and denote the limits of
A′, B′ by A,B. Then our hypothesis yields that the vector

|4OaB| · a + |4OAb| · b + |4OAB| · c (6.4)

is independent of the choice of c on the arc between a and b opposite to C (since 4a′b′C was
independent of c). We will see that this is the case only for inner products. For simplicity,
we assume that a = (−1, 0), b = (1, 0) and that c is in the upper half plane. Define
the function h : [−1, 1] −→ [0, 1] by ‖(t, h(t))‖ ≡ 1, and compare this with the function
h̃ : [−1, 1] −→ [0, 1] such that {(t, h̃(t))}t∈[−1,1] draws (the upper half of) the ellipse having
ab and OD0 as its long and short axes, where D0 = (0, sup h) (Figure 4). We first suppose
that sup h is attained at t0 > 0, and put c0 = (t0, h(t0)), A0 = (1, h(t0)), B0 = (−1, h(t0)).
Then clearly the y-components of the vectors |4OA0B0| · c0 and |4OA0B0| · D0 are the
same. Since only c has a nonzero y-component in (6.4), this implies that

|4OAB| · c − |4OÃB̃| · D ∈ R × {0}

holds for all t, t′ ∈ (−1, 1), where c = (t, h(t)), D = (t′, h̃(t′)), Ã = (1, h̃(t′)+ (1− t′)h̃′(t′))

and B̃ = (−1, h̃(t′) − (1 + t′)h̃′(t′)).

Figure 4

O

h

h̃

A0

A

Ã

B0

B̃

B

c

D

a b

c0D0

Thus, for any c = (t, h(t)) with t ∈ (t0, 1) and t′ ∈ (0, 1) with h̃(t′) = h(t), we obtain

|4OAB| = |4OÃB̃| and hence h̃′(t′) < h′(t) (more precisely, AB and ÃB̃ must intersect
on the y-axis). However, this is a contradiction since h̃(1) = h(1) = 0. We similarly derive
a contradiction from t0 < 0, so that t0 = 0. Moreover, h must coincide with h̃ everywhere
by a similar discussion. Therefore ‖ · ‖ is an inner product and we complete the proof of
Claim 6.2.

23



Step 3 (n-dimensional case with n ≥ 3) Suppose that (Rn, ‖·‖) is not an inner prod-
uct space. Then there is a two-dimensional subspace P ⊂ Rn in which the restriction of
‖ · ‖ is not an inner product. We assume P = {(x, y, 0, . . . , 0) | x, y ∈ R} for brevity, and
sometimes identify this with R2. By Step 2, there is a function ρT : (R2, ‖·‖|P ) −→ [0,∞)
such that

∫
R2 ρT dx = 1, supp ρT ⊂ B((−T, 0), r) for some fixed r > 0 and that

lim
T→∞

∫
supp ρT

[D(‖− ·‖)(x)]
(
∇(−ρT )(x)

)
dx < 0.

Using a smooth cut-off function η : Rn−2 −→ [0,∞) such that η ≡ 1 on B(O,
√

T ),
supp η ⊂ B(O,

√
T + 1) and that sup ‖∇(−η)‖ < 2, define ρ : (Rn, ‖ · ‖) −→ [0,∞) by

ρ(x, y) := (
∫

Rn−2 η dz)−1ρT (x)η(y) for x ∈ R2 and y ∈ Rn−2. Note that ∇(−ρ)(x, y) =

(
∫

Rn−2 η dz)−1 · ∇(−ρT )(x) for y ∈ B(O,
√

T ) ⊂ Rn−2. Hence we have Θ(ρ) < 0 since the
effect of the boundary of the cut-off is negligible for large T . Indeed, we observe that

|B(O,
√

T + 1) \ B(O,
√

T )| ·
( ∫

Rn−2

η dz

)−1

= O
(
(
√

T )n−3/(
√

T )n−2
)
→ 0

as T goes to infinity.

Step 4 (Scaling) Suppose that there is ρ with Θ(ρ) < 0, and set ρε(x) := ε−nρ(ε−1x)
for ε > 0. Then we have∫

supp ρε

‖− x‖ · [D(‖− ·‖)(x)]
(
∇(−ρε)(x)

)
dx

= ε−(n+1)

∫
supp ρε

‖− x‖ · [D(‖− ·‖)(x)]
(
∇(−ρ)(ε−1x)

)
dx

=

∫
supp ρ

‖− x‖ · [D(‖− ·‖)(x)]
(
∇(−ρ)(x)

)
dx

and ∫
Rn

‖− x‖2ρε(x) dx = ε−n

∫
Rn

‖− x‖2ρ(ε−1x) dx = ε2

∫
Rn

‖− x‖2ρ(x) dx.

Therefore Θ(ρε) = ε−2Θ(ρ) and it diverges to −∞ as ε tends to zero. Thus we complete
the proof of Theorem 1.1.
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[Ar] D. G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bull.
Amer. Math. Soc. 73 (1967), 890–896.

[BCS] D. Bao, S.-S. Chern and Z. Shen, An introduction to Riemann-Finsler geometry,
Springer-Verlag, New York, 2000.

24



[Gi] N. Gigli, On the heat flow on metric measure spaces: existence, uniqueness and
stability, Calc. Var. Partial Differential Equations 39 (2010), 101–120.

[GO] N. Gigli and S. Ohta, First variation formula in Wasserstein spaces over compact
Alexandrov spaces, to appear in Canad. Math. Bull.

[JKO] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-
Planck equation, SIAM J. Math. Anal. 29 (1998), 1–17.

[Mc] R. J. McCann, A convexity principle for interacting gases, Adv. Math. 128 (1997),
153–179.

[Mo] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure
Appl. Math. 17 (1964), 101–134.

[Na] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math.
80 (1958), 931–954.

[Oh1] S. Ohta, Gradient flows on Wasserstein spaces over compact Alexandrov spaces,
Amer. J. Math. 131 (2009), 475–516.

[Oh2] S. Ohta, Uniform convexity and smoothness, and their applications in Finsler
geometry, Math. Ann. 343 (2009), 669–699.

[Oh3] S. Ohta, Finsler interpolation inequalities, Calc. Var. Partial Differential Equations
36 (2009), 211–249.

[OS] S. Ohta and K.-T. Sturm, Heat flow on Finsler manifolds, Comm. Pure Appl.
Math. 62 (2009), 1386–1433.

[Ot] F. Otto, The geometry of dissipative evolution equations: the porous medium
equation, Comm. Partial Differential Equations 26 (2001), 101–174.

[vRS] M.-K. von Renesse and K.-T. Sturm, Transport inequalities, gradient estimates,
entropy and Ricci curvature, Comm. Pure Appl. Math. 58 (2005), 923–940.

[Sal] L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Differ-
ential Geom. 36 (1992), 417–450.
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