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This is an addendum to the paper "Localization and Tensorization Properties of the Curvature-
Dimension Condition for Metric Measure Spaces", JFA 259 (2010), 28-56, by K. Bacher and the
second author. We prove the tensorization property for the curvature-dimension condition, add
some detailed calculations – including explicit dependence of constants – and comment on assump-
tions and conjectures concerning the local-to-global statement in [1] and [6], resp.

1 Tensorization property of the curvature-dimension condi-
tion

Theorem 1.1. Let (Mi, di,mi) be non-branching metric measure spaces satisfying the curvature-
dimension CD(Ki, Ni) with Ni ≥ 1 for i = 1, 2, · · · , k. Then

(M,d,m) :=
k⊗
i=1

(Mi, di,mi)

satisfies CD(miniKi,
∑k
i=1Ni).

The proof of this result essentially depends on the estimate in the following Lemma. The latter
was already obtained by S. Ohta (see [3] Claim 3.4) with a long computation. Below we present a
short proof based on Lemma 1.2 in [5]. The analogous estimate with the coefficients τ (t)

K,N replaced

by the slightly smaller coefficients σ(t)
K,N had been used in [1] to deduce the tensorization property

of the reduced curvature-dimension condition.

Lemma 1.2. For any K,K ′ ∈ R, any N,N ′ ∈ (1,∞), any t ∈ [0, 1] and any θ1, θ2 ∈ R+ with
θ2 = θ21 + θ22 we have

τ
(t)
K,N (θ1)N · τ (t)

K,N ′(θ2)N
′
≥ τ (t)

K,N+N ′(θ)N+N ′

Proof. The inequality

σ
(t)
K,N (θ)N · σ(t)

K′,N ′(θ)N
′
≥ σ(t)

K+K′,N+N ′(θ)N+N ′
.

derived in [5], Lemma 1.2, implies

τ
(t)
K′,N ′(θ)N

′
= t · σ(t)

K′,N ′−1(θ)N
′−1 = σ

(t)
0,1(θ)1 · σ(t)

K′,N ′−1(θ)N
′−1 ≥ σ(t)

K′,N ′(θ)N
′
.
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Combining this with another inequality from [5], Lemma 1.2:

τ
(t)
K,N (θ)N · σ(t)

K′,N ′(θ)N
′
≥ τ (t)

K+K′,N+N ′(θ)N+N ′

yields
τ

(t)
K,N (θ)N · τ (t)

K′,N ′(θ)N
′
≥ τ (t)

K+K′,N+N ′(θ)N+N ′
. (1.1)

Now observe that τ (t)
K,N (θ1) = τ

(t)

θ21K/θ
2,N

(θ) and τ (t)
K,N ′(θ2) = τ

(t)

θ22K/θ
2,N ′(θ). Then the claim follows

from (1.1).

Lemma 1.3. Let a, b, c, d be positive numbers and p ∈ (0, 1), then

apb1−p + cpd1−p ≤ (a+ c)p(b+ d)1−p.

Proof. By the concavity of the function lnx, we have

p ln
a

a+ c
+ (1− p) ln

b

b+ d
≤ ln

(
p · a

a+ c
+ (1− p) · b

b+ d

)
which is equavilent to (

a

a+ c

)p(
b

b+ d

)1−p

≤ p · a

a+ c
+ (1− p) · b

b+ d
(1.2)

Similarly, we have (
c

a+ c

)p(
d

b+ d

)1−p

≤ p · c

a+ c
+ (1− p) · d

b+ d
(1.3)

Combine (1.2) and (1.3), we obtain(
a

a+ c

)p(
b

b+ d

)1−p

+
(

c

a+ c

)p(
d

b+ d

)1−p

≤ 1.

In other words,
apb1−p + cpd1−p ≤ (a+ c)p(b+ d)1−p.

Proof of Theorem 1.1. We basically follow the argument in [1] and so we only sketch the main
steps. Please see [1] for more details.

Step 1: Without loss of generality, we assume k = 2. And we can assume K1 = K2 = K due
to the fact that CD(K1, N) implies CD(K2, N) if K1 ≥ K2.

Step 2: Consider the special case where ν0 and ν1 are product measures. In this step, we only
need to replace σ by τ on page 43 in [1]. In the following, we write down the formula corresponding
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to [1].

τ
(1−t)
K,N1+N2

(d(x0, x1))ρ0(x0)−1/(N1+N2) + τ
(t)
K,N1+N2

(d(x0, x1))ρ1(x1)−1/(N1+N2)

=τ (1−t)
K,N1+N2

(d(x0, x1))ρ(1)
0 (x(1)

0 )−1/(N1+N2)ρ
(2)
0 (x(2)

0 )−1/(N1+N2)

+ τ
(t)
K,N1+N2

(d(x0, x1))ρ(1)
1 (x(1)

1 )−1/(N1+N2)ρ
(2)
1 (x(2)

1 )−1/(N1+N2)

≤
2∏
i=1

τ
(1−t)
K,Ni

(di(x
(i)
0 , x

(i)
1 ))Ni/(N1+N2)ρ

(i)
0 (x(i)

0 )−1/(N1+N2)

+
2∏
i=1

τ
(t)
K,Ni

(di(x
(i)
0 , x

(i)
1 ))Ni/(N1+N2)ρ

(i)
1 (x(i)

1 )−1/(N1+N2)

≤
2∏
i=1

[
τ

(1−t)
K,Ni

(di(x
(i)
0 , x

(i)
1 ))ρ(i)

0 (x(i)
0 )−1/Ni + τ

(t)
K,Ni

(di(x
(i)
0 , x

(i)
1 ))ρ(i)

1 (x(i)
1 )−1/Ni

]Ni/(N1+N2)

≤
2∏
i=1

ρ
(i)
t (γ(i)

t (x(i)
0 , x

(i)
1 ))−1/(N1+N2)

=ρt(γt(x0, x1))−1/(N1+N2).

The first inequality follows from Lemma 1.2. The second inequality follows from Lemma 1.3.
The third inequality follows from the definition of curvature-dimension condition.

Step 3: For general case, we approximate ν0 and ν1 by the average of mutually singular product
probability measures ν0,n and ν1,n as in [1], where n = 1, 2, · · · . Then we obtain geodesics γn of
ν0,n and ν1,n, and passing some subsequence, we obtain a geodesic γ of ν0 and ν1 satisfying the
curvature-dimension condition by using the lower-semicontinuity of the Rényi entropy. Then we
conclude that

(M,d,m) :=
2⊗
i=1

(Mi, di,mi)

satisfies CD(K,N1 +N2).

2 Details to the proof of Proposition 5.5 in [1]

The proof of Proposition 5.5 in [1] uses the following fact (with K̃,N ′, N in the place of K,N,N0).

Lemma 2.1. For each N0 > 1 and for each pair K > K ′ there exists a θ∗ > 0 s.t. for all
θ ∈ (0, θ∗), all t ∈ (0, 1) and all N ∈ [N0,∞)

τ
(t)
K′,N (θ) ≤ σ(t)

K,N (θ). (2.1)

The proof of this fact presented in the above mentioned paper contains some sketchy and
incomplete arguments (in particular, concerning the uniform dependence of the constants in the
regime t ↗ 1). We will present a detailed proof below. To simplify notation, however, in our
presentation we will restrict ourselves to the case K > K ′ > 0. Recall that in this case

σ
(t)
K,N (θ) =

sin
(√

K
N tθ

)
sin
(√

K
N θ
) and τ

(t)
K,N (θ) = t1/N · σ(t)

K,N−1(θ)1−1/N .

In the other cases 0 > K > K ′ and K > 0 > K ′ completely similar arguments will apply.
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Claim 2.2. ∃C0, θ0 : ∀t ∈ (0, 1),∀θ ∈ (0, θ0):

sin(tθ)
sin(θ)

≤ t ·
(

1 +
1
6

(1− t2)θ2 ·
[
1 + C0θ

2
])

and
sin(tθ)
sin(θ)

≥ t ·
(

1 +
1
6

(1− t2)θ2 ·
[
1− C0θ

2
])

.

Proof. Uniformly in t ∈ (0, 1
2 ], the claim immediately follows from the straightforward asymptotics

sin(tθ)
sin(θ)

=
tθ − 1

6 t
3θ3 +O(θ5)

θ − 1
6θ

3 +O(θ5)
= t ·

(
1 +

1
6

(1− t2)θ2 +O(θ4)
)

for θ → 0

already presented in the proof of Proposition 5.5. For t ∈ [ 12 , 1) we use this asymptotics (with 1− t
in the place of t) to deduce

sin(tθ)
sin(θ)

= cos((1− t)θ)− cos(θ)
sin((1− t)θ)

sin(θ)

=
[
1− (1− t)2

2
θ2 + (1− t) ·O(θ4)

]
−
[
1− 1

2
θ2 +O(θ4)

]
(1− t)

(
1 +

2t(1− t)
6

θ2 +O(θ4)
)

= t ·
(

1 +
1
6

(1− t2)θ2 ·
[
1 +O(θ2)

])
.

Claim 2.3. Put θ1 = min{θ0 1√
K
, 1√

C0K
}. Then for all θ ∈ (0, θ1), all t ∈ (0, 1) and all N ∈ [1,∞)

σ
(t)
K,N (θ)N ≥ tN ·

(
1 +

1
6

(1− t2)Kθ2 ·
[
1− C0Kθ

2
])

. (2.2)

Proof. According to Claim 1.2 (now with
√

K
N θ in the place of θ) and using the fact that 1 + ε ≤

(1 + ε/N)N we obtain

σ
(t)
K,N (θ)N ≥ tN ·

(
1 +

1
6

(1− t2)
K

N
θ2 ·

[
1− C0

K

N
θ2
])N

≥ tN ·
(

1 +
1
6

(1− t2)Kθ2 ·
[
1− C0Kθ

2
])

.

Claim 2.4. Put C1 = C0
N0−1 + 1

3 and θ2 = min{θ0N0−1√
K
,
√

8
K(1+C0θ20)

}. Then for all θ ∈ (0, θ2), all

t ∈ (0, 1) and all N ∈ [N0,∞)

τ
(t)
K,N (θ)N ≤ tN ·

(
1 +

1
6

(1− t2)Kθ2 ·
[
1 + C1Kθ

2
])

. (2.3)

Proof. Note that (1 + ε
N−1 )N−1 ≤ eε ≤ 1 + ε + ε2 for all ε ∈ (0, 1

3 ) and all N ≥ N0 > 1. Hence,
Claim 1.2 implies

τ
(t)
K,N (θ)N ≤ tN ·

(
1 +

1
6

(1− t2)
K

N − 1
θ2 ·

[
1 + C0

K

N − 1
θ2
])N−1

≤ tN ·
(

1 +
1
6

(1− t2)Kθ2 ·
[
1 + C1Kθ

2
])

.
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Now choose θ∗ ≤ min{θ1, θ2} and such that [C0K
2 + C1K

′2](θ∗)2 ≤ K −K ′. Then Claim 1.4
(with K ′ in the place of K) and Claim 1.3 imply

σ
(t)
K,N (θ)N − τ (t)

K′,N (θ)N ≥ tN 1
6

(1− t2)θ2
(
K
[
1− C0Kθ

2
]
−K ′

[
1 + C1K

′θ2
])
≥ 0

which completes the proof of Lemma 1.1.

3 Disproving Conjecture 30.34 in [6]
Cédric Villani in his monograph [6] formulated a conjecture which – if it were true – would allow
him to prove the local-to-global property for CD(K,N) (Theorem 30.37). We will prove that this
conjecture is false.

In our terminology, it reads as follows.
Conjecture. Given N > 1, K ∈ R \ {0} and f : [0, L]→ R with L ≤ π

√
N−1
K provided K > 0

and arbitrary L ∈ R+ otherwise. If

f((1− t)θ0 + tθ1) ≥ τ (1−t)
K,N (|θ0 − θ1|) · f(θ0) + τ

(t)
K,N (|θ0 − θ1|) · f(θ1) (3.1)

holds true for all t ∈ (0, 1) and all θ0, θ1 ∈ [0, L] with |θ0 − θ1| small then it holds true for all
t ∈ (0, 1) and all θ0, θ1 ∈ [0, L].

In order to construct a counterexample, in the case K > 0 choose K̃ > K such that

cos

L
2

√
K̃

N

 > cos

(
L

2

√
K

N − 1

)1−1/N

.

Note that such a K̃ exists since

cos

(
L

2

√
K

N

)
> cos

(
L

2

√
K

N − 1

)1−1/N

which in turn is equivalent to σ(1/2)
K,N (L) < τ

(1/2)
K,N (L), the latter being a general fact, derived in

[5], Lemma 1.2. In the case K < 0, the same argument allows to choose K̃ ∈ (K, 0) such that

cosh
(
L
2

√
−K̃
N

)
> cosh

(
L
2

√
−K
N−1

)1−1/N

.

Let f : [0, L]→ R be any positive solution to the ODE f ′′ = − K̃N · f . Then

f((1− t)θ0 + tθ1) = σ
(1−t)
K̃,N

(|θ1 − θ0|) · f(θ0) + σ
(t)

K̃,N
(|θ1 − θ0|) · f(θ1)

for all t ∈ (0, 1) and all θ0, θ1 ∈ [0, L]. Hence, according to Lemma 1.1 for |θ0−θ1| being sufficiently
small

f((1− t)θ0 + tθ1) ≥ τ (1−t)
K,N (|θ1 − θ0|) · f(θ0) + τ

(t)
K,N (|θ1 − θ0|) · f(θ1).

If the Conjecture were true it would then for instance imply

f(L/2) ≥ τ (1/2)
K,N (L) · [f(0) + f(L)] =

1

cos
(
L
2

√
K
N−1

)1−1/N
· f(0) + f(L)

2
,
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with appropriate interpretation of the denominator of the RHS in the case K < 0. Now let us make

a specific choice for f , namely, f(θ) = cos
(

(θ − L
2 )
√

K̃
N

)
. Then the previous inequality reads as

follows

1 ≥
cos
(
L
2

√
K̃
N

)
cos
(
L
2

√
K
N−1

)1−1/N

which is a contradiction. �

Remark. Let us emphasize that the above counterexample is not a counterexample to the
local-to-global property of the curvature-dimension condition CD(K,N). It merely says that the
way proposed in [6], Theorem 30.37, to prove this local-to-global property will not work.

In the nontrivial case K/N 6= 0, it is still an open problem whether the local version of the
curvature-dimension condition CD(K,N) implies the corresponding global version.

As one of the main results in [1], the local-to-global property for the reduced curvature-
dimension condition CD∗(K,N) was proven for all pairs of K and N . Moreover, it was shown that
the local versions of CD(K,N) and CD∗(K,N) are equivalent. Hence, the remaining challenge is

either prove or disprove that CDloc(K,N) implies CD(K,N)

or equivalently

either prove or disprove that CD∗(K,N) implies CD(K,N).

4 A Remark concerning P∞(M, d,m) being a Geodesic Space
In Theorem 5.1 of the afore mentioned paper [1], we had assumed that P∞(M,d,m) is a geodesic
space. This assumption can equivalently be replaced by the much simpler assumption that supp[m]
is a geodesic space. The latter always follows from the preceding (cf. Remark 4.18(ii) in [4]). The
converse implication holds true under the assumption of CD∗loc(K,N) for some finite N .

Indeed, this implies CDloc(K−, N) with "CD" being defined in the sense of [5]. Due to the
non-branching assumption this is equivalent to an analogous "CD" definition in the sense of [2]
(Theorem 30.32 in [6] and/or Proposition 4.2 in [5]). The latter in turn implies that P∞(M,d,m)
is a geodesic space provided M is geodesic with full support (Theorem 30.19(ii) in [6], cf. also
proof of Theorem 30.37) or at least if supp[m] is a geodesic space.

In Theorem 7.10 of [1] the assumption that m has full support has to be added. Then M̂ is a
geodesic space with full support and the result of Theorem 5.1 applies.

Major parts of this paper had been obtained independently by the two authors. Both of them
would like to thank Prof. Cédric Villani for stimulating discussions and for encouraging to submit
these remarks as an addendum to the previous paper by Kathrin Bacher and the second author.
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