Entropic Measure on Multidimensional Spaces

Karl-Theodor Sturm

Abstract. We construct the entropic measure \mathbb{P}^{β} on compact manifolds of any dimension. It is defined as the push forward of the Dirichlet process (another random probability measure, well-known to exist on spaces of any dimension) under the *conjugation map*

$$\mathfrak{C}: \mathcal{P}(M) \to \mathcal{P}(M).$$

This conjugation map is a continuous involution. It can be regarded as the canonical extension to higher dimensional spaces of a map between probability measures on 1-dimensional spaces characterized by the fact that the distribution functions of μ and $\mathfrak{C}(\mu)$ are inverse to each other.

We also present an heuristic interpretation of the entropic measure as

$$d\mathbb{P}^{\beta}(\mu) = \frac{1}{Z} \exp\left(-\beta \cdot \operatorname{Ent}(\mu|m)\right) \cdot d\mathbb{P}^{0}(\mu).$$

Mathematics Subject Classification (2000). Primary 99Z99; Secondary 00A00. Keywords. Class file, journal.

1. Introduction

Gradient flows of entropy-like functionals on the Wasserstein space turned out to be a powerful tool in the study of various dissipative PDEs on Euclidean or Riemannian spaces M, the prominent example being the heat equation. See e.g. the monographs [Vi03, AGS05] for more examples and further references.

In [RS08], von Renesse and the author presented an approach to stochastic perturbation of the gradient flow of the entropy. It is based on the construction of a Dirichlet form

$$\mathcal{E}(u,u) = \int_{\mathcal{P}(M)} \|\nabla u\|^2(\mu) \ d\mathbb{P}^{\beta}(\mu)$$

where $\|\nabla u\|$ denotes the norm of the gradient in the Wasserstein space $\mathcal{P}(M)$ as introduced by Otto [Ot01]. The fundamental new ingredient was the measure \mathbb{P}^{β}

Karl-Theodor Sturm

on the Wasserstein space. This so-called *entropic measure* is an interesting and challenging object in its own right. It is formally introduced as

$$d\mathbb{P}^{\beta}(\mu) = \frac{1}{Z} \exp\left(-\beta \cdot \operatorname{Ent}(\mu|m)\right) \cdot d\mathbb{P}^{0}(\mu)$$
(1.1)

with some (non-existing) 'uniform distribution' \mathbb{P}^0 on the Wasserstein space $\mathcal{P}(M)$ and the relative entropy as a potential.

A rigorous construction was presented for 1-dimensional spaces. In the case M = [0, 1] it is based on the bijections

$$\mu \quad \xleftarrow{(x)=\mu([0,x])} \quad f \quad \xleftarrow{g=f^{(-1)}} \quad g \quad \xleftarrow{g(y)=\nu([0,y])} \quad \nu$$

between probability measures, distribution functions and inverse distribution functions (where $f^{(-1)}(y) = \inf\{x \ge 0 : f(x) \ge y\}$ more precisely denotes the 'right inverse' of f). If $\mathfrak{C} : \mathcal{P}(M) \to \mathcal{P}(M)$ denotes the map $\mu \mapsto \nu$ then the entropic measure \mathbb{P}^{β} is just the push forward under \mathfrak{C} of the Dirichlet-Ferguson process \mathbb{Q}^{β} . The latter is a random probability measure which is well-defined on every probability space.

For long time it seemed that the previous construction is definitively limited to dimension 1 since it heavily depends on the use of distribution functions (and inverse distribution functions), – objects which do not exist in higher dimensions. The crucial observation to overcome this restriction is to interpret g as the unique *optimal* transport map which pushes forward m (the normalized uniform distribution on M) to μ :

$$\mu = g_* m.$$

Due to Brenier [Br87] and McCann [Mc01] such a 'monotone map' exists for each probability measure μ on a Riemannian manifold of arbitrary dimension. Moreover, also in higher dimensions such a monotone map g has a unique generalized inverse f, again being a monotone map (with generalized inverse being g). This observation allows to define the *conjugation map*

$$\mathfrak{C}: \mathcal{P}(M) \to \mathcal{P}(M), \ \mu \mapsto \nu$$

for any compact manifold M. It is a continuous involution. By means of this map we define the entropic measure as follows:

$$\mathbb{P}^{eta} := \mathfrak{C}_* \mathbb{Q}^{eta}$$

where \mathbb{Q}^{β} denotes the Dirichlet-Ferguson process on M with intensity measure $\beta \cdot m$. (Actually, such a random probability measure exists on every probability space.)

In order to justify our definition of the entropic measure by some heuristic argument let us assume that \mathbb{P}^{β} were given as in (1.1). The identity $\mathbb{Q}^{\beta} = \mathfrak{C}_* \mathbb{P}^{\beta}$ then defines a probability measure which satisfies

$$d\mathbb{Q}^{\beta}(\nu) = \frac{1}{Z} \exp\left(-\beta \cdot \operatorname{Ent}(m|\nu)\right) \cdot d\mathbb{Q}^{0}(\nu).$$
(1.2)

Given a measurable partition $M = \bigcup_{i=1}^{N} M_i$ and approximating arbitrary probability measures ν by measures with constant density on each of the sets M_i of the partition the previous ansatz (1.2) yields – after some manipulations –

$$\begin{aligned} \mathbb{Q}_{M_{1},\ldots,M_{N}}^{\beta}(dx) \\ &= \frac{\Gamma(\beta)}{\prod\limits_{i=1}^{N} \Gamma(\beta m(M_{i}))} \cdot x_{1}^{\beta \cdot m(M_{1})-1} \cdot \ldots \cdot x_{N-1}^{\beta \cdot m(M_{N-1})-1} \cdot x_{N}^{\beta \cdot m(M_{N})-1} \times \\ &\times \delta_{(1-\sum\limits_{i=1}^{N-1} x_{i})}(dx_{N}) dx_{N-1} \ldots dx_{1}. \end{aligned}$$

These are, indeed, the finite dimensional distributions of the Dirichlet-Ferguson process.

2. Spaces of Convex Functions and Monotone Maps

Throughout this paper, M will be a compact subset of a complete Riemannian manifold \hat{M} with Riemannian distance d and m will denote a probability measure with support M, absolutely continuous with respect to the volume measure. We assume that it satisfies a Poincaré inequality: $\exists c > 0$

$$\int_M |\nabla u|^2 \, dm \ge c \cdot \int_M u^2 \, dm$$

for all weakly differentiable $u: M \to \mathbb{R}$ with $\int_M u \, dm = 0$.

For compact Riemannian manifolds, there is a canonical choice for m, namely, the normalized Riemannian volume measure. The freedom to choose m arbitrarily might be of advantage in view of future extensions: For Finsler manifolds and for non-compact Riemannian manifolds there is no such canonical probability measure.

The main ingredient of our construction below will be the Brenier-McCann representation of optimal transport in terms of gradients of convex functions.

Definition 2.1. A function $\varphi : M \to \mathbb{R}$ is called $d^2/2$ -convex if there exists a function $\psi : M \to \mathbb{R}$ such that

$$\varphi(x) = -\inf_{y \in M} \left[\frac{1}{2} d^2(x, y) + \psi(y) \right]$$

for all $x \in M$. In this case, φ is called generalized Legendre transform of ψ or conjugate of ψ and denoted by

$$\varphi=\psi^{\mathfrak{c}}.$$

Let us summarize some of the basic facts on $d^2/2$ -convex functions. See [Ro70], [Rü96], [Mc01] and [Vi08] for details.¹

¹A function φ is $d^2/2$ -convex in our sense if and only if the function $-\varphi$ is *c*-concave in the sense of [Ro70, Rü96, Mc01, Vi08] with cost function $c(x, y) = d^2(x, y)/2$. In our presentation, the ^c

Lemma 2.2. (i) A function φ is $d^2/2$ -convex if and only if

$$\varphi^{\mathfrak{c}\mathfrak{c}} = \varphi.$$

(ii) Every $d^2/2$ -convex function is bounded, Lipschitz continuous and differentiable almost everywhere with gradient bounded by $D = \sup_{x,y \in M} d(x,y)$.

In the sequel, $\mathcal{K} = \mathcal{K}(M)$ will denote the set of $d^2/2$ -convex functions on M and $\tilde{\mathcal{K}} = \tilde{\mathcal{K}}(M)$ will denote the set of equivalence classes in \mathcal{K} with $\varphi_1 \sim \varphi_2$ iff $\varphi_1 - \varphi_2$ is constant. \mathcal{K} will be regarded as a subset of the Sobolev space $H^1(M, m)$ with norm

$$|| u ||_{H^1} = \left[\int_M | \nabla u |^2 dm + \int_M u^2 dm \right]^{\frac{1}{2}}$$

and $\tilde{\mathcal{K}}=\mathcal{K}/const$ will be regarded as a subset of the space $\tilde{H^1}=H^1/const$ with norm

$$\mid u \parallel_{\tilde{H^1}} = \left[\int_M \mid \nabla u \mid^2 dm \right]^{\frac{1}{2}}.$$

Proposition 2.3. For each Borel map $g: M \to M$ the following are equivalent:

- (i) $\exists \varphi \in \tilde{\mathcal{K}} : g = \exp(\nabla \varphi) \ a.e. \ on \ M;$
- (ii) g is an optimal transport map from m to f_*m in the sense that it is a minimizer of $h \mapsto \int_M d^2(x, h(x))m(dx)$ among all Borel maps $h: M \to M$ with $h_*m = g_*m$.

In this case, the function $\varphi \in \tilde{\mathcal{K}}$ in (i) is defined uniquely. Moreover, in (ii) the map f is the unique minimizer of the given minimization problem.

A Borel map $g: M \to M$ satisfying the properties of the previous proposition will be called *monotone map* or *optimal Lebesque transport*. The set of *m*-equivalence classes of such maps will be denoted by $\mathcal{G} = \mathcal{G}(M)$. Note that $\mathcal{G}(M)$ does *not depend* on the choice of *m* (as long as *m* is absolutely continuous with full support)! $\mathcal{G}(M)$ will be regarded as a subset of the space of maps $L^2((M,m)(M,d))$ with metric $d_2(f,g) = \left[\int_{-\infty}^{\infty} d^2(f(x),g(x))m(dx)\right]^{\frac{1}{2}}$

metric $d_2(f,g) = \left[\int_M d^2(f(x),g(x))m(dx)\right]^{\frac{1}{2}}$. According to our definitions, the map $\Upsilon: \varphi \mapsto \exp(\nabla \varphi)$ defines a bijection between $\tilde{\mathcal{K}}$ and \mathcal{G} . Recall that $\mathcal{P} = \mathcal{P}(M)$ denotes the set of probability measures μ on M (equipped with its Borel σ -field).

Proposition 2.4. The map $\chi : g \mapsto g_*m$ defines a bijection between \mathcal{G} and $\mathcal{P}(M)$. That is, for each $\mu \in \mathcal{P}$ there exists a unique $g \in \mathcal{G}$ – called Brenier map of μ – with $\mu = g_*m$.

The map χ of course strongly depends on the choice of the measure m. (If there is any ambiguity we denote it by χ_m .)

stands for 'conjugate'. For the relation between $d^2/2$ -convexity and usual convexity on Euclidean space we refer to chapter 4.

Due to the previous observations, there exist canonical bijections Υ and χ between the sets $\tilde{\mathcal{K}}$, \mathcal{G} and \mathcal{P} . Actually, these bijections are even homeomorphisms with respect to the natural topologies on these spaces.

Proposition 2.5. Consider any sequence $\{\varphi_n\}_{n\in\mathbb{N}}$ in $\tilde{\mathcal{K}}$ with corresponding sequences $\{g_n\}_{n\in\mathbb{N}} = \{\Upsilon(\varphi_n)\}_{n\in\mathbb{N}}$ in \mathcal{G} and $\{\mu_n\}_{n\in\mathbb{N}} = \{\chi(g_n)\}_{n\in\mathbb{N}}$ in \mathcal{P} and let $\varphi \in \tilde{\mathcal{K}}, g = \Upsilon(\varphi) \in \mathcal{G}, \mu = \chi(g) \in \mathcal{P}.$ Then the following are equivalent:

- (i) $\varphi_n \longrightarrow \varphi$ in \tilde{H}_1 (ii) $g_n \longrightarrow g$ in $L^2((M,m), (M,d))$
- (iii) $g_n \longrightarrow g$ in *m*-probability on *M* (iv) $\mu_n \longrightarrow \mu$ in L²-Wasserstein distance d_W
- (v) $\mu_n \longrightarrow \mu$ weakly.

Proof. (i) \Leftrightarrow (ii) Compactness of M and smoothness of the exponential map imply that there exists $\delta > 0$ such that $\forall x \in M, \forall v_1, v_2 \in T_x M$ with $|v_1|, |v_2| \leq D$ and $|v_1 - v_2| < \delta$:

$$\frac{1}{2} \le d(exp_xv_1, exp_xv_2) / |v_1 - v_2|_{T_xM} \le 2.$$

Hence, $\varphi_n \longrightarrow \varphi$ in \hat{H}^1 , that is $\int_M |\nabla \varphi_n(x) - \nabla \varphi(x)|^2_{T_xM} m(dx) \longrightarrow 0$, is equivalent to $\int_M d^2(g_n(x), g(x))m(dx) \longrightarrow 0$, that is, to $g_n \longrightarrow g$ in $L^2((M, m), (M, d))$. $(ii) \Leftrightarrow (iii)$ Standard fact from integration theory (taking into account that $d(g_n, g)$ is uniformly bounded due to compactness of M).

 $(ii) \Leftrightarrow (iv)$ If $\mu_n = (g_n)_*m$ and $\mu_n = g_*m$ then $(g_n, g)_*m$ is a coupling of μ_n and μ . Hence,

$$d_W^2(\mu_n,\mu) \le \int_M d^2(g_n(x),g(x))m(dx).$$
 (2.1)

 $(iv) \Leftrightarrow (v)$ Trivial.

 $(ii) \Leftrightarrow (iv)$ [Vi08], Corollary 5.21.

Remark 2.6. Since M is compact, assertion (ii) of the previous Proposition is equivalent to

(iii) $q_n \longrightarrow q$ in $L^p((M, m), (M, d))$ for any $p \in [1, \infty)$ and similarly, assertion (iv) is equivalent to (iv') $\mu_n \longrightarrow \mu$ in L^p -Wasserstein distance.

Remark 2.7. In n = 1, the inequality in (2.1) is actually an equality. In other words, the map

$$\chi: (\mathcal{G}, d_2) \to (\mathcal{P}, d_W)$$

is an *isometry*. This is no longer true in higher dimensions.

The well-known fact (Prohorov's theorem) that the space of probability measures on a compact space is itself compact, together with the previous continuity results immediately implies compactness of $\tilde{\mathcal{K}}$ and \mathcal{G} .

Corollary 2.8. (i) $\tilde{\mathcal{K}}$ is a compact subset of \tilde{H}^1 . (ii) \mathcal{G} is a compact subset of $L^2((M,m),(M,d))$.

3. The Conjugation Map

Let us recall the definition of the conjugation map $\mathfrak{C}_{\mathcal{K}}: \varphi \mapsto \varphi^{\mathfrak{c}}$ acting on functions $\varphi: M \to \mathbb{R}$ as follows

$$\varphi^{\mathfrak{c}}(x) = -\inf_{y \in M} \left[\frac{1}{2} d^2(x, y) + \varphi(y) \right].$$

The map $\mathfrak{C}_{\mathcal{K}}$ maps \mathcal{K} bijective onto itself with $\mathfrak{C}_{\mathcal{K}}^2 = Id$. For each $\lambda \in \mathbb{R}$, $\mathfrak{C}_{\mathcal{K}}(\varphi + \lambda) = \mathfrak{C}_{\mathcal{K}}(\varphi) - \lambda$. Hence, $\mathfrak{C}_{\mathcal{K}}$ extends to a bijection $\mathfrak{C}_{\tilde{\mathcal{K}}} : \tilde{\mathcal{K}} \to \tilde{\mathcal{K}}$. Composing this map with the bijections $\chi : \mathcal{G} \to \mathcal{P}$ and $\Upsilon : \tilde{\mathcal{K}} \to \mathcal{G}$ we obtain involutive bijections

$$\mathfrak{E}_{\mathcal{G}} = \Upsilon \circ \mathfrak{C}_{ ilde{\mathcal{K}}} \circ \Upsilon^{-1} : \mathcal{G}
ightarrow \mathcal{G}$$

and

$$\mathfrak{C}_{\mathcal{P}} = \chi \circ \mathfrak{C}_{\mathcal{G}} \circ \chi^{-1} : \mathcal{P} \to \mathcal{P}$$

called *conjugation map* on \mathcal{G} or on \mathcal{P} , respectively. Given a monotone map $g \in \mathcal{G}$, the monotone map

$$g^{\mathfrak{c}} := \mathfrak{C}_{\mathcal{G}}(g)$$

will be called *conjugate map* or *generalized inverse map*; given a probability measure $\mu \in \mathcal{P}$ the probability measure

$$\mu^{\mathfrak{c}} := \mathfrak{C}_{\mathcal{P}}(\mu)$$

will be called *conjugate measure*.

Example 3.1. (i) Let $M = S^n$ be the n-dimensional sphere, and m be the normalized Riemannian volume measure. Put

$$\mu = \lambda \delta_a + (1 - \lambda)m$$

for some point $a \in M$ and $\lambda \in [0, 1[$. Then

$$\mu^{\mathfrak{c}} = \frac{1}{1-\lambda} \mathbf{1}_{M \setminus B_r(a)} \cdot m$$

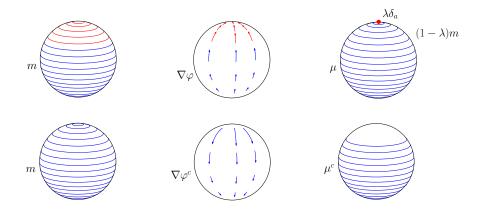
where r > 0 is such that $m(B_r(a)) = \lambda$.

[Proof. The optimal transport map $g=\exp(\nabla\varphi)$ which pushes m to μ is determined by the $d^2/2\text{-convex}$ function

$$\varphi = \begin{cases} \frac{1}{2} \left[r^2 - d^2(a, x) \right] & \text{in } B_r(a) \\ \frac{r}{2(\pi - r)} \left[d^2(a', x) - (\pi - r)^2 \right] & \text{in } \overline{B}_{\pi - r}(a') = M \setminus B_r(a) \end{cases}$$

Its conjugate is the function

$$\varphi^{\mathfrak{c}}(y) = -\frac{r}{2\pi}d^2(a',y) + \frac{1}{2}r(\pi-r).$$
]



(ii) Let $M = S^n$, the n-dimensional sphere, and $\mu = \delta_a$ for some $a \in M$. Then $\mu^{\mathfrak{c}} = \delta_{a'}$ with $a' \in M$ being the antipodal point of a.

[Proof. Limit of (i) as $\lambda \nearrow 1$. Alternatively: explicit calculations with $\varphi(x) = \frac{1}{2} [\pi^2 - d^2(a, x)]$ and

$$\varphi^{\mathfrak{c}}(y) = \sup_{x} \left(-\frac{1}{2}d^{2}(x,y) + \frac{1}{2}d^{2}(a,x) - \frac{1}{2}\pi^{2} \right) = -\frac{1}{2}d^{2}(a',y).$$

(iii) Let $M = S^n$, the n-dimensional sphere, and $\mu = \frac{1}{2}\delta_a + \frac{1}{2}\delta_{a'}$ with north and south pole $a, a' \in M$. Then $\mu^{\mathfrak{c}}$ is the uniform distribution on the equator, the (n-1)-dimensional set Z of points of equal distance to a, a'.

(iv) Let $M = S^1$ be the circle of length 1, m = uniform distribution and

$$\mu = \sum_{i=1}^{k} \alpha_i \delta_{x_i}$$

with points $x_1 < x_2 < \ldots < x_k < x_1$ in cyclic order on S^1 and numbers $\alpha_i \in [0, 1]$, $\sum \alpha_i = 1$. Then

$$\mu^{\mathfrak{c}} = \sum_{i=1}^{k} \beta_i \delta_{y_i}$$

with $\beta_i = |x_{i+1} - x_i|$ and points $y_1 < y_2 < \ldots < y_k < y_{k+1} = y_1$ on S^1 satisfying

$$|y_{i+1} - y_i| = \alpha_{i+1}.$$

[Proof. Embedding in \mathbb{R}^1 and explicit calculation of distribution and inverse distribution functions.]

Remark 3.2. The conjugation map

$$\mathfrak{C}_{\mathcal{P}}:\mathcal{P}\to\mathcal{P}$$

Karl-Theodor Sturm

depends on the choice of the reference measure m on M. Actually, we can choose two different probability measures m_1 , m_2 and consider $\mathfrak{C}_{\mathcal{P}} = \chi_{m_2} \circ \mathfrak{C}_{\mathcal{G}} \circ \chi_{m_1}^{-1}$.

Proposition 3.3. Let $\mu = g_*m \in \mathcal{P}$ be absolutely continuous with density $\eta = \frac{d\mu}{dm}$. Put $f = g^{\mathfrak{c}}$ and $\nu = f_*m = \mu^{\mathfrak{c}}$.

(i) If $\eta > 0$ a.s. then the measure ν is absolutely continuous with density $\rho = \frac{d\nu}{dm} > 0$ satisfying

$$\eta(x) \cdot \rho(f(x)) = \rho(x) \cdot \eta(g(x)) = 1$$
 for a.e. $x \in M$

(ii) If ν is absolutely continuous then f(g(x)) = g(f(x)) = x for a.e. $x \in M$. (iii) Under the previous assumption the Jacobian det Df(x) and det Dg(x) exist for almost every $x \in M$ and satisfy

$$\det Df(g(x)) \cdot \det Dg(x) = \det Df(x) \cdot \det Dg(f(x)) = 1,$$

$$\sigma(x) \cdot \eta(x) = \sigma(f(x)) \cdot \det Df(x), \qquad \sigma(x) \cdot \rho(x) = \sigma(g(x)) \cdot \det Dg(x)$$

for almost every $x \in M$ where $\sigma = \frac{dm}{dvol}$ denotes the density of the reference measure m with respect to the Riemannian volume measure vol.

Proof. (i) For each Borel function $v: M \to \mathbb{R}_+$

$$\int_{M} v \, d\nu = \int_{M} v \circ f \, dm = \int_{M} v \circ f \cdot \frac{1}{\eta} \, d\mu = \int_{M} v \circ f \cdot \frac{1}{\eta(g \circ f)} \, d\mu = \int_{M} v \cdot \frac{1}{\eta \circ g} \, dm.$$

Hence, ν is absolutely continuous with respect to m with density $\frac{1}{\eta \circ g}$. Interchanging the roles of μ and ν (as well as f and g) yields the second claim.

(ii), (iii) Part of Brenier- McCann representation result of optimal transports. $\hfill\square$

Corollary 3.4. Under the assumption $\eta > 0$ of the previous Proposition:

$$\operatorname{Ent}(\mu^{\mathfrak{c}} \mid m) = \operatorname{Ent}(m \mid \mu).$$

Proof. With notations from above

$$\operatorname{Ent}(\mu^{\mathfrak{c}} \mid m) = \int \rho \log \rho \, dm = \int \frac{1}{\eta \circ g} \log \frac{1}{\eta \circ g} \, dm = \int \frac{1}{\eta} \log \frac{1}{\eta} \, d\mu = \operatorname{Ent}(m \mid \mu).$$

Lemma 3.5. The conjugation map

$$\mathfrak{C}_{\mathcal{K}}:\mathcal{K}\to\mathcal{K}$$

is continuous.

Proof. To simplify notation denote $\mathfrak{C}_{\mathcal{K}}$ by \mathfrak{C} . Choose a countable dense set $\{y_i\}_{i\in\mathbb{N}}$ in M and for $k\in\mathbb{N}$ define $\mathfrak{C}_k:\varphi\mapsto\varphi_k^{\mathfrak{c}}$ on \mathcal{K} by $\varphi_k^{\mathfrak{c}}(x)=-\inf_{i=1,\ldots,k}[\frac{1}{2}d^2(x,y_i)+(\varphi(y_i))]$. Then as $k\to\infty$

$$\varphi_k^{\mathfrak{c}} \nearrow \varphi^{\mathfrak{c}}$$
 pointwise on M.

Recall that each $\varphi \in \mathcal{K}$ is Lipschitz continuous with Lipschitz constant D.

For each $\varepsilon > 0$ choose $k = k(\varepsilon) \in \mathbb{N}$ such that the set $\{y_i\}_{i=1,\dots,k(\varepsilon)}$ is an ε -covering of the compact space M. Then

$$| \mathfrak{C}_{k}(\varphi)(x) - \mathfrak{C}(\varphi)(x) | \leq \sup_{y \in M} \inf_{i=1,\dots,k} | \frac{1}{2} d^{2}(x,y) - \frac{1}{2} d^{2}(x,y_{i}) + \varphi(y) - \varphi(y_{i}) |$$

$$\leq \sup_{y \in M} \inf_{i=1,\dots,k} 2D \cdot d(y,y_{i}) \leq 2D\varepsilon \quad \text{uniformly in } x \in M \text{ and } \varphi \in \mathcal{K}.$$

Now let us consider a sequence $(\varphi_l)_{l \in \mathbb{N}}$ in \mathcal{K} with $\varphi_l \to \varphi$ in $H^1(M)$. Then for each $k \in \mathbb{N}$ as $l \to \infty$

$$\mathfrak{C}_k(\varphi_l) \to \mathfrak{C}_k(\varphi)$$

pointwise on M and thus also in $L^2(M)$. Together with the previous uniform convergence of $\mathfrak{C}_k \to \mathfrak{C}$ it implies

$$\mathfrak{C}(\varphi_l) \to \mathfrak{C}(\varphi)$$

in $L^2(M)$ as $l \to \infty$. Moreover, we know that $\{\mathfrak{C}(\varphi_l)\}_{l \in \mathbb{N}}$ is bounded in $H^1(M)$ (since all gradients are bounded by D). Therefore, finally

$$\mathfrak{C}(\varphi_l) \to \mathfrak{C}(\varphi)$$

in $H^1(M)$ as $l \to \infty$. This proves the continuity of $\mathfrak{C} : \mathcal{K} \to \mathcal{K}$ with respect to the H^1 -norm.

Theorem 3.6. The conjugation map

$$\mathfrak{C}_\mathcal{P}:\mathcal{P}\to\mathcal{P}$$

is continuous (with respect to the weak topology).

Proof. Let us first prove continuity of the conjugation map $\mathfrak{C}_{\tilde{\mathcal{K}}} : \tilde{\mathcal{K}} \to \tilde{\mathcal{K}}$ (with respect to the \tilde{H}^1 -norm on $\tilde{\mathcal{K}}$). Indeed, this follows from the previous continuity result together with the facts that the embedding $H^1 \to \tilde{H}^1$, $\varphi \mapsto \tilde{\varphi} = \{\varphi + c : c \in \mathbb{R}\}$ is continuous (trivial fact) and that the map $\tilde{H}^1 \to H^1$, $\tilde{\varphi} = \{\varphi + c : c \in \mathbb{R}\} \mapsto \varphi - \int_M \varphi dm$ is continuous (consequence of Poincaré inequality).

This in turn implies, due to Proposition 2.5, that the conjugation map $\mathfrak{C}_{\mathcal{G}} : \mathcal{G} \to \mathcal{G}$ is continuous (with respect to the L^2 -metric on \mathcal{G}). Moreover, due to the same Proposition it therefore also implies that the conjugation map

$$\mathfrak{C}_{\mathcal{P}}:\mathcal{P}\to\mathcal{P}$$

is continuous (with respect to the weak topology).

Remark 3.7. In dimension n = 1, the conjugation map $\mathfrak{C}_{\mathcal{G}} : \mathcal{G} \to \mathcal{G}$ is even an isometry from \mathcal{G} , equipped with the L^1 -metric, into itself.

4. Example: The Conjugation Map on $M \subset \mathbb{R}^n$

In this chapter, we will study in detail the Euclidean case. We assume that M is a compact convex subset of \mathbb{R}^n . (The convexity assumption is to simplify notations and results.) The probability measure m is assumed to be absolutely continuous with full support on M.

A function $\varphi: M \to \mathbb{R}$ is $d^2/2$ -convex if and only if the function $\varphi_1(x) = \varphi(x) + |x|^2/2$ is *convex* in the usual sense:

$$\varphi_1(\lambda x + (1-\lambda)y) \le \lambda \varphi_1(x) + (1-\lambda)\varphi_1(y)$$

(for all $x, y \in M$ and $\lambda \in [0, 1]$) and if its subdifferential lies in M:

$$\partial \varphi_1(x) \subset M$$

for all $x \in M$.

A function ψ is the conjugate of φ if and only if the function $\psi_1(y) = \psi(y) + |y|^2/2$ is the Legendre-Fenchel transform of φ_1 :

$$\psi_1(y) = \sup_{x \in M} \left[\langle x, y \rangle - \varphi_1(x) \right].$$

A Borel map $g: M \to M$ is monotone if and only if

$$\langle g(x) - g(y), x - y \rangle \ge 0$$

for a.e. $x, y \in M$. Equivalently, g is monotone if and only if $g = \nabla \varphi_1$ for some convex $\varphi_1 : M \to \mathbb{R}$.

Lemma 4.1. (i) If $\mu = \lambda \delta_z + (1 - \lambda)\nu$ then there exists an open convex set $U \subset M$ with $m(U) = \lambda$ such that the optimal transport map g with $g_*m = \mu$ satisfies $g \equiv z$ a.e. on U.

(ii) The conjugate measure μ^{c} does not charge U:

$$\mu^{\mathfrak{c}}(U) = 0.$$

Proof. (i) Linearity of the problem allows to assume that z = 0. Let $g = \nabla \varphi_1$ denote the optimal transport map with φ_1 being an appropriate convex function. Let V be the subset of points in M in which φ_1 is weakly differentiable with vanishing gradient. By the push forward property it follows that $m(V) = \lambda$. Firstly, then convexity of φ_1 implies that φ_1 has to be constant on V, say $\varphi_1 \equiv \alpha$ on V. Secondly, the latter implies that $\varphi_1 \equiv \alpha$ on the convex hull W of V. The interior U of this convex set W has volume $m(U) = m(W) \geq m(V) = \lambda$ and φ_1 is constant on U, hence, differentiable with vanishing gradient. Thus finally $U \subset V$ and $m(U) = \lambda$.

(ii) Let $\mu_{\epsilon}, \epsilon \in [0, 1]$, denote the intermediate points on the geodesic from $\mu_0 = \mu$ to $\mu_1 = m$. Then $\mu_{\epsilon} = (g_{\epsilon})_* m$ with $g_{\epsilon} = \exp((1-\epsilon)\nabla\varphi) = \epsilon \cdot Id + (1-\epsilon) \cdot g$ and each μ_{ϵ} is absolutely continuous w.r. to m. Hence, $g_{\epsilon}^{\mathsf{c}} = g_{\epsilon}^{-1}$ a.e. on M. Therefore, the conjugate measure $\mu_{\epsilon}^{\mathsf{c}}$ satisfies

$$\mu_{\epsilon}^{\mathfrak{c}}(U) = m\left((g_{\epsilon}^{\mathfrak{c}})^{-1}(U)\right) = m\left(g_{\epsilon}(U)\right) = \epsilon^{n} \cdot m(U) = \epsilon^{n} \cdot \lambda$$

10

Now obviously $\mu_{\epsilon} \to \mu$ as $\epsilon \to 0$. According to Theorem 3.6 this implies $\mu_{\epsilon}^{\mathfrak{c}} \to \mu^{\mathfrak{c}}$ and thus (since U is open)

$$\mu^{\mathfrak{c}}(U) \leq \liminf_{\epsilon \to 0} \mu^{\mathfrak{c}}_{\epsilon}(U) = 0.$$

Theorem 4.2. (i) If $\mu = \sum_{i=1}^{N} \lambda_i \delta_{z_i}$ with $N \in \mathbb{N} \cup \{\infty\}$ then there exist disjoint convex open sets $U_i \subset M$ with $m(U_i) = \lambda_i$ such that the optimal transport map $g = \nabla \varphi_1$ with $g_*m = \mu$ satisfies $g \equiv z_i$ on each of the U_i , $i \in \mathbb{N}$. The measure $\mu^{\mathfrak{c}}$ is supported by the compact m-zero set $M \setminus \bigcup_{i=1}^{N} U_i$. (ii) Each of the sets U_i is the interior of $M \cap A_i$ where

$$A_i = \{ x \in \mathbb{R}^n : \varphi_1(x) = \langle z_i, x \rangle + \alpha_i \}$$

and

$$\varphi_1(x) = \sup_{i=1,\dots,N} \left[\langle z_i, x \rangle + \alpha_i \right]$$

with numbers α_i to be chosen in such a way that $m(A_i) = \lambda_i$.

(iii) If $N < \infty$ then each of the sets $A_i \subset \mathbb{R}^n$, i = 1, ..., N is a convex polytope. The decomposition $\mathbb{R}^n = \bigcup_{i=1}^N A_i$ is a Laguerre tesselation (see e.g. [LZ08] and references therein).

The compact m-zero set $M \setminus \bigcup_{i=1}^{N} U_i$ which supports $\mu^{\mathfrak{c}}$ has finite (n-1)- dimensional Hausdorff measure.

Corollary 4.3. (i) If μ is discrete then the topological support of μ^{c} is a m-zero set. In particular, μ^{c} has no absolutely continuous part.

(ii) If μ has full topological support then μ^{c} has no atoms.

Proof. (i) Obvious from the previous theorem.

(ii) If $\mu^{\mathfrak{c}}$ had an atom (of mass $\lambda > 0$) then according to the previous lemma there would be a convex open set U (of volume $m(U) = \lambda$) such that $\mu(U) = (\mu^{\mathfrak{c}})^{\mathfrak{c}}(U) = 0$.

5. The Entropic Measure – Heuristics

Our goal is to construct a canonical probability measure \mathbb{P}^{β} on the Wasserstein space $\mathcal{P} = \mathcal{P}(M)$ over a compact Riemannian manifold, according to the formal ansatz

$$\mathbb{P}^{\beta}(d\mu) = \frac{1}{Z} e^{-\beta \operatorname{Ent}(\mu|m)} \mathbb{P}^{0}(d\mu).$$

Here $\operatorname{Ent}(\cdot \mid m)$ is the *relative entropy* with respect to the reference measure m, β is a constant > 0 ('the inverse temperature') and \mathbb{P}^0 should denote a (nonexisting) 'uniform distribution' on $\mathcal{P}(M)$. Z should denote a normalizing constant. Using the conjugation map $\mathfrak{C}_{\mathcal{P}} : \mathcal{P}(M) \to \mathcal{P}(M)$ and denoting $\mathbb{Q}^{\beta} := (\mathfrak{C}_{\mathcal{P}})_* \mathbb{P}^{\beta},$ $\mathbb{Q}^0 := (\mathfrak{C}_{\mathcal{P}})_* \mathbb{P}^0$ the above problem can be reformulated as follows:

Construct a probability measure \mathbb{Q}^{β} on $\mathcal{P}(M)$ such that – at least formally –

$$\mathbb{Q}^{\beta}(d\nu) = \frac{1}{Z} e^{-\beta \operatorname{Ent}(m|\nu)} \mathbb{Q}^{0}(d\nu)$$
(5.1)

with some 'uniform distribution' \mathbb{Q}^0 in $\mathcal{P}(M)$. Here, we have used the fact that

$$\operatorname{Ent}(\nu^{\mathfrak{c}} \mid m) = \operatorname{Ent}(m \mid \nu)$$

(Corollary 3.4), at least if $\nu \ll m$ with $\frac{d\nu}{dm} > 0$ almost everywhere. Probability measures $\mathbf{P}(d\mu)$ on $\mathcal{P}(M)$ – so called *random probability measures* on M – are uniquely determined by the distributions $\mathbf{P}_{M_1,\ldots,M_N}$ of the random vectors

$$(\mu(M_1),\ldots,\mu(M_N))$$

for all $N \in \mathbb{N}$ and all measurable partitions $M = \bigcup_{i=1}^{N} M_i$ of M into disjoint measurable subsets M_i . Conversely, if a consistent family $\mathbf{P}_{M_1,\ldots,M_N}$ of probability

measures on $[0,1]^N$ (for all $N \in \mathbb{N}$ and all measurable partitions $M = \bigcup_{i=1}^N M_i$) is given then there exists a random probability measure **P** such that

$$\mathbf{P}_{M_1,\ldots,M_N}(A) = \mathbf{P}((\mu(M_1),\ldots,\mu(M_N)) \in A$$

for all measurable $A \subset [0,1]^N$, all $N \in \mathbb{N}$ and all partitions $M = \bigcup_{i=1}^N M_i$.

Given a measurable partition $M = \bigcup_{i=1}^{N} M_i$ the ansatz (5.1) yields the following characterization of the finite dimensional distribution on $[0, 1]^N$

$$\mathbb{Q}^{\beta}_{M_1,\dots,M_N}(dx) = \frac{1}{Z_N} e^{-\beta S_{M_1,\dots,M_N}(x)} q_{M_1,\dots,M_N}(dx)$$
(5.2)

where $S_{M_1,\ldots,M_N}(x)$ denotes the conditional expectation (with respect to \mathbb{Q}^0) of $S(\cdot) = \operatorname{Ent}(m \mid \cdot)$ under the condition $\nu(M_1) = x_1, \ldots, \nu(M_N) = x_N$.

Moreover, $q_{M_1,\ldots,M_N}(dx) = \mathbb{Q}^0((\nu(M_1),\ldots,\nu(M_N)) \in dx)$ denotes the distribution of the random vector $(\nu(M_1),\ldots,\nu(M_N))$ in the simplex

 $\sum_{N} = \left\{ x \in [0,1]^{N} : \sum_{i=1}^{N} x_{i} = 1 \right\}.$ According to our choice of \mathbb{Q}^{0} , the measure $q_{M_{1},\ldots,M_{N}}$ should be the 'uniform distribution' in the simplex \sum_{N} . In [RS08] we argued that the canonical choice for a 'uniform distribution' in \sum_{N} is the measure

$$q_N(dx) = c \cdot \frac{dx_1 \dots dx_{N-1}}{x_1 \cdot x_2 \cdot \dots \cdot x_{N-1} \cdot x_N} \cdot \delta_{(1-\sum_{i=1}^{N-1} x_i)}(dx_N).$$
(5.3)

It remains to get hands on $S_{M_1,\ldots,M_N}(x)$, the conditional expectation of $S(\cdot) = \operatorname{Ent}(m \mid \cdot)$ under the constraint $\nu(M_1) = x_1, \ldots, \nu(M_N) = x_N$. We simply replace it by $\underline{S}_{M_1,\ldots,M_N}(x)$, the minimum of $\nu \mapsto \operatorname{Ent}(m \mid \nu)$ under the constraint $\nu(M_1) = x_1, \ldots, \nu(M_N) = x_N$.

Obviously, this minimum is attained at a measure with constant density on each of the sets M_i of the partition, that is

$$\nu = \sum_{i=1}^{N} \frac{x_i}{m(M_i)} \mathbf{1}_{M_i} m.$$

Hence,

$$\underline{S}_{M_1,...,M_N}(x) = -\sum_{i=1}^N \log \frac{x_i}{m(M_i)} \cdot m(M_i).$$
(5.4)

Replacing $\underline{S}_{M_1,\ldots,M_N}$ by S_{M_1,\ldots,M_N} in (5.2), the latter yields

$$\begin{aligned} \mathbb{Q}_{M_1,\dots,M_N}^{\beta}(dx) &= c \cdot e^{-\beta \underline{S}_{M_1,\dots,M_N}(x)} q_N(dx) \\ &= \frac{\Gamma(\beta)}{\prod\limits_{i=1}^N \Gamma(\beta m(M_i))} \cdot x_1^{\beta \cdot m(M_1) - 1} \cdot \dots \cdot x_{N-1}^{\beta \cdot m(M_{N-1}) - 1} \cdot x_N^{\beta \cdot m(M_N) - 1} \times \\ &\times \delta_{(1 - \sum\limits_{i=1}^{N-1} x_i)}(dx_N) dx_{N-1} \dots dx_1. \end{aligned}$$

This, indeed, defines a projective family! Hence, the random probability measure \mathbb{Q}^{β} exists and is uniquely defined. It is the well-known *Dirichlet-Ferguson process*. Therefore, in turn, also the random probability measure $\mathbb{P}^{\beta} = (\mathfrak{C}_{\mathcal{P}})_* \mathbb{Q}^{\beta}$ exists uniquely.

6. The Entropic Measure – Rigorous Definition

Definition 6.1. Given any compact Riemannian space (M, d, m) and any parameter $\beta > 0$ the entropic measure

$$\mathbb{P}^eta:=(\mathfrak{C}_\mathcal{P})_*\mathbb{Q}^eta$$

is the push forward of the Dirichlet-Ferguson process \mathbb{Q}^{β} (with reference measure βm) under the conjugation map $\mathfrak{C}_{\mathcal{P}}: \mathcal{P}(M) \to \mathcal{P}(M)$.

 \mathbb{P}^{β} as well as \mathbb{Q}^{β} are probability measures on the compact space $\mathcal{P} = \mathcal{P}(M)$ of probability measures on M. Recall the definition of the Dirichlet-Ferguson process \mathbb{Q}^{β} [Fe73]: For each measurable partition $M = \bigcup_{i=1}^{N} M_i$ the random vector $(\nu(M_1), \ldots, \nu(M_N))$ is distributed according to a Dirichlet distribution with parameters $(\beta m(M_1), \ldots, \beta m(M_N))$. That is, for any bounded Borel function $u : \mathbb{R}^N \to \mathbb{R}$

$$\int_{\mathcal{P}(M)} u(\nu(M_1), \dots, \nu(M_N)) \mathbb{Q}^{\beta}(d\nu) = \frac{\Gamma(\beta)}{\prod_{i=1}^{N} \Gamma(\beta m(M_i))} \cdot \int_{[0,1]^N} u(x_1, \dots, x_N) \cdot x_1^{\beta m(M_1)-1} \cdot \dots \cdot x_N^{\beta m(M_N)-1} \times \delta_{(1-\sum_{i=1}^{N-1} x_i)}(dx_N) dx_{N-1} \dots dx_1.$$

The latter uniquely characterizes the 'random probability measure' \mathbb{Q}^{β} . The existence (as a projective limit) is guaranteed by Kolmogorov's theorem.

Karl-Theodor Sturm

An alternative, more direct construction is as follows: Let $(x_i)_{i\in\mathbb{N}}$ be an iid sequence of points in M, distributed according to m, and let $(t_i)_{i\in\mathbb{N}}$ be an iid sequence of numbers in [0, 1], independent of the previous sequence and distributed according to the Beta distribution with parameters 1 and β , i.e. $\operatorname{Prob}(t_i \in ds) = \beta(1-s)^{\beta-1} \cdot 1_{[0,1]}(s) ds$. Put

$$\lambda_k = t_k \cdot \prod_{i=1}^{k-1} (1-t_i)$$
 and $\nu = \sum_{k=1}^{\infty} \lambda_k \cdot \delta_{x_k}$.

Then $\nu \in \mathcal{P}(M)$ is distributed according to \mathbb{Q}^{β} [Se94].

The distribution of ν does not change if one replaces the above 'stick-breaking process' $(\lambda_k)_{k\in\mathbb{N}}$ by the 'Dirichlet-Poisson process' $(\lambda_{(k)})_{k\in\mathbb{N}}$ obtained from it by ordering the entries of the previous one according to their size: $\lambda_{(1)} \geq \lambda_{(2)} \geq \ldots \geq 0$. Alternatively, the Dirichlet-Poisson process can be regarded as the sequence of jumps of a Gamma process with parameter β , ordered according to size.

Note that $m(M_0) = 0$ for a given $M_0 \subset M$ implies that $\nu(M_0) = 0$ for \mathbb{Q}^{β} -a.e. $\nu \in \mathcal{P}(M)$. On the other hand, obviously, \mathbb{Q}^{β} -a.e. $\nu \in \mathcal{P}(M)$ is discrete. In contrast to that, as a corollary to Theorem 4.3 and in analogy to the 1-dimensional case we obtain:

Corollary 6.2. If $M \subset \mathbb{R}^n$ then \mathbb{P}^{β} -a.e. $\mu \in \mathcal{P}(M)$ has no absolutely continuous part and no atoms. The topological support of $\mu^{\mathfrak{c}}$ is a m-zero set.

For \mathbb{P}^{β} -a.e. $\mu \in \mathcal{P}(M)$ there exist a countable number of open convex sets $U_k \subset M$ ('holes in the support of μ ') with sizes $\lambda_k = m(U_k), k \in \mathbb{N}$. The measure μ is supported on the complement of all these holes $M \setminus \bigcup_k U_k$, a compact *m*-zero set. The sequence $(\lambda_k)_{k \in \mathbb{N}}$ of sizes of the holes is distributed according to the stick breaking process with parameter β . In particular,

$$\mathbb{E}\lambda_k = \frac{1}{\beta} \left(\frac{\beta}{1+\beta}\right)^k \qquad (\forall k \in \mathbb{N}).$$

In average, each hole has size $\leq \frac{1}{1+\beta}$. For large β , the size of the k-th hole decays like $\frac{1}{\beta} \exp(-k/\beta)$ as $k \to \infty$. For small β , $\lambda_{(1)}$ the size of the largest hole is of order $\sim \frac{1}{1+0.7\beta}$, [Gr88].

Remark 6.3. In principle, the reference measures in the conjugation map (see Remark 3.2) and in the Dirichlet-Ferguson process could be chosen different from each other.

Given a diffeomorphism $h: M \to M$ the challenge for the sequel will be to deduce a *change of variable formula* for the entropic measure $\mathbb{P}^{\beta}(d\mu)$ under the induced transformation

$$\mu \mapsto h_*\mu$$

of $\mathcal{P}(M)$.

Conjecture 6.4. For each φ^2 -diffeomorphism $h: M \to M$ there exists a function $Y_h^\beta: \mathcal{P} \to \mathbb{R}$ such that

$$\int U(h_*\mu)\mathbb{P}^{\beta}(d\mu) = \int U(\mu)Y_h^{\beta}(\mu)\mathbb{P}^{\beta}(d\mu),$$
(6.1)

for all bounded Borel functions $U : \mathcal{P} \to \mathbb{R}$. (It suffices to consider U of the form $U(\mu) = u(\mu(M_1)), \ldots, \mu(M_N)$) for measurable partitions $M = \bigcup M_i$ and bounded measurable $u : \mathbb{R}^N \to \mathbb{R}$.) The density Y_h^β is of the form

$$Y_h^\beta(\mu) = \exp\left(\beta \int_M \log \det Dh(x)\mu(dx)\right) \cdot Y_h^0(\mu) \tag{6.2}$$

with $Y_h^0(\mu)$ being independent of β .

As an intermediate step, in order to derive a more direct representation for the entropic measure \mathbb{P}^{β} on $\mathcal{P}(M)$, we may consider the measure

$$\mathbb{Q}^{\beta}_{\mathcal{G}} := (\chi^{-1})_* \mathbb{P}^{\beta} = (\mathfrak{C}_{\mathcal{G}} \circ \chi^{-1})_* \mathbb{Q}^{\beta}$$

on \mathcal{G} . It is the unique probability measure on the space \mathcal{G} of monotone maps with the property that

$$\int_{\mathcal{G}} u(m((g^{\mathfrak{c}})^{-1}(M_{1})), \dots, m((g^{\mathfrak{c}})^{-1}(M_{N}))\mathbb{Q}_{\mathcal{G}}^{\beta}(dg) = \frac{\Gamma(\beta)}{\prod_{i=1}^{N} \Gamma(\beta m(M_{i}))} \cdot \int_{[0,1]^{N}} u(x_{1}, \dots, x_{N}) \cdot x_{1}^{\beta m(M_{1})-1} \cdot \dots \cdot x_{N}^{\beta m(M_{N})-1} \times \delta_{(1-\sum_{i=1}^{N-1} x_{i})}(dx_{N}) dx_{N-1} \dots dx_{1}$$

for each measurable partition $M = \bigcup_{i=1}^{N} M_i$ and each bounded Borel function $u : \mathbb{R}^N \to \mathbb{R}$. Actually, one may assume without restriction that the partition consists of continuity sets of m (i.e. $m(\partial M_i) = 0$ for all $i = 1, \ldots, N$) and that u is continuous. Note that $(g^{\mathfrak{c}})^{-1} = g$ almost everywhere whenever $g_*m \ll m$. Moreover, note that in dimension 1, say M = [0, 1], the map $\mathfrak{C}_{\mathcal{G}} \circ \chi^{-1} : \mathcal{P} \to \mathcal{G}$ assigns to each probability measure ν its cumulative distribution function g.

In dimension 1, the change of variable formula (6.1) allows to prove closability of the Dirichlet form

$$\mathcal{E}(u,u) = \int_{\mathcal{P}} \|\nabla u\|^2(\mu) \ d\mathbb{P}^{\beta}(\mu)$$

and to construct the Wasserstein diffusion $(\mu_t)_{t\geq 0}$, the reversible Markov process with continuous trajectories (and invariant distribution \mathbb{P}^{β}) associated to it [RS08]. The change of variable formula in dimension 1 can also be regarded as a 'Girsanov type theorem' for the (normalized) Gamma process [RYZ07]. Until now, no higher dimensional analogue is known. The Wasserstein diffusion on 1-dimensional spaces satisfies a logarithmic Sobolev inequality [DS07]; it can be obtained as scaling limit of empirical distributions of interacting particle systems [AR07].

References

- [AGS05] L. AMBROSIO, N. GIGLI AND G. SAVARÉ (2005): Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel.
- [AR07] S. ANDRES AND M. K. VON RENESSE(2007): Particle Approximation of the Wasserstein Diffusion. Submitted.
- [Br87] Y. BRENIER (1987): Décomposition polaire et réarrangement monotone des champs de vecteurs. C. R. Acad. Sci. Paris Sér. I Math. **305** no. 19, 805–808.
- [CMS01] D. CORDERO-ERAUSQUIN, R.J. MCCANN AND M. SCHMUCKENSCHLÄGER (2001): A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. *Invent. Math.* 146 no. 2, 219–257.
- [DS07] M. DÖRING AND W. STANNAT (2007): The logarithmic Sobolev inequality for the Wasserstein Diffusion. *Preprint.*
- [Fe73] T. S. FERGUSON (1973): A Bayesian analysis of some nonparametric problems. Ann. Statist. 1, 209–230.
- [Gr88] R. C. GRIFFITHS (1988): On the Distribution of Points in a Poisson Dirichlet Process. Journal of Applied Probability 25 no. 2, 336-345.
- [LZ08] C. LAUTENSACK AND S. ZUYEV (2008): Random Laguerre tessellations. Adv. in Appl. Probab. 40 no. 3, 630-650.
- [Mc01] R.J. MCCANN (2001): Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11 no. 3, 589–608.
- [Oh08] S. Ohta (2008): Finsler interpolation inequalities. Preprint.
- [Ot01] F. OTTO (2001): The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations 26 no. 1-2, 101–174.
- [Ro70] R.T. ROCKAFELLAR (1970): Convex analysis. Princeton Mathematical Series 28.
- [RS08] M. K. VON RENESSE AND K. T. STURM (2008): Entropic measure and Wasserstein Diffusion. To appear in Ann. Probab.
- [RYZ07] M. K. VON RENESSE, M.YOR AND L. ZAMBOTTI (2007): Quasi-invariance properties of a class of subordinators. *To appear in Stoch Proc Appl.*
- [Rü96] L. RÜSCHENDORF (1996): On c-optimal random variables. Statist. Probab. Lett. 27 no. 3, 267–270.
- [Se94] SETHURAMAN, JAYARAM (1994): A constructive definition of Dirichlet priors. Statist. Sinica 4 no. 2, 639–650.
- [Vi03] C. VILLANI (2003): Topics in Mass Transportation. Graduate Studies in Mathematics, American Mathematical Society.
- [Vi08] C. VILLANI (2008): Optimal Transport Old and new. Grundlehren. Springer, Berlin.

Karl-Theodor Sturm Institut fuer Angewandte Mathematik Poppelsdorfer Allee 82 D 53115 Bonn Germany e-mail: sturm@uni-bonn.de