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Abstract. We construct the entropic measure Pβ on compact manifolds of any
dimension. It is defined as the push forward of the Dirichlet process (another
random probability measure, well-known to exist on spaces of any dimension)
under the conjugation map

C : P(M)→ P(M).

This conjugation map is a continuous involution. It can be regarded as the
canonical extension to higher dimensional spaces of a map between proba-
bility measures on 1-dimensional spaces characterized by the fact that the
distribution functions of µ and C(µ) are inverse to each other.

We also present an heuristic interpretation of the entropic measure as

dPβ(µ) =
1

Z
exp (−β · Ent(µ|m)) · dP0(µ).
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1. Introduction

Gradient flows of entropy-like functionals on the Wasserstein space turned out
to be a powerful tool in the study of various dissipative PDEs on Euclidean or
Riemannian spaces M , the prominent example being the heat equation. See e.g.
the monographs [Vi03, AGS05] for more examples and further references.
In [RS08], von Renesse and the author presented an approach to stochastic per-
turbation of the gradient flow of the entropy. It is based on the construction of a
Dirichlet form

E(u, u) =
∫
P(M)

‖∇u‖2(µ) dPβ(µ)

where ‖∇u‖ denotes the norm of the gradient in the Wasserstein space P(M) as
introduced by Otto [Ot01]. The fundamental new ingredient was the measure Pβ
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on the Wasserstein space. This so-called entropic measure is an interesting and
challenging object in its own right. It is formally introduced as

dPβ(µ) =
1
Z

exp (−β · Ent(µ|m)) · dP0(µ) (1.1)

with some (non-existing) ‘uniform distribution’ P0 on the Wasserstein space P(M)
and the relative entropy as a potential.
A rigorous construction was presented for 1-dimensional spaces. In the case M =
[0, 1] it is based on the bijections

µ
(x)=µ([0,x])
←−−−−−−−→ f

g=f(−1)

←−−−−−−−−−→ g
g(y)=ν([0,y])
←−−−−−−−−→ ν

between probability measures, distribution functions and inverse distribution func-
tions (where f (−1)(y) = inf{x ≥ 0 : f(x) ≥ y} more precisely denotes the ‘right
inverse’ of f). If C : P(M) → P(M) denotes the map µ 7→ ν then the entropic
measure Pβ is just the push forward under C of the Dirichlet-Ferguson process
Qβ . The latter is a random probability measure which is well-defined on every
probability space.

For long time it seemed that the previous construction is definitively limited to di-
mension 1 since it heavily depends on the use of distribution functions (and inverse
distribution functions), – objects which do not exist in higher dimensions. The cru-
cial observation to overcome this restriction is to interpret g as the unique optimal
transport map which pushes forward m (the normalized uniform distribution on
M) to µ:

µ = g∗m.

Due to Brenier [Br87] and McCann [Mc01] such a ‘monotone map’ exists for each
probability measure µ on a Riemannian manifold of arbitrary dimension. Moreover,
also in higher dimensions such a monotone map g has a unique generalized inverse
f , again being a monotone map (with generalized inverse being g). This observation
allows to define the conjugation map

C : P(M)→ P(M), µ 7→ ν

for any compact manifold M . It is a continuous involution. By means of this map
we define the entropic measure as follows:

Pβ := C∗Qβ

where Qβ denotes the Dirichlet-Ferguson process on M with intensity measure
β · m. (Actually, such a random probability measure exists on every probability
space.)

In order to justify our definition of the entropic measure by some heuristic argu-
ment let us assume that Pβ were given as in (1.1). The identity Qβ = C∗Pβ then
defines a probability measure which satisfies

dQβ(ν) =
1
Z

exp (−β · Ent(m|ν)) · dQ0(ν). (1.2)



Entropic Measure on Multidimensional Spaces 3

Given a measurable partition M =
⋃N
i=1Mi and approximating arbitrary proba-

bility measures ν by measures with constant density on each of the sets Mi of the
partition the previous ansatz (1.2) yields – after some manipulations –

Qβ
M1,...,MN

(dx)

=
Γ(β)

N∏
i=1

Γ(βm(Mi))
· xβ·m(M1)−1

1 · . . . · xβ·m(MN−1)−1
N−1 · xβ·m(MN )−1

N ×

× δ
(1−

N−1P
i=1

xi)
(dxN )dxN−1 . . . dx1.

These are, indeed, the finite dimensional distributions of the Dirichlet-Ferguson
process.

2. Spaces of Convex Functions and Monotone Maps

Throughout this paper, M will be a compact subset of a complete Riemannian
manifold M̂ with Riemannian distance d and m will denote a probability measure
with support M , absolutely continuous with respect to the volume measure. We
assume that it satisfies a Poincaré inequality: ∃c > 0∫

M

|∇u|2 dm ≥ c ·
∫
M

u2 dm

for all weakly differentiable u : M → R with
∫
M
u dm = 0.

For compact Riemannian manifolds, there is a canonical choice for m, namely,
the normalized Riemannian volume measure. The freedom to choose m arbitrarily
might be of advantage in view of future extensions: For Finsler manifolds and for
non-compact Riemannian manifolds there is no such canonical probability mea-
sure.

The main ingredient of our construction below will be the Brenier-McCann repre-
sentation of optimal transport in terms of gradients of convex functions.

Definition 2.1. A function ϕ : M → R is called d2/2-convex if there exists a
function ψ : M → R such that

ϕ(x) = − inf
y∈M

[
1
2
d2(x, y) + ψ(y)

]
for all x ∈ M . In this case, ϕ is called generalized Legendre transform of ψ or
conjugate of ψ and denoted by

ϕ = ψc.

Let us summarize some of the basic facts on d2/2-convex functions. See [Ro70],
[Rü96], [Mc01] and [Vi08] for details.1

1A function ϕ is d2/2-convex in our sense if and only if the function −ϕ is c-concave in the sense
of [Ro70, Rü96, Mc01, Vi08] with cost function c(x, y) = d2(x, y)/2. In our presentation, the c
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Lemma 2.2. (i) A function ϕ is d2/2-convex if and only if

ϕcc = ϕ.

(ii) Every d2/2-convex function is bounded, Lipschitz continuous and differen-
tiable almost everywhere with gradient bounded by D = sup

x,y∈M
d(x, y).

In the sequel, K = K(M) will denote the set of d2/2-convex functions on M and
K̃ = K̃(M) will denote the set of equivalence classes in K with ϕ1 ∼ ϕ2 iff ϕ1−ϕ2

is constant. K will be regarded as a subset of the Sobolev space H1(M,m) with
norm

‖ u ‖H1=
[∫

M

| 5u |2 dm+
∫
M

u2dm

] 1
2

and K̃ = K/const will be regarded as a subset of the space H̃1 = H1/const with
norm

‖ u ‖H̃1=
[∫

M

| ∇u |2 dm
] 1

2

.

Proposition 2.3. For each Borel map g : M →M the following are equivalent:

(i) ∃ϕ ∈ K̃ : g = exp(∇ϕ) a.e. on M ;
(ii) g is an optimal transport map from m to f∗m in the sense that it is a min-

imizer of h 7→ ∫
M
d2(x, h(x))m(dx) among all Borel maps h : M → M with

h∗m = g∗m.

In this case, the function ϕ ∈ K̃ in (i) is defined uniquely. Moreover, in (ii) the
map f is the unique minimizer of the given minimization problem.
A Borel map g : M →M satisfying the properties of the previous proposition will
be called monotone map or optimal Lebesque transport. The set of m-equivalence
classes of such maps will be denoted by G = G(M). Note that G(M) does not
depend on the choice of m (as long as m is absolutely continuous with full support)!
G(M) will be regarded as a subset of the space of maps L2((M,m)(M,d)) with

metric d2(f, g) =
[∫
M
d2(f(x), g(x))m(dx)

] 1
2 .

According to our definitions, the map Υ : ϕ 7→ exp(∇ϕ) defines a bijection between
K̃ and G. Recall that P = P(M) denotes the set of probability measures µ on M
(equipped with its Borel σ-field).

Proposition 2.4. The map χ : g 7→ g∗m defines a bijection between G and P(M).
That is, for each µ ∈ P there exists a unique g ∈ G – called Brenier map of µ –
with µ = g∗m.

The map χ of course strongly depends on the choice of the measure m. (If there
is any ambiguity we denote it by χm.)

stands for ‘conjugate’. For the relation between d2/2-convexity and usual convexity on Euclidean
space we refer to chapter 4.
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Due to the previous observations, there exist canonical bijections Υ and χ between
the sets K̃, G and P. Actually, these bijections are even homeomorphisms with
respect to the natural topologies on these spaces.

Proposition 2.5. Consider any sequence {ϕn}n∈N in K̃ with corresponding se-
quences {gn}n∈N = {Υ(ϕn)}n∈N in G and {µn}n∈N = {χ(gn)}n∈N in P and let
ϕ ∈ K̃, g = Υ(ϕ) ∈ G, µ = χ(g) ∈ P. Then the following are equivalent:

(i) ϕn −→ ϕ in H̃1

(ii) gn −→ g in L2((M,m), (M,d))
(iii) gn −→ g in m-probability on M
(iv) µn −→ µ in L2-Wasserstein distance dW
(v) µn −→ µ weakly.

Proof. (i)⇔ (ii) Compactness of M and smoothness of the exponential map imply
that there exists δ > 0 such that ∀x ∈M , ∀v1, v2 ∈ TxM with | v1 |, | v2 |≤ D and
| v1 − v2 |< δ:

1
2
≤ d(expxv1, expxv2)/ | v1 − v2 |TxM≤ 2.

Hence, ϕn −→ ϕ in H̃1, that is
∫
M
| ∇ϕn(x)−∇ϕ(x) |2TxM

m(dx) −→ 0, is equiv-
alent to

∫
M
d2(gn(x), g(x))m(dx) −→ 0, that is, to gn −→ g in L2((M,m), (M,d)).

(ii) ⇔ (iii) Standard fact from integration theory (taking into account that
d(gn, g) is uniformly bounded due to compactness of M).
(ii)⇔ (iv) If µn = (gn)∗m and µn = g∗m then (gn, g)∗m is a coupling of µn and
µ. Hence,

d2
W (µn, µ) ≤

∫
M

d2(gn(x), g(x))m(dx). (2.1)

(iv)⇔ (v) Trivial.
(ii)⇔ (iv) [Vi08], Corollary 5.21.

�

Remark 2.6. Since M is compact, assertion (ii) of the previous Proposition is
equivalent to
(iii’) gn −→ g in Lp((M,m), (M,d))
for any p ∈ [1,∞) and similarly, assertion (iv) is equivalent to
(iv’) µn −→ µ in Lp-Wasserstein distance.

Remark 2.7. In n = 1, the inequality in (2.1) is actually an equality. In other
words, the map

χ : (G, d2)→ (P, dW )
is an isometry. This is no longer true in higher dimensions.

The well-known fact (Prohorov’s theorem) that the space of probability measures
on a compact space is itself compact, together with the previous continuity results
immediately implies compactness of K̃ and G.

Corollary 2.8. (i) K̃ is a compact subset of H̃1.
(ii) G is a compact subset of L2((M,m), (M,d)).
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3. The Conjugation Map

Let us recall the definition of the conjugation map CK : ϕ 7→ ϕc acting on functions
ϕ : M → R as follows

ϕc(x) = − inf
y∈M

[
1
2
d2(x, y) + ϕ(y)

]
.

The map CK maps K bijective onto itself with C2
K = Id. For each λ ∈ R, CK(ϕ+

λ) = CK(ϕ) − λ. Hence, CK extends to a bijection CK̃ : K̃ → K̃. Composing this
map with the bijections χ : G → P and Υ : K̃ → G we obtain involutive bijections

CG = Υ ◦ CK̃ ◦Υ−1 : G → G
and

CP = χ ◦ CG ◦ χ−1 : P → P,
called conjugation map on G or on P, respectively. Given a monotone map g ∈ G,
the monotone map

gc := CG(g)

will be called conjugate map or generalized inverse map; given a probability mea-
sure µ ∈ P the probability measure

µc := CP(µ)

will be called conjugate measure.

Example 3.1. (i) Let M = Sn be the n-dimensional sphere, and m be the normal-
ized Riemannian volume measure. Put

µ = λδa + (1− λ)m

for some point a ∈M and λ ∈ ]0, 1[. Then

µc =
1

1− λ1M\Br(a) ·m

where r > 0 is such that m(Br(a)) = λ.
[ Proof. The optimal transport map g = exp(∇ϕ) which pushes m to µ is determined by the

d2/2-convex function

ϕ =

(
1
2

ˆ
r2 − d2(a, x)

˜
in Br(a)

r
2(π−r)

ˆ
d2(a′, x)− (π − r)2

˜
in Bπ−r(a′) = M \Br(a)

Its conjugate is the function

ϕc(y) = −
r

2π
d2(a′, y) +

1

2
r(π − r). ]
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m ∇ϕ
µ

(1− λ)m

λδa

m ∇ϕc µc

(ii) Let M = Sn, the n-dimensional sphere, and µ = δa for some a ∈ M . Then
µc = δa′ with a′ ∈M being the antipodal point of a.
[ Proof. Limit of (i) as λ ↗ 1. Alternatively: explicit calculations with ϕ(x) = 1

2
[π2 − d2(a, x)]

and

ϕc(y) = sup
x

„
−

1

2
d2(x, y) +

1

2
d2(a, x)−

1

2
π2

«
= −

1

2
d2(a′, y). ]

(iii) Let M = Sn, the n-dimensional sphere, and µ = 1
2δa + 1

2δa′ with north and
south pole a, a′ ∈ M . Then µc is the uniform distribution on the equator, the
(n− 1)-dimensional set Z of points of equal distance to a, a′.

(iv) Let M = S1 be the circle of length 1, m = uniform distribution and

µ =
k∑
i=1

αiδxi

with points x1 < x2 < . . . < xk < x1 in cyclic order on S1 and numbers αi ∈ [0, 1],∑
αi = 1. Then

µc =
k∑
i=1

βiδyi

with βi =| xi+1 − xi | and points y1 < y2 < . . . < yk < yk+1 = y1 on S1 satisfying

| yi+1 − yi |= αi+1.

[ Proof. Embedding in R1 and explicit calculation of distribution and inverse distribution func-

tions. ]

Remark 3.2. The conjugation map

CP : P → P
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depends on the choice of the reference measure m on M . Actually, we can choose
two different probability measures m1, m2 and consider CP = χm2 ◦ CG ◦ χ−1

m1
.

Proposition 3.3. Let µ = g∗m ∈ P be absolutely continuous with density η = dµ
dm .

Put f = gc and ν = f∗m = µc.
(i) If η > 0 a.s. then the measure ν is absolutely continuous with density ρ = dν

dm >
0 satisfying

η(x) · ρ(f(x)) = ρ(x) · η(g(x)) = 1 for a.e. x ∈M.

(ii) If ν is absolutely continuous then f(g(x)) = g(f(x)) = x for a.e. x ∈M .
(iii) Under the previous assumption the Jacobian detDf(x) and detDg(x) exist
for almost every x ∈M and satisfy

detDf(g(x)) · detDg(x) = detDf(x) · detDg(f(x)) = 1,

σ(x) · η(x) = σ(f(x)) · detDf(x), σ(x) · ρ(x) = σ(g(x)) · detDg(x)

for almost every x ∈ M where σ = dm
dvol denotes the density of the reference

measure m with respect to the Riemannian volume measure vol.

Proof. (i) For each Borel function v : M → R+∫
M

v dν =
∫
M

v ◦f dm =
∫
M

v ◦f · 1
η
dµ =

∫
M

v ◦f · 1
η(g ◦ f)

dµ =
∫
M

v · 1
η ◦ g dm.

Hence, ν is absolutely continuous with respect tom with density 1
η◦g . Interchanging

the roles of µ and ν (as well as f and g) yields the second claim.
(ii), (iii) Part of Brenier- McCann representation result of optimal transports. �

Corollary 3.4. Under the assumption η > 0 of the previous Proposition:

Ent(µc | m) = Ent(m | µ).

Proof. With notations from above

Ent(µc | m) =
∫
ρ log ρ dm =

∫
1

η ◦ g log
1

η ◦ g dm =
∫

1
η

log
1
η
dµ = Ent(m | µ).

�

Lemma 3.5. The conjugation map

CK : K → K
is continuous.

Proof. To simplify notation denote CK by C. Choose a countable dense set {yi}i∈N
in M and for k ∈ N define Ck : ϕ 7→ ϕc

k on K by ϕc
k(x) = − inf

i=1,...,k
[ 12d

2(x, yi) +

(ϕ(yi)]. Then as k →∞
ϕc
k ↗ ϕc pointwise on M.

Recall that each ϕ ∈ K is Lipschitz continuous with Lipschitz constant D.
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For each ε > 0 choose k = k(ε) ∈ N such that the set {yi}i=1,...,k(ε) is an ε-covering
of the compact space M . Then

| Ck(ϕ)(x)− C(ϕ)(x) | ≤ sup
y∈M

inf
i=1,...,k

| 1
2
d2(x, y)− 1

2
d2(x, yi) + ϕ(y)− ϕ(yi) |

≤ sup
y∈M

inf
i=1,...,k

2D · d(y, yi) ≤ 2Dε uniformly in x ∈M and ϕ ∈ K.

Now let us consider a sequence (ϕl)l∈N in K with ϕl → ϕ in H1(M). Then for
each k ∈ N as l→∞

Ck(ϕl)→ Ck(ϕ)

pointwise on M and thus also in L2(M). Together with the previous uniform
convergence of Ck → C it implies

C(ϕl)→ C(ϕ)

in L2(M) as l → ∞. Moreover, we know that {C(ϕl)}l∈N is bounded in H1(M)
(since all gradients are bounded by D). Therefore, finally

C(ϕl)→ C(ϕ)

in H1(M) as l→∞. This proves the continuity of C : K → K with respect to the
H1-norm. �

Theorem 3.6. The conjugation map

CP : P → P
is continuous (with respect to the weak topology).

Proof. Let us first prove continuity of the conjugation map CK̃ : K̃ → K̃ (with
respect to the H̃1-norm on K̃). Indeed, this follows from the previous continuity
result together with the facts that the embedding H1 → H̃1, ϕ 7→ ϕ̃ = {ϕ + c :
c ∈ R} is continuous (trivial fact) and that the map H̃1 → H1, ϕ̃ = {ϕ + c : c ∈
R} 7→ ϕ− ∫

M
ϕdm is continuous (consequence of Poincaré inequality).

This in turn implies, due to Proposition 2.5, that the conjugation map CG : G → G
is continuous (with respect to the L2-metric on G). Moreover, due to the same
Proposition it therefore also implies that the conjugation map

CP : P → P
is continuous (with respect to the weak topology). �

Remark 3.7. In dimension n = 1, the conjugation map CG : G → G is even an
isometry from G, equipped with the L1-metric, into itself.
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4. Example: The Conjugation Map on M ⊂ Rn

In this chapter, we will study in detail the Euclidean case. We assume that M is a
compact convex subset of Rn. (The convexity assumption is to simplify notations
and results.) The probability measure m is assumed to be absolutely continuous
with full support on M .
A function ϕ : M → R is d2/2-convex if and only if the function ϕ1(x) = ϕ(x) +
|x|2/2 is convex in the usual sense:

ϕ1(λx+ (1− λ)y) ≤ λϕ1(x) + (1− λ)ϕ1(y)

(for all x, y ∈M and λ ∈ [0, 1]) and if its subdifferential lies in M :

∂ϕ1(x) ⊂M
for all x ∈M .
A function ψ is the conjugate of ϕ if and only if the function ψ1(y) = ψ(y)+ |y|2/2
is the Legendre-Fenchel transform of ϕ1:

ψ1(y) = sup
x∈M

[〈x, y〉 − ϕ1(x)] .

A Borel map g : M →M is monotone if and only if

〈g(x)− g(y), x− y〉 ≥ 0

for a.e. x, y ∈ M . Equivalently, g is monotone if and only if g = ∇ϕ1 for some
convex ϕ1 : M → R.

Lemma 4.1. (i) If µ = λδz + (1− λ)ν then there exists an open convex set U ⊂M
with m(U) = λ such that the optimal transport map g with g∗m = µ satisfies g ≡ z
a.e. on U .
(ii) The conjugate measure µc does not charge U :

µc(U) = 0.

Proof. (i) Linearity of the problem allows to assume that z = 0. Let g = ∇ϕ1

denote the optimal transport map with ϕ1 being an appropriate convex function.
Let V be the subset of points in M in which ϕ1 is weakly differentiable with
vanishing gradient. By the push forward property it follows that m(V ) = λ. Firstly,
then convexity of ϕ1 implies that ϕ1 has to be constant on V , say ϕ1 ≡ α on V .
Secondly, the latter implies that ϕ1 ≡ α on the convex hull W of V . The interior
U of this convex set W has volume m(U) = m(W ) ≥ m(V ) = λ and ϕ1 is
constant on U , hence, differentiable with vanishing gradient. Thus finally U ⊂ V
and m(U) = λ.
(ii) Let µε, ε ∈ [0, 1], denote the intermediate points on the geodesic from µ0 = µ
to µ1 = m. Then µε = (gε)∗m with gε = exp((1− ε)∇ϕ) = ε · Id+ (1− ε) · g and
each µε is absolutely continuous w.r. to m. Hence, gc

ε = g−1
ε a.e. on M . Therefore,

the conjugate measure µc
ε satisfies

µc
ε(U) = m

(
(gc
ε)
−1(U)

)
= m (gε(U)) = εn ·m(U) = εn · λ.
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Now obviously µε → µ as ε → 0. According to Theorem 3.6 this implies µc
ε → µc

and thus (since U is open)

µc(U) ≤ lim inf
ε→0

µc
ε(U) = 0.

�

Theorem 4.2. (i) If µ =
∑N
i=1 λiδzi

with N ∈ N ∪ {∞} then there exist disjoint
convex open sets Ui ⊂ M with m(Ui) = λi such that the optimal transport map
g = ∇ϕ1 with g∗m = µ satisfies g ≡ zi on each of the Ui, i ∈ N.
The measure µc is supported by the compact m-zero set M \⋃Ni=1 Ui.
(ii) Each of the sets Ui is the interior of M ∩Ai where

Ai = {x ∈ Rn : ϕ1(x) = 〈zi, x〉+ αi}
and

ϕ1(x) = sup
i=1,...,N

[〈zi, x〉+ αi]

with numbers αi to be chosen in such a way that m(Ai) = λi.
(iii) If N < ∞ then each of the sets Ai ⊂ Rn, i = 1, . . . , N is a convex polytope.
The decomposition Rn =

⋃N
i=1Ai is a Laguerre tesselation (see e.g. [LZ08] and

references therein).
The compact m-zero set M \⋃Ni=1 Ui which supports µc has finite (n− 1)- dimen-
sional Hausdorff measure.

Corollary 4.3. (i) If µ is discrete then the topological support of µc is a m-zero set.
In particular, µc has no absolutely continuous part.
(ii) If µ has full topological support then µc has no atoms.

Proof. (i) Obvious from the previous theorem.
(ii) If µc had an atom (of mass λ > 0) then according to the previous lemma there
would be a convex open set U (of volume m(U) = λ) such that µ(U) = (µc)c(U) =
0. �

5. The Entropic Measure – Heuristics

Our goal is to construct a canonical probability measure Pβ on the Wasserstein
space P = P(M) over a compact Riemannian manifold, according to the formal
ansatz

Pβ(dµ) =
1
Z
e−βEnt(µ|m)P0(dµ).

Here Ent(· | m) is the relative entropy with respect to the reference measure
m, β is a constant > 0 (‘the inverse temperature’) and P0 should denote a (non-
existing) ‘uniform distribution’ on P(M). Z should denote a normalizing constant.
Using the conjugation map CP : P(M) → P(M) and denoting Qβ := (CP)∗Pβ ,
Q0 := (CP)∗P0 the above problem can be reformulated as follows:
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Construct a probability measure Qβ on P(M) such that – at least formally –

Qβ(dν) =
1
Z
e−βEnt(m|ν)Q0(dν) (5.1)

with some ‘uniform distribution’ Q0 in P(M). Here, we have used the fact that

Ent(νc | m) = Ent(m | ν)

(Corollary 3.4), at least if ν � m with dν
dm > 0 almost everywhere.

Probability measures P(dµ) on P(M) – so called random probability measures on
M – are uniquely determined by the distributions PM1,...,MN

of the random vectors

(µ(M1), . . . , µ(MN ))

for all N ∈ N and all measurable partitions M =
⋃̇N
i=1Mi of M into disjoint

measurable subsets Mi. Conversely, if a consistent familiy PM1,...,MN
of probability

measures on [0, 1]N (for all N ∈ N and all measurable partitions M =
⋃̇N
i=1Mi) is

given then there exists a random probability measure P such that

PM1,...,MN
(A) = P((µ(M1), . . . , µ(MN )) ∈ A)

for all measurable A ⊂ [0, 1]N , all N ∈ N and all partitions M =
.⋃N
i=1Mi.

Given a measurable partition M =
.⋃N
i=1Mi the ansatz (5.1) yields the following

characterization of the finite dimensional distribution on [0, 1]N

Qβ
M1,...,MN

(dx) =
1
ZN

e−βSM1,...,MN
(x)qM1,...,MN

(dx) (5.2)

where SM1,...,MN
(x) denotes the conditional expectation (with respect to Q0) of

S(·) = Ent(m | · ) under the condition ν(M1) = x1, . . . , ν(MN ) = xN .
Moreover, qM1,...,MN

(dx) = Q0((ν(M1), . . . , ν(MN )) ∈ dx) denotes the distribu-
tion of the random vector (ν(M1), . . . , ν(MN )) in the simplex∑
N =

{
x ∈ [0, 1]N :

∑N
i=1 xi = 1

}
. According to our choice of Q0, the measure

qM1,...,MN
should be the ‘uniform distribution’ in the simplex

∑
N . In [RS08] we

argued that the canonical choice for a ‘uniform distribution’ in
∑
N is the measure

qN (dx) = c · dx1 . . . dxN−1

x1 · x2 · . . . · xN−1 · xN · δ(1−N−1P
i=1

xi)
(dxN ). (5.3)

It remains to get hands on SM1,...,MN
(x), the conditional expectation of S(·) =

Ent(m | · ) under the constraint ν(M1) = x1, . . . , ν(MN ) = xN . We simply replace
it by SM1,...,MN

(x), the minimum of ν 7→ Ent(m | ν) under the constraint ν(M1) =
x1, . . . , ν(MN ) = xN .
Obviously, this minimum is attained at a measure with constant density on each
of the sets Mi of the partition, that is

ν =
N∑
i=1

xi
m(Mi)

1Mi
m.
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Hence,

SM1,...,MN
(x) = −

N∑
i=1

log
xi

m(Mi)
·m(Mi). (5.4)

Replacing SM1,...,MN
by SM1,...,MN

in (5.2), the latter yields

Qβ
M1,...,MN

(dx) = c · e−βSM1,...,MN
(x)qN (dx)

=
Γ(β)

N∏
i=1

Γ(βm(Mi))
· xβ·m(M1)−1

1 · . . . · xβ·m(MN−1)−1
N−1 · xβ·m(MN )−1

N ×

× δ
(1−

N−1P
i=1

xi)
(dxN )dxN−1 . . . dx1.

This, indeed, defines a projective family! Hence, the random probability measure
Qβ exists and is uniquely defined. It is the well-known Dirichlet-Ferguson process.
Therefore, in turn, also the random probability measure Pβ = (CP)∗Qβ exists
uniquely.

6. The Entropic Measure – Rigorous Definition

Definition 6.1. Given any compact Riemannian space (M,d,m) and any parameter
β > 0 the entropic measure

Pβ := (CP)∗Qβ

is the push forward of the Dirichlet-Ferguson process Qβ (with reference measure
βm) under the conjugation map CP : P(M)→ P(M).

Pβ as well as Qβ are probability measures on the compact space P = P(M) of
probability measures on M . Recall the definition of the Dirichlet-Ferguson pro-

cess Qβ [Fe73]: For each measurable partition M =
.⋃N
i=1Mi the random vec-

tor (ν(M1), . . . , ν(MN )) is distributed according to a Dirichlet distribution with
parameters (β m(M1), . . . , β m(MN )). That is, for any bounded Borel function
u : RN → R∫

P(M)

u(ν(M1), . . . , ν(MN ))Qβ(dν) =

Γ(β)
N∏
i=1

Γ(βm(Mi))
·
∫

[0,1]N
u(x1, . . . , xN ) · xβm(M1)−1

1 · . . . · xβm(MN )−1
N ×

× δ
(1−

N−1P
i=1

xi)
(dxN )dxN−1 . . . dx1.

The latter uniquely characterizes the ‘random probability measure’ Qβ . The exis-
tence (as a projective limit) is guaranteed by Kolmogorov’s theorem.
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An alternative, more direct construction is as follows: Let (xi)i∈N be an iid sequence
of points in M , distributed according to m, and let (ti)i∈N be an iid sequence of
numbers in [0, 1], independent of the previous sequence and distributed according
to the Beta distribution with parameters 1 and β, i.e. Prob(ti ∈ ds) = β(1−s)β−1 ·
1[0,1](s)ds. Put

λk = tk ·
k−1∏
i=1

(1− ti) and ν =
∞∑
k=1

λk · δxk
.

Then ν ∈ P(M) is distributed according to Qβ [Se94].
The distribution of ν does not change if one replaces the above ‘stick-breaking
process’ (λk)k∈N by the ‘Dirichlet-Poisson process’ (λ(k))k∈N obtained from it by
ordering the entries of the previous one according to their size: λ(1) ≥ λ(2) ≥ . . . ≥
0. Alternatively, the Dirichlet-Poisson process can be regarded as the sequence of
jumps of a Gamma process with parameter β, ordered according to size.
Note that m(M0) = 0 for a given M0 ⊂ M implies that ν(M0) = 0 for Qβ-a.e.
ν ∈ P(M). On the other hand, obviously, Qβ-a.e. ν ∈ P(M) is discrete. In contrast
to that, as a corollary to Theorem 4.3 and in analogy to the 1-dimensional case
we obtain:

Corollary 6.2. If M ⊂ Rn then Pβ-a.e. µ ∈ P(M) has no absolutely continuous
part and no atoms. The topological support of µc is a m-zero set.

For Pβ-a.e. µ ∈ P(M) there exist a countable number of open convex sets Uk ⊂M
(‘holes in the support of µ’) with sizes λk = m(Uk), k ∈ N. The measure µ is
supported on the complement of all these holes M \⋃k Uk, a compact m-zero set.
The sequence (λk)k∈N of sizes of the holes is distributed according to the stick
breaking process with parameter β. In particular,

Eλk =
1
β

(
β

1 + β

)k
(∀k ∈ N).

In average, each hole has size ≤ 1
1+β . For large β, the size of the k-th hole decays

like 1
β exp(−k/β) as k → ∞. For small β, λ(1) the size of the largest hole is of

order ∼ 1
1+0.7β , [Gr88].

Remark 6.3. In principle, the reference measures in the conjugation map (see
Remark 3.2) and in the Dirichlet-Ferguson process could be chosen different from
each other.

Given a diffeomorphism h : M →M the challenge for the sequel will be to deduce
a change of variable formula for the entropic measure Pβ(dµ) under the induced
transformation

µ 7→ h∗µ

of P(M).
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Conjecture 6.4. For each ϕ2-diffeomorphism h : M → M there exists a function
Y βh : P → R such that∫

U(h∗µ)Pβ(dµ) =
∫
U(µ)Y βh (µ)Pβ(dµ), (6.1)

for all bounded Borel functions U : P → R. (It suffices to consider U of the form
U(µ) = u(µ(M1)), . . . , µ(MN )) for measurable partitions M =

⋃
Mi and bounded

measurable u : RN → R.) The density Y βh is of the form

Y βh (µ) = exp
(
β

∫
M

log detDh(x)µ(dx)
)
· Y 0

h (µ) (6.2)

with Y 0
h (µ) being independent of β.

As an intermediate step, in order to derive a more direct representation for the
entropic measure Pβ on P(M), we may consider the measure

Qβ
G := (χ−1)∗Pβ = (CG ◦ χ−1)∗Qβ

on G. It is the unique probability measure on the space G of monotone maps with
the property that∫

G
u(m((gc)−1(M1)), . . . ,m((gc)−1(MN ))Qβ

G(dg) =

Γ(β)
N∏
i=1

Γ(βm(Mi))
·
∫

[0,1]N
u(x1, . . . , xN ) · xβm(M1)−1

1 · . . . · xβm(MN )−1
N ×

× δ
(1−

N−1P
i=1

xi)
(dxN )dxN−1 . . . dx1

for each measurable partition M =
.⋃N
i=1Mi and each bounded Borel function

u : RN → R. Actually, one may assume without restriction that the partition
consists of continuity sets of m (i.e. m(∂Mi) = 0 for all i = 1, . . . , N) and that
u is continuous. Note that (gc)−1 = g almost everywhere whenever g∗m � m.
Moreover, note that in dimension 1, say M = [0, 1], the map CG ◦ χ−1 : P → G
assigns to each probability measure ν its cumulative distribution function g.

In dimension 1, the change of variable formula (6.1) allows to prove closability of
the Dirichlet form

E(u, u) =
∫
P
‖∇u‖2(µ) dPβ(µ)

and to construct the Wasserstein diffusion (µt)t≥0, the reversible Markov process
with continuous trajectories (and invariant distribution Pβ) associated to it [RS08].
The change of variable formula in dimension 1 can also be regarded as a ‘Girsanov
type theorem’ for the (normalized) Gamma process [RYZ07]. Until now, no higher
dimensional analogue is known.
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The Wasserstein diffusion on 1-dimensional spaces satisfies a logarithmic Sobolev
inequality [DS07]; it can be obtained as scaling limit of empirical distributions of
interacting particle systems [AR07].
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Zürich. Birkhäuser Verlag, Basel.

[AR07] S. Andres and M. K. von Renesse(2007): Particle Approximation of the
Wasserstein Diffusion. Submitted.
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