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Abstract
The goal of this paper is to study optimal transportation problems and gradient flows
of probability measures on the Wiener space, based on and extending fundamental
results of Feyel-Üstünel. Carrying out the program of Ambrosio-Gigli-Savaré, we
present a complete characterization of the derivative processes for certain class of
absolutely continuous curves. We prove existence of the gradient flow curves for the
relative entropy w.r.t. the Wiener measure and identify these gradient flow curves
with solutions of the Ornstein-Uhlenbeck evolution equation.

Introduction

Let (X,H, µ) be an abstract Wiener space. Consider on X the dH distance defined as

(0.1) dH(x, y) =
{
|x− y|H x− y ∈ H,

+∞ otherwise.

It is well-known that (x, y) 7→ dH(x, y) is lower semi-continuous over X × X. Denote by P(X)
the space of probability measures on X. For ν1, ν2 ∈ P(X), we define the following Wasserstein
distance W2:

(0.2) W2(ν1, ν2) = inf
{∫

X×X

|x− y|2H π(dx, dy); π ∈ C(ν1, ν2)
}1/2

where C(ν1, ν2) denotes the totality of probability measures on X×X, having ν1 and ν2 as marginal
laws. The distance W2(ν1, ν2) could take the value +∞. Note that it would be more appropriate
to attribute the distance W2 to Kantorovich and Rubinstein, but we keep the name “Wasserstein”
(referring to Vasershtein’s contribution [Va]) since this terminology is now quite standard.

During recent years, due to the success of constructing Monge optimal transport maps on the
Wiener space [FU], there are intensive researches on the transformations of measures on the Wiener
space (see [FUZ], [BK], [BKM]). The purpose of this paper is to study the geometrical aspect of
the Wasserstein space (P(X),W2). Our work is based essentially on the following ones:

1) the lecture note [AS] given by L. Ambrosio and G. Savaré, in which the authors introduced
rigorously the tangent spaces of the Wasserstein space (P2(Rd),W2), where P2(Rd) denotes the
space of probability measures with finite second moment, and the structure of gradient flows is
systematically studied.

2) the fundamental work [FU] by D. Feyel and A.S. Üstünel about the Monge-Kantorovich
optimal transportation problem on the Wiener space.

To emphasize the difference between these two situations, we outline the following two points:
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1) the compactness of the closed ball {x ∈ Rd; |x|Rd ≤ R} allows to prove the tightness of
a family of probability measures in P2(Rd); while on the Wiener space (X,H, µ), neither {x ∈
X; ||x||X ≤ R} (non compact) nor {x ∈ X; |x|H ≤ R} (of measure µ zero) does work.

2) for a sequence of probability measures (µn) on Rd, converging weakly to µ, there exists a
sequence of random variables (Zn) of law µn and Z of law µ such that

|Zn − Z|Rd → 0 a.s.,

then (see [Ch, chapter 5]) under the uniform integrability of second moment, the weak convergence
µn to µ implies the convergence

W2(µn, µ) → 0 as n→ +∞;

while on the Wiener space, the convergence with respect to the norm of X does not imply the
convergence with respect to the dH distance, the counterpart does not hold in this latter situation.

Now we describe the content of this work. In a geometric context, the connection between the
convexity of the entropy functional (relative to the Riemannian volume or to a reference) and the
lower bound of the Ricci curvature has been developed in [LV] and [St]. In section 1, we will clarify
this connection in the framework of Wiener space, see Theorem 1.5. Tangent spaces to Wasserstein
spaces have been firstly considered at a formal level in [Ot] and rigorously implemented in [AGS].
In Section 2, we will introduce the derivative processes associated to absolutely continuous curves,
so that the distance W2 is expressed as a Riemannian distance, a new interpretation for the
Benamou-Brenier’s formula, see Theorem 2.6. The gradient flow associated to a general convex
functional is defined usually through sub-gradients. For the entropy functional, in section 3, we
compute explicitly the directional derivative and prove that the gradient of the entropy functional
exists at the minimizers in Jordan-Kinderlehrer-Otto’s approximation scheme [JKO]. We will prove
that solutions to the Ornstein-Uhlenbeck evolution is the gradient flow associated to the entropy
functional, see Theorem 3.10.

1. 1-convexity of the entropy functional

Let (X,H, µ) be an abstract Wiener space, that is, X is a separable Banach space, H is a
separable Hilbert space which is densely and continuously embedded in X such that∫

X

e
√
−1`(x) dµ(x) = e−|i

∗(`)|2H/2 for ` ∈ X∗(dual of X)

where i : H → X is the injection map and i∗ : X∗ → H the dual map. For simplicity, we consider

X∗ ⊂ H ⊂ X.

In what follows, we denote by || · || the norm of X and Ent(f) =
∫

X
f log f dµ for any positive

measurable function on X such that
∫

X
f dµ = 1. Let W2 be the Wasserstein distance on the

space P(X) defined in (0.2). Then for any couple of measures (ν1, ν2) in P(X) of finite distance
W2(ν1, ν2) < +∞, there exists πo ∈ C(ν1, ν2) such that

(1.1) W 2
2 (ν1, ν2) =

∫
X×X

|x− y|2H πo(dx, dy).
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Such a πo is called the optimal coupling plan between ν1 and ν2. The following result due to Feyel
and Üstunel is our starting point

Theorem FU ([FU, Th. 6.1) Let ν1 = ρ1µ, ν2 = ρ2µ such that W2(ν1, ν2) < +∞. Then there
exists a unique optimal coupling plan πo ∈ C(ν1, ν2); moreover there exists a unique Borel map
ξ : X → H such that for any bounded Borel function ϕ on X ×X∫

X×X

ϕ(x, y)πo(dx, dy) =
∫

X

ϕ(x, x+ ξ(x)) dν1(x)

and the transformation T : x 7→ x+ ξ(x) is invertible.

It is obvious that T pushes ν1 forward to ν2 and

(1.2) W 2
2 (ν1, ν2) =

∫
X

|ξ(x)|2H dν1(x).

Recall that Talagrand’s inequality W 2
2 (µ, ρµ) ≤ 2Ent(ρ) which was first proven for Gaussian mea-

sures on Rn [Ta] also holds true on the Wiener space [FU] [Gen](see [BGL], [OV] for related topics).
It immediately implies W2(ν1, ν2) < +∞ whenever Ent(ρ1) and Ent(ρ2) are finite. Therefore W2

induces a true distance on the space

(1.3) P∗(X) =
{
ν = ρµ; Ent(ρ) < +∞

}
.

For ν = ρµ ∈ P∗(X), it is convenient sometimes to use the notation Ent(ν) instead of Ent(ρ).
Since the distance dH is stronger than the norm on X, a sequence of probability measures (νn)n≥1

on X converges to ν with respect to W2, converges also with respect to the Wasserstein distance
defined using the norm of X; therefore νn converges weakly to ν (see for example [Vi]). In what
follows, we give a direct proof using Theorem FU.

Proposition 1.1 Let (νn)n≥1 be a sequence in P∗(X) such that W2(νn, ν) → 0 as n → +∞ for
ν ∈ P∗(X). Then νn converges weakly to ν.

Proof. By Theorem FU, there exist ξn : X → H such that I + ξn pushes ν forward to νn and
W 2

2 (νn, ν) =
∫

X
|ξn|2Hdν. Set σn = W 2

2 (νn, ν). Let ϕ : X → R be a bounded continuous function.
We have

(1.4)

∣∣∣∫
X

ϕdν −
∫

X

ϕdνn

∣∣∣ ≤ ∫
X

|ϕ(x)− ϕ(x+ ξn(x))| dν(x)

≤
∫
{|ξn|H≥εn}

|ϕ(x)− ϕ(x+ ξn(x))| dν(x) +
∫
{|ξn|H≤εn}

|ϕ(x)− ϕ(x+ ξn(x))| dν(x),

where εn are chosen so that limn→+∞
σn

ε2
n

= 0. The first term on the right hand of (1.4) is dominated
by

2||ϕ||∞
1
ε2n

∫
X

|ξn|2Hdν(x) = 2||ϕ||∞
σn

ε2n
→ 0 as n→ +∞;

for the second term, it is sufficient to notice that 1{|ξn(x)|H≤εn}|ϕ(x)− ϕ(x+ ξn(x))| tends to 0 as
n→ +∞ for ν-almost everywhere x ∈ X. Therefore letting n→ +∞ in (1.4) gives the result.

Theorem 1.2 Let R > 0. Then the subset

KR = {ν ∈ P∗(X); Ent(ν) ≤ R}
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is compact in P∗(X) with respect to the weak topology.

Proof. By the superlinear growth of s → s log s, KR is weakly compact in L1(X,µ). Combining
with the lower semicontinuity of ν 7→ Ent(ν) (see for example [AGS], [St, p.102], [JKO]), the result
follows.

Corollary 1.3 Let ν0 ∈ P∗(X) be given. Then the subset

CR = {ν ∈ P∗(X); W 2
2 (ν0, ν) + Ent(ν) ≤ R}

is compact.

Proof. It is sufficient to notice that ν 7→W 2
2 (ν0, ν)+Ent(ν) is lower semi-continuous for the weak

topology.

Let ν0 and ν1 in P∗(X). Let ξ and πo be given in Theorem FU. We set, for 0 ≤ t ≤ 1,

(1.5) νt = (I + tξ)∗ν0

and πt ∈ C(ν0, νt) defined by

(1.6)
∫

X×X

ϕ(x, y)πt(dx, dy) =
∫

X

ϕ(x, x+ tξ(x)) dν0(x).

Proposition 1.4 We have for 0 ≤ s < t ≤ 1,

(1.7) W2(νs, νt) = (t− s)W2(ν0, ν1).

Proof. See [AGS] and [FU2].

The above result says that t→ νt defined in (1.5) is a geodesic with constant speed. Taking s = 0
in (1.7), we see that πt defined in (1.6) is the unique optimal coupling plan in C(ν0, νt), supported
by the graph of Tt := I + tξ. The following result strengthen Theorem 7.3 in [FU].

Theorem 1.5 Let νt be defined in (1.5). Then νt ∈ P∗(X) and for 0 ≤ t ≤ 1,

(1.8) Ent(νt) ≤ (1− t)Ent(νo) + tEnt(ν1)−
t(1− t)

2
W 2

2 (νo, ν1).

Proof. Firstly remark that if ρ0 and ρ1 are cylindrical, then (1.8) is reduced to a finite dimensional
case: it holds true (see [AS] [AGS]). Secondly for the general case, we consider a sequence of
increasing subspaces Vn ⊂ X∗ such that ∪nVn is dense in H (with respect to the norm of H). Let
Pn : X → Vn be the projection and denote by EVn the conditional expectation with respect to the
sub σ-field on X, generated by Pn. Note that (Pn)∗µ is the standard Gaussian measure γn on Vn.
Set

ρn
0 = EVn(ρ0), ρn

1 = EVn(ρ1).
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Then ρn
0 , ρ

n
1 converge in L1(X,µ), respectively to ρ0 and ρ1; therefore the measures ρn

0µ (resp.
ρn
1µ) converges weakly to ρ0µ (resp. ρ1µ) as n → +∞. Let πn ∈ C(ρn

0µ, ρ
n
1µ) be the optimal

coupling plan. Up to a subsequence, πn converges weakly to π̂ ∈ C(ρ0µ, ρ1µ). Then we have

(1.9)
W 2

2 (ρ0µ, ρ1µ) ≤
∫

X×X

|x− y|2H π̂(dx, dy)

≤ lim inf
n→+∞

∫
X×X

|x− y|2Hπn(dx, dy) = lim inf
n→+∞

W 2
2 (ρn

0µ, ρ
n
1µ).

Now we will prove that π̂ realizes the minimum:

(1.10) W 2
2 (ν0, ν1) =

∫
X×X

|x− y|2H π̂(dx, dy).

To this end, introduce the functions ρ̃n
i : Vn → R such that ρn

i = ρ̃n
i ◦ Pn for i = 0, 1. Define

π̂n ∈ C(ρ̃n
0γn, ρ̃

n
1γn) by∫

Vn×Vn

ψ(z1, z2)π̂n(dz1, dz2) =
∫

X×X

ψ(Pn(x), Pn(y))π(dx, dy)

where π ∈ C(ν0, ν1) is the optimal coupling plan. We have

W 2
2 (ρn

0µ, ρ
n
1µ) = W 2

2 (ρ̃n
0γn, ρ̃

n
1γn) ≤

∫
Vn×Vn

|z1 − z2|2π̂n(dz1, dz2)

=
∫

X×X

|Pn(x− y)|2π(dx, dy) ≤
∫

X×X

|x− y|2Hπ(dx, dy) = W 2
2 (ν0, ν1).

Combining with (1.9), we get the equality (1.10). By uniqueness of optimal coupling plan, we
conclude that π̂ = π. Now define

(1.11)
∫

X

ϕdνn
t =

∫
X×X

ϕ((1− t)x+ ty)πn(dx, dy).

Then for any bounded continuous function ϕ : X → R,

(1.12) lim
n→+∞

∫
X

ϕdνn
t =

∫
X×X

ϕ((1− t)x+ ty)π(dx, dy).

This means that the sequence (νn
t ) converges weakly to νt defined in (1.5), as n→ +∞.

By the first case, we can apply (1.8) to νn
t to get

Ent(νn
t ) ≤ (1− t)Ent(νn

0 ) + tEnt(νn
1 )− t(1− t)

2
W 2

2 (νn
0 , ν

n
1 ).

For any ε > 0, by (1.9), there exists n0 > 0 such that

W 2
2 (ρ0µ, ρ1µ)− ε ≤W 2

2 (ρn
0µ, ρ

n
1µ), n ≥ n0.

By Jensen inequality Ent(νn
0 ) ≤ Ent(ν0) and Ent(νn

1 ) ≤ Ent(ν1). Then for n ≥ n0,

(1.13) Ent(νn
t ) ≤ (1− t)Ent(ν0) + tEnt(ν1)−

t(1− t)
2

(
W 2

2 (ν0, ν1)− ε
)
.
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By Theorem 1.2, νt ∈ P∗(X) and Ent(νt) is dominated by the right hand of (1.13). Letting ε→ 0
gives (1.8).
Remark: The inequality (1.8) says that the entropy functional is 1-convex along geodesics. The
assertion of Theorem 1.5 was already stated in [St, p.125]. Moreover, a sketch of a proof was
indicated, based on approximation of X by finite dimensional subspaces equipped with Gaussian
measures. However, due the the degeneracy of the metric on X, the proof requires a more careful
argumentation since e.g. W2(µ, γn) = +∞.

2. Benamou-Brenier’s formula

An absolutely continuous curve {c(t); t ∈ [0, 1]} on a Riemannian manifold M admits tangent
vectors c′(t) ∈ Tc(t)M for almost everywhere t ∈]0, 1[. In order to understand the tangent spaces of
the Wasserstein space (P∗(X),W2), it is convenient to consider absolutely continuous curves (νt)
in P∗(X).

Definition 2.1 We say that a curve (νt)t∈[0,1] is in the class AC2 if there exists m ∈ L2([0, 1])
such that

(2.1) W2(νt1 , νt2) ≤
∫ t2

t1

m(s)ds, t1 ≤ t2.

For such a curve, for a.e. t ∈ [0, 1],

(2.2) lim sup
ε→0

W2(νt+ε, νt)
|ε|

≤ m(t).

For any curve (νt)t∈[0,1] in AC2, the limit

|ν′|(t) := lim
ε→0

W2(νt+ε, νt)
|ε|

exists for a.e. t ∈ [0, 1], which is called the metric derivative of (νt)t∈[0,1](see [AGS, Theorem
1.1.2]). The function t 7→ |ν′|(t) belongs to L2([0, 1]) and (2.1) holds w.r.t. |ν′|(t). It is minimal in
the sense that for each function m satisfying (2.1), it holds

|ν′|(t) ≤ m(t), a.e.t ∈ [0, 1].

Note that the curve defined in (1.5) is in the class AC2 due to (1.7). In order to construct another
examples, we will recall some elements in Malliavin Calculus (see [Ma] for more details).

A function F : X → R is said to be cylindrical if it is written in the form

(2.3) F (x) = f(e1(x), . . . , eK(x)), f ∈ C∞c (RK),

where {ei ∈ X∗; i ≥ 1} is a given orthonormal basis of H. We will denote by Cylin(X) the totality
of such cylindrical functions. Note that Cylin(X) is not a vector space. A cylindrical vector field
Z on X is a map X → H in the form

(2.4) Z =
K∑

j=1

Fjhj , with Fj ∈ Cylin(X), hj ∈ X∗.
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For a function F ∈ Cylin(X) in the form (2.3), we define

∇F (x) =
K∑

i=1

(∂if)(e1(x), . . . , eK(x))ei,

which is a cylindrical vector field onX, where ∂if denotes the derivative with respect to the ith com-
ponent. Similarly, for Z given above, we define∇Z =

∑K
j=1∇Fj⊗hj . Now we denote by Dp

1(X) the
Sobolev space which is the closure of Cylin(X) under the norm ||F ||p1,p =

∫
X

(|F |p+|∇F |pH) dµ; and
Dp

1(X;H) the closure of cylindrical vector fields under the norm ||Z||p1,p =
∫

X
(|Z|pH +|∇F |pH⊗H) dµ.

In the similar way, we define the Sobolev spaces Dp
r(X) where r ∈ N is the order of the derivative.

Then for p > 1 and Z ∈ Dp
1(X;H), the divergence δ(Z) ∈ Lp(X) exists such that∫

X

F δ(Z) dµ =
∫

X

〈
∇F,Z

〉
H
dµ, F ∈ Cylin(X).

For a vector field Z given by (2.4), the divergence δ(Z) admits the expression

(2.5) δ(Z) =
K∑

j=1

(
Fjhj(x)−

〈
∇Fj(x), hj

〉
H

)
Note that δ(Z) is a continuous function of x. Now pick Z ∈ ∩p>1,r≥1Dp

r(X;H) and assume that

(2.6)
∫

X

eε0|Z|2Hdµ < +∞ for a small ε0 > 0 and
∫

X

eλ0|δ(Z)| dµ < +∞ for some λ0 > 0.

Then there exists a flow of measurable maps Ut : X → X such that for a.e. x ∈ X,

Ut(x) = x+
∫ t

0

Z(Us(x)) ds, t > 0,

and Ut+s = Ut ◦ Us, (Ut)∗µ = Ktµ with (see also [Dr] for a detailed proof):

(2.7) Kt = exp
(∫ t

0

δZ(U−s(x)) ds
)
, sup

0≤t≤T
||Kt||2L2 ≤

∫
X

e4T |δ(Z)|dµ for T < λ0/4.

We refer to the two recent works [AF] and [FL], which insure that the above statement holds true.

Proposition 2.2 Let ν0 = ρ0µ ∈ P∗(X). Define νt = (Ut)∗ν0. Then under the condition (2.6),
the curve (νt)t∈[0,1] is in the class AC2.

Proof. By definition,
∫

X
ϕdνt =

∫
X
ϕ(Ut)ρ0 dµ =

∫
X
ϕρ0(U−t)Kt dµ holds for any bounded Borel

function ϕ. If we denote νt = ρtµ, then ρt = ρ0(U−t)Kt, and

(2.8) Ent(ρt) = Ent(ρ0) +
∫

X

(logKt(Ut)) ρ0dµ.

Using (2.7), | logKt(Ut)| ≤
∫ t

0
|δZ(Ut−s)| ds and by Young inequality uv ≤ eu + v log v for u, v ≥ 0,

we have for any η > 0

| logKt(Ut)| ρ0 ≤
∫ t

0

eη|δZ|(Ut−s) ds+
ρ0

η
log

ρ0

η
.
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Then (2.8) yields

Ent(ρt) ≤ Ent(ρ0) +
∫ t

0

∫
X

eη|δZ|(Ut−s)dµ ds+ Ent(
ρ0

η
).

Now we will prove that for η small enough

(2.9) sup
0≤t≤1

∫
X

eη|δZ|(Ut)dµ < +∞.

First of all, for T0 ≤ λ0/4 and t ∈ [0, T0], we have,∫
X

eη|δZ|(Ut)dµ =
∫

X

eη|δZ|Kt dµ ≤
(∫

X

e2η|δZ|dµ
)1/2

||Kt||L2

≤
(∫

X

e2η|δZ|dµ
)1/2(∫

X

eλ0|δ(Z)|dµ
)1/2

,

where we used (2.7) for estimating ||Kt||L2 . Let A =
(∫

X
eλ0|δ(Z)|dµ

)1/2

. Now using the property
of flow, ∫

X

eη|δZ|(UT0+t)dµ =
∫

X

eη|δZ|(UT0 )Kt dµ

≤
(∫

X

e2η|δ(Z)|(UT0 )dµ
)1/2

·A

≤
(∫

X

e2
2η|δ(Z)|dµ

)1/22

·A2.

Let N be the integer such that Nλ0 ≥ 1, then by induction, we have for each t ∈ [0, 1]∫
X

eη|δZ|(Ut)dµ ≤
(∫

X

e2
N η|δ(Z)|dµ

)1/2N

.

So we get (2.9), which implies that Ent(ρt) < +∞.

Now let t1 < t2. Define a probability measure π on X ×X by∫
X×X

ϕ(x, y)π(dx, dy) =
∫

X

ϕ(Ut1 , Ut2) dν0.

Then π ∈ C(νt1 , νt2) and

W 2
2 (νt1 , νt2) ≤

∫
X

|Ut1 − Ut2 |2H dν0.

But for a.e x ∈ X, |Ut1 − Ut2 |H ≤
∫ t2

t1
|Z(Us)|H ds; therefore

(2.10) W2(νt1 , νt2) ≤
∥∥∥∫ t2

t1

|Z(Us)|H ds
∥∥∥

L2(ν0)
≤

∫ t2

t1

||Z(Us)||L2(ν0) ds.

Let m(s) = ||Z(Us)||L2(ν0). We have for any ε > 0
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m(s)2 =
∫

X

|Z(Us)|2Hρ0 dµ ≤
∫

X

eε |Z(Us)|2H dµ+ Ent(ρ0/ε).

The same procedure as above yields
∫ 1

0
m(s)2ds < +∞.

Theorem 2.3 Let (νt)t∈[0,1] be a curve in AC2. Then there exists a Borel vector field (t, x) 7→
Zt(x) ∈ H such that

∫ 1

0
||Zt||2L2(νt)

dt < +∞ and the continuity equation

(2.11)
∂νt

∂t
+∇ · (Ztνt) = 0 in ]0, 1[×X

holds in the sense (see [Kr]) that

(2.12)
∫ 1

0

∫
X

(
α′(t)F (x) +

〈
Zt(x),∇F (x)

〉
H
α(t)

)
dνt(x)dt = 0

for all α ∈ C∞c (]0, 1[) and F ∈ Cylin(X).

Proof. Denote Σ = {(x, y) ∈ X × X; x − y ∈ H}. For s ∈]0, 1[ and η > 0 small enough, we
consider the optimal coupling plan πη ∈ C(νs, νs+η). Then the support of πη is included in Σ. For
(x, y) ∈ Σ, we have

F (y)− F (x) =
∫ 1

0

〈
(∇F )(ty + (1− t)x), y − x

〉
H
dt.

Set H(x, y) =
∫ 1

0
(∇F )(ty + (1 − t)x) dt. By expression (2.4), we see that (x, y) 7→ H(x, y) is a

bounded continuous function from X ×X to H. Then∫
X

Fdνs+η −
∫

X

Fdνs =
∫

Σ

〈
H(x, y), y − x

〉
H
πη(dx, dy).

The Cauchy-Schwarz inequality yields, for η > 0,

(2.13)
1
η

∣∣∣∫
X

Fdνs+η −
∫

X

Fdνs

∣∣∣ ≤ W2(νs, νs+η)
η

(∫
Σ

|H(x, y)|2Hπη(dx, dy)
)1/2

.

Take a sequence ηn such that lim
n→+∞

1
ηn

∣∣∣∫
X

Fdνs+ηn−
∫

X

Fdνs

∣∣∣ = limη→0
1
η

∣∣∣∫
X

Fdνs+η−
∫

X

Fdνs

∣∣∣.
As νs+ηn

converges to νs with respect to W2, it converges weakly; therefore the family {πηn
;n ≥ 1}

is tight. Up to a subsequence, πηn
converges to π̂ ∈ C(νs, νs). We have∫

X×X

|x− y|2H π̂(dx, dy) ≤ limn→+∞

∫
X×X

|x− y|2Hπηn(dx, dy) = lim
n→+∞

W 2
2 (νs, νs+ηn) = 0,

so π̂ is supported by the diagonal D = {(x, y) ∈ Σ;x = y }. Hence

lim
n→+∞

∫
Σ

|H(x, y)|2Hπηn(dx, dy) =
∫

D

|H(x, x)|2H π̂(dx, dy) =
∫

X

|∇F |2H dνs.

According to (2.2) and (2.13), for a.e s ∈]0, 1[,

(2.14) limη↓0
1
η

∣∣∣∫
X

Fdνs+η −
∫

X

Fdνs

∣∣∣ ≤ m(s) ||∇F ||L2(νs).

9



Now take δ > 0 such that supp(α)+]− δ, δ[⊂]0, 1[. Then for 0 < η < δ,∫ 1

0

∫
X

α(s)F (x) dνs+η(x) ds =
∫ 1

0

∫
X

α(s− η)F (x) dνs(x)ds,

and

(2.15)

∫ 1

0

1
η

[∫
X

α(s)F (x) dνs(x)−
∫

X

α(s)F (x) dνs+η(x)
]
ds

=
∫ 1

0

∫
X

1
η

[
α(s)− α(s− η)

]
F (x) dνs(x)ds.

It is obvious that as η → 0, the right hand side of (2.15) tends to
∫ 1

0

∫
X
α′(s)F (x) dνs(x)ds. By (2.1),

1
ηW2(νs, νs+η) ≤ 1

η

∫ s+η

s
|ν′|(u)du and the fact that s 7→ supη>0

(
1
η

∫ s+η

s
|ν′|(u)du

)
is integrable over

[0, 1]. Now we can use (2.14) to get that

(2.16)

∣∣∣∫ 1

0

∫
X

α′(s)F (x) dνs(x)ds
∣∣∣ ≤ ∫ 1

0

m(s) ||α(s)∇F ||L2(νs) ds

≤
(∫ 1

0

|ν′|2(s)ds
)1/2(∫ 1

0

∫
X

|α(s)∇F (x)|2H dν(x)ds
)1/2

.

Let Pν be the probability measure on [0, 1]×X defined by∫
[0,1]×X

ϕ(s, x)dPν(s, x) =
∫ 1

0

∫
X

ϕ(s, x)dνs(x)ds.

Introduce the vector space

V =
{ K∑

i=1

αi(s)∇Fi(x); αi ∈ C∞c (]0, 1[, Fi ∈ Cylin(X),K ∈ N
}
.

Let V be the closure of V in L2(Pν). Define for ψ =
∑K

i=1 αi(s)∇Fi(x) ∈ V ,

(2.17) L(ψ) = −
K∑

i=1

∫ 1

0

∫
X

α′i(s)Fi(x) dνs(x)ds.

By linearity of the two sides of (2.15), the inequality (2.16) holds for ψ, that is

(2.18) |L(ψ)| ≤

√∫ 1

0

|ν′|2(s)ds · ||ψ||L2(Pν).

It follows that L is well defined and is a bounded linear operator on V . Therefore there exists
Z ∈ V such that

L(ψ) =
∫ 1

0

∫
X

〈
Z,ψ

〉
H
dνsds, ψ ∈ V.
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Now take ψ = α∇F and according (2.17), we get (2.12). Moreover,

(2.19) ‖Z‖2L2(Pν) =
∫ 1

0

∫
X

|Z(t, x)|2H dνs(x)ds ≤
∫ 1

0

|ν′|2(s) ds.

Following [AS] and [AGS], we define, for any ν ∈ P∗(X),

(2.20) E =
{ K∑

i=1

∇Fi; Fi ∈ Cylin(X)
}
, Tν = closure of E in L2(X,H, ν).

Proposition 2.4 Let Z be constructed as in Theorem 2.3. Then for a.e. t ∈]0, 1[, Z(t, ·) ∈ Tνt
.

The solution to (2.11) satisfying this property is unique. Moreover, it holds that

(2.21) W 2
2 (ν0, ν1) ≤

∫ 1

0

∫
X

|Z(s, x)|2H dνs(x)ds, and ‖Z‖2L2(Pν) =
∫ 1

0

|ν′|2(s) ds.

Proof. Let ψn ∈ V such that ||Z − ψn||L2(Pν) → 0. Or

lim
n→+∞

∫ 1

0

(∫
X

|Z(t, x)− ψn(t, x)|2Hdνt(x)
)
dt = 0.

Then up to a subsequence, for a.e. to ∈]0, 1[,

lim
n→+∞

∫
X

|Z(to, x)− ψn(to, x)|2Hdνto(x) = 0.

This means that Z(to, ·) ∈ Tνto
. Now let Ẑ be another solution to (2.12) such that Ẑ(t, ·) ∈ Tνt

for a.e t ∈]0, 1[. Then we have∫ 1

0

α(t)
(∫

X

〈
Z(t, x)− Ẑ(t, x),∇F (x)

〉
H
dνt(x)

)
dt = 0.

It follows that
∫

X

〈
Z(t, x)− Ẑ(t, x),∇F (x)

〉
H
dνt(x) = 0 holds for t in a full measure subset ΩF ⊂

]0, 1[. For each K ≥ 1, let DK ⊂ C∞c (RK) be a dense countable subset. Set

(∗) D =
{ m∑

i=1

fi ◦ PKi ; fi ∈ DKi ,m ∈ N
}
,

where PK : X → VK = span{e1, · · · , eK}. For each ∇F ∈ E , there exists a finite number of
K1, · · · ,Kq such that F =

∑q
i=1 fi◦PKi with fi ∈ C∞c (RKi). We have ∇F =

∑q
i=1(∇RKi fi)◦PKi .

Therefore there exists Fn ∈ D such that

sup
x∈X

|∇Fn(x)−∇F (x)|H → 0.

11



Define ΩZ = ∩F∈DΩF . Then for t ∈ ΩZ ,
∫

X

〈
Z(t, x) − Ẑ(t, x),∇F (x)

〉
H
dνt(x) = 0 holds for

all ∇F ∈ E . Therefore Z(t, ·) = Ẑ(t, ·) νt-a.e. For proving (2.21), we consider a sequence of
increasing subspaces Vn ⊂ X∗ such that ∪nVn is dense in H. Define ν

(n)
t = (Pn)∗νt. Since

W2(ν
(n)
t , ν

(n)
s ) ≤ W2(νt, νs), t → ν

(n)
t is also an absolutely continuous curve in AC2. Therefore,

according to the result on finite dimensional spaces (see [AS][AGS]), there exists Z(n)
t such that∫ 1

0

∫
Vn
|Z(n)

t |2dν(n)
t dt < +∞ and the continuity equation

dν
(n)
t

dt
+∇ · (Z(n)

t ν
(n)
t ) = 0

holds in the distribution sense:∫ 1

0

∫
Vn

(α′(t)f +
〈
Z

(n)
t ,∇f

〉
α(t)) dν(n)

t dt = 0,

or ∫ 1

0

∫
X

(α′(t)f ◦ Pn +
〈
Z

(n)
t ◦ Pn,∇f ◦ Pn

〉
H
α(t)) dνtdt = 0.

In the continuity equation (2.12), take F = f ◦ Pn with f ∈ C∞c (Vn), we get∫ 1

0

∫
X

(
α′(t) f ◦ Pn +

〈
Zt,∇f ◦ Pn

〉
H
α(t)

)
dνtdt = 0.

¿From the above two equations, we deduce that for a.e t ∈]0, 1[, PnZt −Z(n)
t ◦ Pn is orthogonal in

L2(νt) to the space {∇f ◦ Pn; f ∈ Cc(Vn)}
L2(νt), which contains Z(n)

t ◦ Pn. It follows that

||Z(n)
t ||

L2(ν
(n)
t )

≤ ||PnZt||L2(νt) ≤ ||Zt||L2(νt).

In the finite dimensional case, it holds that (see [AGS, Theorem 8.3.1])

(∗) W2(ν
(n)
t , ν(n)

s ) ≤
∫ t

s

||Z(n)
u ||

L2(ν
(n)
u )

du.

For reader’s convenience, we will give a sketch of the proof of (∗) as in [AGS]. To this end, we omit
(n).
(i) If Zt is a good vector field on Rd, more precisely, assume that∫ 1

0

(
sup
x∈B

|Zt(x)|+ Lip(Zt, B)
)
dt < +∞ for all ball B ⊂ Rd,

and
∫ 1

0

∫
Rd |Zt|dνtdt < +∞,where Lip(Zt, B) is the Lipschitz constant of x→ Zt(x) on the ball B,

such that
dνt

dt
+∇ · (Ztνt) = 0 on (0, 1)×Rd,

then for ν0-a.s x ∈ Rd, the differential equation

Xt(x) = x+
∫ t

0

Zs(Xs(x)) ds

12



admits a unique solution Xt(x) for t ∈ [0, 1] and νt = (Xt)∗ν0. In this case, for the coupling
measure π ∈ C(νt1 , νt2), defined by π = (Xt1 , Xt2)∗ν0, we have

W2(νt1 , νt2) ≤
(∫

Rd

|Xt1 −Xt2 |2 dν0
)1/2

≤
∫ t2

t1

||Zs||L2(νs) ds.

ii) For the general case, we regularize νt and Zt by convolution product with the Gauss kernel
ρε(x) = (2πε)−d/2e−|x|

2/2 by setting

νε
t = νt ∗ ρε, Zε

t = (Ztνt) ∗ ρε/ν
ε
t .

Applying (i) gives

W2(νε
t1 , ν

ε
t2) ≤

∫ t2

t1

(∫
Rd

|Zε
s |2dνε

s

)1/2

ds.

But by Jensen inequality

|Zε
s (x)|2 ≤

∫
Rd

|Zs(y)|2
ρε(x− y)dνs(y)

νε
s(x)

,

which implies that
∫
Rd |Zε

s |2dνε
s ≤

∫
Rd |Zs|2dνs. Using the lower semi-continuity of (µ, ν) →

W2(µ, ν), we get the desired result by letting ε ↓ 0 in

W2(νε
t1 , ν

ε
t2) ≤

∫ t2

t1

||Zs||L2(νs) ds.

Now we return to our situation. By (∗), we have W2(ν
(n)
t , ν

(n)
s ) ≤

∫ t

s
||Zu||L2(νu)du. Noting that

W2(νt, νs) = lim
n→+∞

W2(ν
(n)
t , ν(n)

s ) and letting n→ +∞, we get

W2(νt, νs) ≤
∫ t

s

||Zu||L2(νu)du.

Hence,

|ν′|(s) = lim
t→s

W2(νt, νs)
|t− s|

≤ ‖Zs‖L2(νs),∫ 1

0

|ν′|2(s) ds ≤
∫ 1

0

∫
X

|Z(s, x)|2H dνs(x)ds.

Combining this with (2.19), we get the last inequality in (2.21) and the argument is complete
now.

Definition 2.5 Let {νt; t ∈ [0, 1]} be a family of probability measures in P∗(X). We will say
that t → Zt ∈ Tνt is the derivative process of t 7→ νt in the sense of Otto-Ambrosio-Savaré if∫ 1

0

∫
X
|Zt(x)|2Hdνt(x)dt < +∞ and the continuity equation (2.12) holds. We denote Zt by

doνt

dt
.

Using
doνt

dt
, the result obtained in [AS, p.30] (for previous versions, see [BB], [Ot]) can be expressed

exactly as a Riemannian distance. Namely, in our setting,
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Theorem 2.6 Let ν0, ν1 ∈ P∗(X) be given. Then

(2.22) W 2
2 (ν0, ν1) = inf

{∫ 1

0

∥∥∥doνt

dt

∥∥∥2

Tνt

dt; νt ∈ AC2 connecting ν0, ν1
}
.

Proof. Let νt be defined in (1.5). By (1.7), W2(νs, νt) = (t − s)W2(ν0, ν1). Then taking m(s) =
W2(ν0, ν1) in (2.18), we get

|L(ψ)| ≤ ||ψ||L2(Pν) ·W2(ν0, ν1).

Let Z =
doνt

dt
be given in Theorem 2.3. Then

∣∣∣∫
0

∫
X

〈
Z,ψ

〉
H
dνsds

∣∣∣ ≤W2(ν0, ν1) · ||ψ||L2(Pν), ψ ∈ V.

It follows that ||Z||L2(Pν) ≤W2(ν0, ν1). The equality is realized for
doνt

dt
, according to (2.21).

Corollary 2.7 Let ν0, ν1 ∈ P∗(X) and ξ be given in Theorem FU. Define Tt = I+tξ, νt = (Tt)∗ν0
and Wt = ξ(T−1

t ). Then for a.e. t ∈]0, 1[, Wt ∈ Tνt .

Proof. By 1-convex inequality (1.8), νt ∈ P∗(X), so T−1
t exists for each t ∈ [0, 1]. Let F ∈

Cylin(X). We have

d

dt

∫
X

F dνt =
d

dt

∫
X

F (x+ tξ(x))dν0(x) =
∫

X

〈
∇F (Tt), ξ

〉
H
dν0 =

∫
X

〈
∇F,Wt

〉
H
dνt.

On the other hand, let Z(t, x) =
doνt

dt
. The equation (2.12) implies that for a.e t ∈]0, 1[,

d

dt

∫
X

F dνt =
∫

X

〈
∇F,Zt

〉
H
dνt.

In the same way as in the proof of Proposition 2.4, there exists a full measure subset Ω ⊂]0, 1[ such
that for t ∈ Ω, ∫

X

〈
∇F,Wt − Zt

〉
H
dνt = 0, F ∈ Cylin(X).

It follows that there exists ηt ∈ L2(X,H, νt) orthogonal to all ∇F such that Wt = Zt + ηt. Then∫
X

|ξ|2Hdν0 =
∫

X

|Wt|2Hdνt =
∫

X

|Zt|2Hdνt +
∫

X

|ηt|2Hdνt.

From this equality, we see that t→
∫

X
|ηt|2H dνt is measurable; integrating the two sides over [0, 1],

we get

W 2
2 (ν0, ν1) =

∫ 1

0

∫
X

|Zt|2Hdνtdt+
∫ 1

0

∫
X

|ηt|2Hdνt dt.

But by (2.22), we deduce that
∫ 1

0

∫
X
|ηt|2Hdνt dt = 0. Therefore for a.e. t ∈]0, 1[, ηt = 0 for νt-a.e.

It follows that Wt = Zt ∈ Tνt
.
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3. Gradient flow associated to the entropy functional

Let ∇F ∈ E . Let (Ut)t∈R be the quasi-invariant flow associated to ∇F .

Proposition 3.1 Let ν0 ∈ P∗(X) be given and denote νt = (Ut)∗ν0. Then

(3.1)
d

dt
|t=0Ent(νt) =

∫
X

LF dν0,

where LF = δ(∇F ).

Proof. By expression (2.5), LF admits the expression

LF = −
N∑

i,j=1

(∂j∂if)
〈
ej , ei

〉
H

+
N∑

i=1

(∂if)ei(x).

Note that x→ LF (x) is a continuous function and for a small ε0 > 0,∫
X

e2ε0|LF |2dµ < +∞.

Set ut = 1
t

∫ t

0
(LF )(Ut−s)ds. By Jensen inequality,∫

X

eε0|ut|2dµ ≤
∫

X

(1
t

∫ t

0

eε0|(LF )|2(Ut−s) ds
)
dµ

=
1
t

∫ t

0

(∫
X

eε0|LF |2 ·Kt−sdµ
)
ds

≤
(∫

X

e2ε0|LF |2dµ
)1/2(∫

X

e4|LF |dµ
)1/2

where we used (2.7) for estimating ||Kt||L2(µ). By Young inequality,∫
X

|ut|2ρ0dµ ≤
∫

X

eε0|ut|2dµ+ Ent(ρ0/ε0).

Therefore sup0<t≤1

(∫
X
|ut|2ρ0dµ

)
< +∞. Now remarking that

1
t

logKt(Ut) = ut → LF as t→ 0,

and using (2.8), we get (3.1).

Definition 3.2 Let Z = ∇F ∈ E, we denote (∂ZEnt)(ν0) =
d

dt
|t=0Ent(νt).

Corollary 3.3 Let ρ0 ≥ ε > 0 be given in the form (2.3) but with f ∈ C1
b . Then there exists a

unique v ∈ Tν0 such that

(3.2) (∂ZEnt)(ν0) =
〈
v, Z

〉
Tν0

, for all Z = ∇F ∈ E .
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Proof. Rewrite (3.1) in the form

(∂ZEnt)(ν0) =
∫

X

δ(∇F )ρ0 dµ =
∫

X

〈
∇F,∇ρ0

〉
H
dµ =

∫
X

〈
∇F, v

〉
H
dν0,

with v = ∇ log ρ0. Take a sequence of Fn ∈ Cylin(X) such that Fn → log ρ0 in D2
1(X). Then∫

X

|∇Fn −∇ log ρ0|2H ρ0dµ ≤ ||ρ0||∞
∫

X

|∇Fn −∇ log ρ0|2H dµ→ 0,

as n→ +∞. It follows that ∇ log ρ0 ∈ Tν0 .

Definition 3.4 We will say that the gradient ∇Ent exists at ν0 ∈ P∗(X), if there exists v ∈ Tν0

such that for all Z = ∇F ∈ E,

(3.3)
〈
v, Z

〉
Tν0

= (∂ZEnt)(ν0).

and we denote v by (∇Ent)(ν0).

The Corollary 3.3 says that the gradient (∇Ent)(ν0) exists for a good measure ν0. The following
result plays an important role for our understanding of the gradient flow associated to the entropy
functional.

Proposition 3.5 Fix ν0 ∈ P∗(X). Then for any η > 0, there exists a unique ν̂ ∈ P∗(X) such that

(3.4)
1
2
W 2

2 (ν0, ν̂) + ηEnt(ν̂) = inf
{1

2
W 2

2 (ν0, ν) + ηEnt(ν); ν ∈ P∗(X)
}
.

Moreover the gradient (∇Ent)(ν̂) at ν̂ exists.

Proof. By Corollary 1.2 and the fact that ν → 1
2W

2
2 (ν0, ν) + ηEnt(ν) is semi-lower continuous

with respect to the weak convergence, such a ν̂ does exist. The uniqueness comes from the strict
convexity of the entropy functional.

Now let Z = ∇F ∈ E and (Ut)t∈R be the associated quasi-invariant flow of X. Let π ∈ C(ν0, ν̂)
be the optimal coupling plan. We define πt ∈ C(ν0, (Ut)∗ν̂) by∫

X×X

ψ(x, y)πt(dx, dy) =
∫

X×X

ψ(x,Ut(y))π(dx, dy).

Then we have

W 2
2 (ν0, (Ut)∗ν̂)−W 2

2 (ν0, ν̂) ≤
∫

X×X

{
|x− Ut(y)|2H − |x− y|2H

}
π(dx, dy).

It follows that

(3.5) limt↓0
1
2t

[
W 2

2 (ν0, (Ut)∗ν̂)−W 2
2 (ν0, ν̂)

]
≤ −

∫
X×X

〈
Z(y), x− y

〉
H
π(dx, dy).

By construction of ν̂, for t > 0,

(3.6)
η

t

[
Ent((Ut)∗ν̂)− Ent(ν̂)

]
+

1
2t

[
W 2

2 (ν0, (Ut)∗ν̂)−W 2
2 (ν0, ν̂)

]
≥ 0.
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By Proposition 3.1, as t ↓ 0, the first term in (3.6) tends to (∂ZEnt)(ν̂). Combining with (3.5), we
get

η(∂ZEnt)(ν̂)−
∫

X×X

〈
Z(y), x− y

〉
H
π(dx, dy) ≥ 0.

Changing Z into −Z, we get another inequality, so that

(3.7) η(∂ZEnt)(ν̂) =
∫

X×X

〈
Z(y), x− y

〉
H
π(dx, dy).

Now by Theorem FU, there exists ξ : X → H such that T1 = I + ξ pushes ν0 forward to ν̂ and
W 2

2 (ν0, ν̂) =
∫

X
|ξ|2H dν0. Rewriting (3.7), we get

(3.8) (∂ZEnt)(ν̂) =
1
η

∫
X

〈
Z(T1),−ξ

〉
H
dν0 = −

∫
X

〈
Z, ξ(T−1

1 )/η
〉

H
dν̂.

Note that
∫

X
|ξ(T−1

1 )|2Hdν̂ =
∫

X
|ξ|2Hdν0 < +∞; So the gradient (∇Ent)(ν̂) ∈ Tν̂ exists, which is

the orthogonal projection of −ξ(T−1
1 )/η on Tν̂ .

Denote by Dom(∇Ent) the set of ν ∈ P∗(X) such that (∇Ent)(ν) ∈ Tν exists. In what follows, we
will develop De Giorgi’s “minimizing movement” approximation scheme, avoiding the use of the
space P2(Rd) done in [AS]

We denote by ν(1) the element ν̂ obtained in Proposition 3.5. By induction, define step by step
ν(n) which realizes the minimum of

ν 7→ 1
2
W 2

2 (ν(n−1), ν) + ηEnt(ν).

So we get a sequence of probability measures {ν(n); n ≥ 0} with ν(0) = ν0. Let N be an integer
such that Nη ≤ 1. Define

(3.9) νη(t, dx) =
N+1∑
k=1

ν(k)(dx)1](k−1)η,kη](t).

By Proposition 3.5, for t > 0, νη(t, ·) ∈ Dom(∇Ent).

Proposition 3.6 The family of measures {νη(t, dx)dt; η > 0} over [0, 1]×X is tight.

Proof. By construction of {ν(k); k ≥ 1}, we have

1
2
W 2

2 (ν(k−1), ν(k)) + ηEnt(ν(k)) ≤ ηEnt(ν(k−1)).

For any 1 ≤ q ≤ N , summing the above inequality from k = 1 to q gives

(3.10)
1
2

q∑
k=1

W 2
2 (ν(k−1), ν(k)) + ηEnt(ν(q)) ≤ ηEnt(ν(0)).

But for each 1 ≤ q ≤ N , W 2
2 (ν(0), ν(q)) ≤ N

∑N
k=1W

2
2 (ν(k−1), ν(k)) ≤ 2NηEnt(ν(0)). It follows

that
W 2

2 (ν(0), ν(q)) + Ent(ν(q)) ≤ (2N + 1)ηEnt(ν(0)) ≤ 3Ent(ν(0)).
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By Corollary 1.2, for any ε > 0, there exists a compact K ⊂ X such that ν(q)(Kc) ≤ ε. Then∫
[0,1]×Kc

νη(t, dx)dt ≤
N+1∑
q=1

ην(q)(Kc) ≤ Nηε ≤ ε,

the result follows.

By Prokhorov theorem, there is a sequence η ↓ 0 such that νη(t, dx)dt converges weakly to ν(dt, dx).
Set ν(k)(dx) = ρ(k)(x)dµ(x). Then

νη(t, dx)dt =
(N+1∑

k=1

ρ(k)1](k−1)η,kη](t)
)
dµ(x)dt = ρη(x, t)dµ(x)dt.

We have ∫
[0,1]×X

ρη(x, t) log ρη(x, t)dµ(x)dt

=
N+1∑
k=1

∫ kη∧1

(k−1)η

(∫
X

ρ(k) log ρ(k)dµ
)
dt ≤

N+1∑
k=1

ηEnt(ν(k)),

which is less than, again by (3.10),
∑N

k=0 ηEnt(ν(0)) ≤ Ent(ν(0)) < +∞. Therefore ν(dx, dt)
admits a density with respect to dµdt: ν(dx, dt) = ρ(x, t) dµ(x)dt, with

(3.11)
∫

[0,1]×X

ρ(x, t) log ρ(x, t) dµ(x)dt ≤ Ent(ν(0)).

It follows that for a.e. t0 ∈ [0, 1], Ent(ρ(t0, ·)) < +∞. Now we denote:

(3.12) νt(dx) = ρ(x, t)dµ(x).

Then for a.e. t ∈ [0, 1], νt ∈ P∗(X).

Theorem 3.7 The curve {νt; t ∈ [0, 1]} solves the following Fokker-Planck equation:

(3.13) −
∫

[0,1]×X

α′(t)Fdνtdt+
∫

[0,1]×X

α(t)LF dνtdt = α(0)
∫

X

Fdν0,

for all α ∈ C∞c ([0, 1[), F ∈ Cylin(X).

Proof. The proof is similar to [JKO], but for the reader’s convenience and the difference with
finite dimensional spaces that we emphasized in the introduction, we will give a full proof. We
have ∫

[0,1]×X

α′(t)F (x)νη(t, dx)dt

=
N+1∑
k=1

(α(kη)− α((k − 1)η))
∫

X

F (x)ρ(k)(x)dµ(x)

=
N∑

k=1

α(kη)
[∫

X

F (x)(ρ(k)(x)− ρ(k+1)(x)) dµ(x)
]
− α(0)

∫
X

Fdν(1).
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On the other hand, ∫
[0,1]×X

α(t)LF (x)νη(t, dx)dt

=
N+1∑
k=1

(∫ kη

(k−1)η

α(t)dt
) ∫

X

LF (x)ρ(k)dµ(x)

=
N∑

k=0

(1
η

∫ (k+1)η

kη

α(t)dt
)
· η

∫
X

LF (x)ρ(k+1)dµ(x).

Let π(k) ∈ C(ν(k), ν(k+1)) be the optimal coupling plan and set

Ik =
∫

X

F (x)(ρ(k)(x)− ρ(k+1)(x))dµ(x)−
∫

X×X

〈
x− y, (∇F )(y)

〉
H
π(k)(dx, dy).

Then
Ik =

∫
X

(
F (x)− F (y)−

〈
x− y, (∇F )(y)

〉
H

)
π(k)(dx, dy).

But ∣∣∣F (x)− F (y)−
〈
x− y, (∇F )(y)

〉
H

∣∣∣ ≤ C |x− y|2H ,

where C is a constant governing 1
2 |∇

2F |H⊗H . It follows that |Ik| ≤ CW 2
2 (ν(k), ν(k−1)). By (3.7)

and (3.1), ∫
X×X

〈
∇F (y), x− y

〉
H
π(k)(dx, dy) = η (∂ZEnt)(ν(k+1)) = η

∫
X

LFdν(k+1).

Therefore, noting βk = α(kη)− 1
η

∫ (k+1)η

kη
α(t)dt,

(3.14)

∫
[0,1]×X

α′(t)F (x)νη(t, dx)dt−
∫

[0,1]×X

α(t)LF (x)νη(t, dx)dt

=
n∑

k=1

α(kη)Ik +
N∑

k=1

βk

∫
X×X

〈
∇F (x), x− y

〉
H
π(k)(dx, dy)

− α(0)
∫

X

Fdν(1) −
(∫ η

0

α(t)dt
)
·
∫

X

LFdν(1).

The first term on the right hand of (3.14) is dominated, according to (3.10), by

C ||α||∞
N∑

k=1

W 2
2 (ν(k), ν(k+1)) ≤ η C ||α||∞Ent(ν0) → 0 as η → 0;

The second term is dominated by

||∇F ||L∞ ||α′||∞ η
n∑

k=1

∫
X×X

|x− y|Hπ(k)(dx, dy)

≤ ||∇F ||L∞ ||α′||∞ η
√
N

( N∑
k=1

W 2
2 (ν(k), ν(k+1))

)1/2

≤ √
η||∇F ||L∞ ||α′||∞

√
Ent(ν0) → 0 as η → 0
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Note that W 2
2 (ν0, ν(1)) ≤ ηEnt(ν0) → 0 as η → 0. By Proposition 3.6, as η → 0, the first

term on the left hand of (3.14) tends to
∫
[0,1]×X

α′(t)F (x)dνtdt. Since LF is not bounded, for
the convergence of the second term, we have to use the cut-off function. By the expression of
LF , LF = G1 + G2, where G1 is a bounded continuous function and |G2(x)| ≤ C||x||K with
||x||2K =

∑K
i=1 e

2
i (x). Let χR ∈ Cb(R) be a cut-off function such that 0 ≤ χR ≤ 1 and χR = 1 over

[0, R] and χR = 0 over [2R,+∞[. We have

∫
[0,1]×X

α(t)G2

(
1− χR(

K∑
i=1

e2i (x)
)
νη(t, dx)dt

=
N+1∑
k=1

(∫ kη

(k−1)η

α(t)dt
)
·
∫

X

G2(x)
(
1− χR(

K∑
i=1

e2i (x)
)
ρ(k)dµ.

≤ C ||α||∞η
N+1∑
k=1

∫
{||x||2

K
≥R}

||x||Kρ(k)dµ.

But ∫
{||x||2

K
≥R}

||x||Kρ(k)dµ ≤ 1√
R

∫
X

||x||2Kρ(k)dµ

≤ C ||α||∞
1√
R

(∫
X

eε0||x||2Kdµ+
1
ε0

Ent(ν(k)) +
1
ε0

log
1
ε0

)
.

Note that Ent(ν(k)) ≤ Ent(ν(0)). Then the term
∫
[0,1]×X

α(t)G2

(
1 − χR(

∑K
i=1 e

2
i (x)

)
νη(t, dx)dt

can be arbitrarily small (independent of η > 0) as R is big enough. So the second term on the left
hand of (3.14) tends to

∫
[0,1]×X

α(t)LF dνtdt, as η → 0. The proof is completed.

Remark: The Fokker-Planck equations and related topics on a Hilbert space were studied recently
in [ASZ].

We will prove the existence of the derivative process
doνt

dt
in the sense of Otto-Ambrosio-Savaré of

(νt)t∈[0,1] (see Definition 2.5). Define

(3.15) Zη(x, t) =
N+1∑
k=1

Z(k)1](k−1)η,kη](t), Z(k) = (∇Ent)(ν(k)).

Denote by T (k) = I + ξk which pushes ν(k−1) forward ν(k). We have, according to (3.8)

(3.16)

∫ 1

0

∫
X

|Zη(x, t)|2Hνη(t, dx)dt ≤
N+1∑
k=1

η

∫
X

|Z(k)|2Hdν(k)

≤ η
N+1∑
k=1

∫
X

1
η2
|ξk((T (k))−1)|2Hdν(k) =

1
η

N+1∑
k=1

W 2
2 (ν(k−1), ν(k)) ≤ 2Ent(ν(0)).

Lemma 3.8 There exists a sequence η ↓ 0 and Z ∈ L2(X,H,Pν) such that

(3.17) lim
η→0

∫ 1

0

∫
X

α(t)
〈
∇F (x), Zη(x, t)

〉
H
νη(t, dx)dt =

∫ 1

0

∫
X

α(t)
〈
∇F (x), Z(x, t)

〉
H
νt(dx)dt,
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for any α ∈ C∞c ([0, 1[), F ∈ Cylin(X).

Proof. Define a probability measure on [0, 1]×X ×X by

(3.18)
∫

[0,1]×X2
ψ(t, x, y)dΓη(t, x, y) =

∫
[0,1]×X

ψ(t, x, Zη(t, x))νη(t, dx)dt.

Let π1,2 be the projection (t, x, y) → (t, x) and π3 the projection (t, x, y) → y. Then

(π1,2)∗Γη = Pνη
, (π3)∗Γη = (Zη)∗(Pνη

).

Note that (π3)∗Γη is a measure on X, supported by H. Recall that BH(R) = {x ∈ X; |x|H ≤ R}
is a compact subset of X. We have[

(π3)∗Γη

]
(BH(R)c) =

∫
[0,1]×X

1BH(R)c(Zη(t, x))νη(t, dx)dt

≤ 1
R2

∫
[0,1]×X

|Zη(t, x)|2Hνη(t, dx)dt ≤ 2
R2

Ent(ν0),

this last inequality was deduced from (3.16). It follows that {(π3)∗Γη, η > 0} is tight. Combining
with Proposition 3.6, the family {Γη, η > 0} is tight. Up to a sequence, we get the weak convergence
of

(π3)∗Γη → w(dx), Γη → Γ.

We have
(π1,2)∗Γ = ρ(t, x)dµdt, (π3)∗Γ = w(dx).

By semi-lower continuity of x→ |x|H , we have

(3.19)
∫

X

|x|2Hw(dx) ≤ limη→0

∫
[0,1]×X

|Zη(t, x)|2Hνη(t, dx)dt ≤ 2Ent(ν0).

Therefore the measure w is supported by H. Let Γ(dy|π1,2 = (t, x)) be the conditional probability
given π1,2 = (t, x). By (3.19),∫

[0,1]×X

(∫
X

|y|2HΓ(dy|π1,2 = (t, x))
)
ρ(t, x)dµ(x)dt < +∞.

Then for a.e. (t, x) ∈ [0, 1] ×X, y → y is Bochner integrable with respect to Γ(dy|π1,2 = (t, x)).
Define

(3.20) Z(t, x) =
∫

X

y Γ(dy|π1,2 = (t, x)).

We have

(3.21)

∫
[0,1]×X

|Z(t, x)|2Hρ(t, x)dµ(x)dt

≤
∫

[0,1]×X

(∫
|y|2HΓ(dy|π1,2 = (t, x))

)
ρ(t, x)dµ(x)dt

=
∫

[0,1]×X2
|y|2H dΓ(t, x, y) =

∫
X

|y|2Hw(dy) < +∞.
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Now for α ∈ C∞c ([0, 1[) and F ∈ Cylin(X). By expression (2.4),

(t, x, y) → α(t)
〈
∇F (x), y

〉
H

= α(t)
K∑

i=1

(∂if) ei(y)

is continuous from [0, 1]×X ×X to R. Let R > 0, consider

ψR(t, x, y) = α(t)
〈
∇F (x), y

〉
H
· χR

( K∑
i=1

ei(y)2
)
,

where χR ∈ Cb(R) is the cut-off function considered in the proof of Theorem 3.7. Then (t, x, y) →
ψR(t, x, y) is a bounded continuous function; therefore∫

ψR(t, x, y)dΓ(t, x, y) = lim
η→0

∫
ψR(t, x, y)dΓη(t, x, y).

Since ∫
|α(t)

〈
∇F (x), y

〉
H
|
[
1− χR

( K∑
i=1

ei(y)2
)]
dΓη(t, x, y)

≤ ||α||∞||∇F ||∞
∫
|Zη|H

[
1− χR

( K∑
i=1

〈
ei, Zη(t, x)

〉2)]
νη(t, dx)dt

≤ ||α||∞||∇F ||∞
∫∑K

i=1

〈
ei,Zη(t,x)

〉2
≥R

|Zη|Hνη(t, dx)dt

≤ ||α||∞||∇F ||∞√
R

∫
|Zη(t, x)|2Hνη(t, dx)dt ≤ 2||α||∞||∇F ||∞√

R
Ent(ν0),

which is arbitrarily small as R is big enough. Hence∫
α(t)

〈
∇F (x), y

〉
H
dΓ(t, x, y) = lim

η→0

∫
α(t)

〈
∇F (x), y

〉
H
dΓη(t, x, y),

or (3.17) holds.

Proposition 3.9 {νt; t ∈ [0, 1]} and Z(t, x) are linked by the following continuity equation

(3.22)
∫

[0,1]×X

α(t)
〈
∇F (x), Z(t, x)

〉
H
dνt(x)dt+

∫
[0,1]×X

α′(t)F (x)dνt(x)dt = 0,

for all F ∈ Cylin(X) and α ∈ C∞c (]0, 1[).

Proof. Let I1
η =

∫
[0,1]×X

α(t)
〈
∇F (x), Zη(t, x)

〉
H
νη(t, dx)dt. Then I1

η admits the expression

I1
η =

N+1∑
k=1

(1
η

∫ kη

(k−1)η

α(t)dt
)
·
∫

X

〈
∇F (x+ ξk), ξk

〉
H
dν(k−1).

Changing the index and using the optimal coupling plan π(k) ∈ C(ν(k), ν(k+1)), we get

I1
η =

N∑
k=0

(1
η

∫ (k+1)η

kη

α(t)dt
) ∫

X×X

〈
∇F (y), y − x

〉
H
π(k)(dx, dy).
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On the other hand, let I2
η =

∫
[0,1]×X

α′(t)F (x)νη(t, dx)dt. Then I2
η admits the expression

I2
η = −

N∑
k=1

α(kη)
∫

X×X

(F (y)− F (x))π(k)(dx, dy).

The same quantities appeared already in the proof of Theorem 3.7, we see that limη→0(I1
η +I2

η) = 0.
But by Lemma 3.8, I1

η tends to
∫
[0,1]×X

α(t)
〈
∇F (x), Z(t, x)

〉
H
dνt(x)dt, while the term I2

η tends to∫
[0,1]×X

α′(t)F (x)dνt(x)dt. So we get (3.22).

Theorem 3.10 Let (νt)t∈[0,1] be the solution to the Fokker-Planck equation (3.13). Then for a.e.
t ∈ [0, 1], νt ∈ Dom(∇Ent) and

(3.23)
doνt

dt
= −(∇Ent)(νt).

Proof. By (3.13) and (3.22), we have

(3.24)
∫

[0,1]×X

α(t)
〈
∇F (x), Z(t, x)

〉
H
dνt(x)dt = −

∫
[0,1]×X

α(t)LF (x)dνt(x)dt.

Let V be the vector space generated by {α∇F ; α ∈ C∞c (]0, 1[), F ∈ Cylin(X)} and V̄ the closure
of V in L2([0, 1]×X,H;Pν). Let Ẑ be the orthogonal projection of Z onto V̄ . Then for a.e.t ∈]0, 1[,
Ẑt ∈ Tνt . By (3.24), there exists a full subset ΩF ⊂]0, 1[ such that for t ∈ ΩF ,∫

X

〈
∇F (x), Ẑ(t, x)

〉
H
dνt(x) = −

∫
X

LF (x)dνt(x).

Again by density arguments, there exists a full measure subset Ω ⊂]0, 1[ such that for t ∈ Ω the
above equality holds for all ∇F ∈ E . Now by (3.1), the right hand side is equal to −(∂∇F Ent)(νt).
Therefore ∇Ent exists at νt and

(∇Ent)(νt) = −Ẑt,

this last term was denoted as
doνt

dt
; therefore we get (3.23).
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non linéaires, J. Funct. Analysis, 54 (1983), 206-227.
[Dr] B. Driver: Integration by parts and quasi-invariance for heat measures on loop groups, J.
Funct. Anal. 149 (1997), 470-547.
[FL] S. Fang and D. Luo: Transport equations and quasi-invaraint flows on the Wiener space, to
appear in Bull. Sci. Math.
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[FU2] D. Feyel and A.S. Üstünel: Monge-Kantorovitch measure transportation, Monge-Ampère
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