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Abstract

We give a Liouville type theorem for harmonic maps from the spaces admitting
no constant bounded harmonic functions equipped with the harmonicity of functions
to convex spaces in terms of conservative Markov chains and barycenters. No differ-
entiable structures for the domain and the target are assumed.

§1. Introduction

The purpose of this note is to give a Liouville type theorem for harmonic
map to metric space having a convex property in terms of discrete time Markov
chains. Liouville type theorems for harmonic maps between complete smooth
Riemannian manifolds have been done by many authors including geometers
and probabilists. Eells-Sampson [13] proved that any (bounded) harmonic map
from a compact Riemannian manifold with positive Ricci curvature into a com-
plete manifold with non-positive curvature is a constant map. Schoen-Yau [58]
also proved that any harmonic map with finite energy from a complete smooth
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Riemannian manifold with non-negative Ricci curvature into a complete man-
ifold with non-positive curvature is a constant map. Cheng [3] showed that
any harmonic map with sublinear growth from a complete Riemannian man-
ifold with non-negative Ricci curvature into an Hadamard manifold is a con-
stant map. Hildebrandt-Jost-Widman [22] (see also [23],[24]) proved a Liou-
ville type theorem for harmonic maps into regular geodesic (open) balls in a
complete C3 Riemannian manifold from a simple or compact C1 Riemannian
manifold. Choi [6] showed a Liouville type theorem for harmonic maps from
a complete smooth Riemannian manifold with non-negative Ricci curvature
into regular geodesic (open) balls in a complete smooth Riemannian manifold.
Kendall (cf. [40],[25],[41]) showed that any bounded harmonic maps from com-
plete smooth Riemannian manifold having the Liouville property for harmonic
functions into regular geodesic (open) ball is a constant map using a stochastic
tool. He called his result “ultimate Liouville property”. By Yau’s gradient es-
timate for harmonic functions (see [66],[5]), any complete smooth Riemannian
manifold with non-negative Ricci curvature admits both the elliptic Harnack
inequality and the strong Liouville property, that is, any positive (or lower
bounded) harmonic function is always constant. (The strong Liouville prop-
erty follows from the elliptic Harnack inequality, cf. 5.4.5 in [56].) So Kendall’s
result generalizes [6]. Tam [65] proved that a harmonic map u from a Rieman-
nian manifold M quasi-isometric to a complete smooth Riemannian manifold
with non-negative Ricci curvature into an Hadamard manifold N is a constant
map if u satisfies dN (u(x), u(y)) = o(dγ

M (x, y)), x, y ∈ M , γ ∈]0, 1].
Sung-Tam-Wang [64] proved that if any bounded harmonic function on

a complete smooth Riemannian manifold which is asymptotically constant on
each non-parabolic end, then the same assertion holds for bounded harmonic
maps to regular geodesic balls extending the Kendall’s result. Stafford [59]
also gave a probabilistic proof of the result of [3]. Jin [29] proved another type
of Liouville type theorem on harmonic maps from Euclidean space to general
Riemannian manifolds in terms of the asymptotic behavior of the C2-map.
Colding-Minicozzi II [8],[9] gave related results to [3] on harmonic functions.
Rigoli-Setti [55] also gave a Liouville type theorem for harmonic maps from
a certain Riemannian manifold with pole. Cheng-Tam-Wang [4], extending
the earlier result [58], proved that any harmonic maps with finite energy into
Hadamard manifolds also have the Liouville property provided any bounded
harmonic function is always constant, and its stochastic proof is done by At-
suji [1] in the framework of L-harmonic maps.

The spaces in the above results are assumed to have differentiable struc-



Liouvile theorem for harmonic maps 3

tures in the strict sense. Our main interest is the theory of harmonic maps
between singular geometric objects like Alexandrov spaces. In such spaces
we can not expect differentiable structures in the classical sense. There are
various papers on harmonic maps between singular spaces from geometric or
analytic point of view (see [20],[45],[46],[14],[16],[17],[18],[19],[30],[31],[32],[34],
[39],[36],[37],[38],[52],[53],[27]). In particular, Gromov-Schoen [20] established
the existence of energy minimizing locally Lipschitz maps from Riemannian
manifolds into Bruhat-Tits buildings and gave Corlette’s version of Margulis’s
super-rigidity theorem. After [20], Korevaar-Schoen [45] constructed harmonic
maps from domains in Riemannian manifolds into Hadamard spaces as a bound-
ary value problem. The same strategy can be applied between Riemannian
polyhedra (see [14]). Very recently, Izeki-Nayatani [27] constructed combina-
torial harmonic maps from complexes to Hadamard spaces and applied it to
prove a fixed point theorem. So the theory of harmonic maps between singular
objects is nowadays significant in view of geometric or analytic point.

However, there have not been systematic approach to Liouville type the-
orem for harmonic maps between singular objects. To begin with, we start
to prove a Liouville theorem for harmonic maps between such spaces in the
framework of discrete time Markov processes according to the argument by
Kendall [40]. More concretely, the source space X is only assumed to have
conservative Markov chains or Markovian kernel P (x, dy), which is necessary
to define the notion of harmonicity, so-called the P -harmonicity. The second
author has studied P -harmonic maps taking values into CAT(0)-spaces (see
[60],[61]). We shall treat more general target spaces than CAT(0)-spaces in-
cluding a CAT(1)-space with diameter strictly less than π/2 (e.g. Example 2).
The target Y which we consider is assumed to have an analogy of barycenter
defined as in [12],[21], which is an extended notion of the usual barycenter in
CAT(0)-space discussed in [33],[45],[60],[61],[62],[63],[7]. In this framework we
can establish our Liouville type theorem, that is, if the conservative Markov
chain has a Liouville property for harmonic functions, then the same property
holds for harmonic maps under the condition that the target space is a proper
metric space, CAT(0)-space, or separable Banach space (Theorem 3.1).

§2. Framework

Throughout this note, (Y, d) denotes a complete separable metric space.

Definition 2.1 (Admissible Function). A non-negative finite function
Φ on Y × Y is said to be admissible if Φ vanishes only on the diagonal, there
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exists an upper semi continuous function ψ : [0,∞[→ [0,∞[ such that ψ > 0 on
]0,∞[, ψ(0) = 0 and Φ(x, y) ≤ ψ(d(x, y)) for x, y ∈ Y , and for each y ∈ Y , x 7→
Φ(x, y) is upper semi continuous and for each x ∈ Y , y 7→ Φ(x, y) is continuous.
The triple (Y, d, Φ) is called admissible if Φ is an admissible function on Y ×Y .

Let P(Y ) be the family of probability measures on (Y,B(Y )). For an
admissible function Φ, we set

PΦ(Y ) :=
{

µ ∈ P(Y )
∣∣∣ ∫

Y

Φ(w, z)µ(dw) < ∞ for all z ∈ Y

}
.

When Φ(x, y) = dp(x, y), p ≥ 1, we write Pp(Y ) instead of PΦ(Y ).

Definition 2.2 (Φ-Barycenter). Let (Y, d, Φ) be an admissible space.
For any µ ∈ PΦ(Y ), a point b(µ) ∈ Y is said to be Φ-barycenter of µ if for each
z ∈ Y ,

Φ(b(µ), z) ≤
∫

Y

Φ(w, z)µ(dw)(< ∞). (2.1)

Remark. Given µ ∈ PΦ(Y ), the Φ-barycenter of µ is not necessarily
unique in general. See Example 6 below for the non-uniqueness of Φ-barycenter.
Denote by BΦ(µ) the family of Φ-barycenters of µ.

There are many examples of admissible spaces (Y, d, Φ) admitting Φ-bary-
centers in our sense. Next is a list of examples.

Example 1 (CAT(0)-Space). A complete separable metric space (Y, d)
is called the CAT(0)-space (Hadamard space, or global NPC space) if for any
pair of points γ0, γ1 ∈ Y and any t ∈ [0, 1] there exists a point γt ∈ Y such that
for any z ∈ Y

d2(z, γt) ≤ (1 − t)d2(z, γ0) + td2(z, γ1) − t(1 − t)d2(γ0, γ1). (2.2)

By definition, γ := (γt)t∈[0,1] is the minimal geodesic joining γ0 and γ1. Any
CAT(0)-space is simply connected. Hadamard manifolds, Euclidean Bruhat-
Tits buildings (e.g. metric tree), spiders, booklets and Hilbert spaces are typical
examples of CAT(0)-spaces (cf. [63]). Let (Y, d) be a CAT(0)-space. Then the
distance function d : Y × Y → [0,∞[ is convex (Corollary 2.5 in [63]) and
Jensen’s inequality (Theorem 6.3 in [63]) can be applied to the convex function
Y 3 w 7→ d(w, z) for each z ∈ Y . In this case, Φ can be taken to be the distance
d and the Φ-barycenter is given by the usual barycenter for µ ∈ P1(Y ) over
(Y, d) discussed in [63]. Then (Y, d, Φ) is an admissible space admitting Φ-
barycenters.
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Example 2 (k-Convex Space; cf. Ohta [50]). A complete separable met-
ric space (Y, d) is called the k-convex space if (Y, d) is a geodesic space and for
any three points x, y, z ∈ Y , any geodesic γ := (γt)t∈[0,1] in Y with γ0 = x,
γ1 = y, and all t ∈ [0, 1],

d2(z, γt) ≤ (1 − t)d2(z, x) + td2(z, y) − k

2
t(1 − t)d2(x, y). (2.3)

By definition, putting z = γt, we see k ∈]0, 2]. The inequality (2.3) yields the
(strict) convexity of Y 3 x 7→ d2(z, x) for a fixed z ∈ Y . Any closed convex
subset of a k-convex space is again k-convex. Every CAT(0)-space is a 2-convex
space. It is proved by Ohta [50] that any CAT(1)-space (in particular any
spherical building ([2])) Y with diam(Y ) ≤ π

2 −ε, ε ∈]0, π
2 [ is a {(π−2ε) tan ε}-

convex space, and any Banach space Lp with p ∈]1, 2] over a measurable space
is a 2(p−1)-convex space (Propositions 3.1 and 3.4 in [50]). He proved that any
two points in a k-convex space can be connected by a unique minimal geodesic
(Lemma 2.2 in [50]) and contractible (Lemma 2.3 and Corollary 2.4 in [50]). In
this case, Φ can be taken to be the square of distance d2 and the Φ-barycenter
is given by the pure barycenter b̄(µ) for µ ∈ P2(Y ) over (Y, d) discussed in
Section 4. Then (Y, d, Φ) is an admissible space admitting Φ-barycenters.

Example 3 (Regular Geodesic Ball in Riemmanian Manifold). Let (Y,

d) be the regular geodesic (closed) ball with center o and radius r > 0 in an
m-dimensional complete smooth Riemmanian manifold (M, g) (m ≥ 2), where
d is the Riemmanian distance from g. That is, Y := {x ∈ M | d(o, x) ≤ r} does
not intersect the cut-locus of the center o ∈ Y and the upper bound κ(= κ(r))
of sectional curvatures in Y satisfies 0 ≤ κ < ( π

2r )2 (see [24],[41]). Then, for
κ > 0, Φ given by

Φ(w, z) :=
1
κ
· 1 − cos(

√
κd(w, z))

cos(
√

κd(w, o))

determines a non-negative bounded convex function w 7→ Φ(w, z) for each
z ∈ Y and Φ(w, z) ≤ d2(w,z)

2 cos
√

κr
for w, z ∈ Y (such form of Φ is originally

indicated by Jäger-Kaul [28]). The barycenter b(µ) for µ ∈ P(Y ) defined as a
local minimizer of Y 3 z 7→

∫
Y

d2(z, w)µ(dw) ([41]) is called the Karcher mean
of µ and it is uniquely determined in Y (see Theorem 7.3 in [41]). The following
Jensen’s inequality holds (see Lemma 7.2 in [41]): Let b(µ) be a Karcher mean
of a probability measure µ on Y with compact support contained in the interior
of Y . Then for any bounded convex function ϕ,

ϕ(b(µ)) ≤
∫

Y

ϕ(w)µ(dw). (2.4)
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When κ is independent of r > 0, (2.4) remains true for any µ ∈ P(Y ) and
bounded convex function ϕ (we can construct a regular geodesic ball U contain-
ing Y ). Hence Φ(b(µ), z) ≤

∫
Y

Φ(w, z)µ(dw) for each z ∈ Y if κ is independent
of r > 0. Then (Y, d, Φ) is an admissible space admitting Φ-barycenters under
this assumption.

Example 4 (Banach Space). Let (Y, d) be a separable Banach space,
where d is given through the norm on Y . In this case, Φ can be taken to be the
distance d and Φ-barycenter can be given by the barycenter b(µ) for µ ∈ P1(Y )
defined as the Bochner integral

∫
Y

xµ(dx). Then (Y, d, Φ) is an admissible space
admitting Φ-barycenters.

Let (X,X ) be a measurable space. Hereafter, we fix a conservative Markov
chain M= (Ω, Xn, θn,Fn,F∞, Px)x∈X . Here Ω := XN∪{0} is the family of
sequences ω = {ω(n)}n∈N∪{0}, Xn(ω) := ω(n), n ∈ N ∪ {0}, θn is the shift
operator defined by Xm+n(ω) = Xm(θnω), F∞ := σ{Xn | n ∈ N∪ {0}}, Fn :=
σ{Xk | k ≤ n}. Denote by P (x, dy) := Px(X1 ∈ dy) the transition kernel of
M, which is a kernel on (X,X ) and set Pf(x) :=

∫
X

f(y)P (x, dy) = Ex[f(X1)]
if the integration has a meaning for an X -measurable function f on X.

Definition 2.3 (P -Harmonic Map). Let (Y, d, Φ) be an admissible space
and consider an X/B(Y )-measurable map u : X → Y satisfying u∗P (x, ·) ∈
PΦ(Y ). We set

Pu(x) := b(u∗P (x, ·)).

Here u∗P (x, ·) is a Borel measure defined by u∗P (x, ·)(A) := P (x, u−1(A)), A ∈
B(Y ) and we choose a Φ-barycenter b(u∗P (x, ·)) ∈ BΦ(u∗P (x, ·)) of u∗P (x, ·).
An X -measurable function f : X → R is said to be P -subharmonic if f ≤ Pf

on X and an X/B(Y )-measurable map u : X → Y is called P -harmonic if
u = Pu on X.

Remark.

(1) For an X/B(Y )-measurable map u : X → Y , Pu depends on the choice of
(Y, d, Φ) and the choice of Φ-barycenters. We do not require the X/B(Y )-
measurability of Pu : X → Y (sufficient conditions for this measurability
are given in [61] if Y is a CAT(0)-space). Note that P -harmonicity of
an X/B(Y )-measurable u : X → Y implies the same measurability of
Pu : X → Y .

(2) If the Markov kernel P is m-symmetric, i.e.
∫

X
Pfg dm =

∫
X

fPg dm

for non-negative X -measurable functions f, g, then we can extend P on
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L2(X;m). A map u : X → Y is called (weakly) P -harmonic if Pu = u

m-a.e. on X. From [60], under that Y is CAT(0)-space, u is (weakly)
P -harmonic if and only if it is a minimizer of the energy

E[v] :=
1
2

∫
X

dY (v(x), v(y))2P (x, dy)m(dx)

among all map v : X → Y . This means that our P -harmonicity is closely
related to classical harmonic maps between Riemannian manifolds. The
harmonic maps between singular geometric objects can be defined as a
local minimizer of energy functional (see [45],[14]).

Lemma 2.1. Let (Y, d, Φ) be an admissible space. If an X/B(Y )-
measurable map u : X → Y satisfying u∗P (x, ·) ∈ PΦ(Y ) is P -harmonic, then
x 7→ Φ(u(x), y0) is P -subharmonic for each point y0 ∈ Y . Moreover, if the
range of u is bounded, then Φ(u, y0) is also a bounded function.

Proof. By definition of the Φ-barycenter of u∗P (x, ·), we see

Φ(u(x), y0) = Φ(Pu(x), y0) ≤ PΦ(u(·), y0) < ∞.

The last assertion is clear from Φ(u, y0) ≤ ψ(d(u, y0)) and the upper-semi-
continuity of ψ.

§3. Liouville Theorem

Theorem 3.1 (Liouville Property). Let (Y, d, Φ) be an admissible space.
We assume one of the following:

(1) (Y, d) is proper, i.e. every bounded closed set is compact.

(2) (Y, d) is a CAT(0)-space with Φ = d and b(µ) is the barycenter for µ ∈
P1(Y ).

(3) (Y, d) is a separable Banach space with Φ = d and b(µ) =
∫

Y
xµ(dx) for

µ ∈ P1(Y ).

Suppose that any bounded P -harmonic function on X is always constant. Then
the same property holds for any bounded P -harmonic map.

Remark.

(1) If M is irreducible and recurrent, i.e., every bounded P -subharmonic func-
tion is constant, then one can prove a Liouville type theorem for P -harmonic
map from X to Y without assuming the properness of Y in (1).
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(2) As in Theorem 5 of [40], one can prove a Liouville type theorem for Y -valued
discrete time martingales over a filtered probability space in the framework
of admissible space (Y, d, Φ) with Φ-barycenter (cf. [62],[7] for (discrete or
continuous time) martingales taking values in CAT(0)-space). Precisely,
if Y -valued martingale (Yn) has a non-random limit Y∞ as n → ∞, then
Yn = Y∞ = Y0 a.s. Its proof is simpler than the proof of Theorem 3.1.

(3) In our setting, we need the conservativeness of M for technical reasons. On
account of the conservativeness, we can deduce Theorem 3.1(2) without
assuming the properness of Y . The probabilistic proof of the Kendall’s
ultimate Liouville theorem between Rimannian manifolds does not work
in our case if the target space is a (not necessarily proper) CAT(0)-space.
So we employ his potentially theoretical method of the proof, which works
well without the properness of the target. However, the conservativeness
is implicitly assumed in his second proof (see [41]).

Example 5 (Simple Random Walk on Z). Let M= (Ω, Xn, Px)x∈Z be
a simple random walk on Z, i.e., P (x, dy) := Px(X1 ∈ dy) = pxδx+1(dy) +
qxδx−1(dy) for px, qx ∈]0, 1[ with px + qx = 1. Any P -harmonic function f is
given by

f(x) =


f(0) + (f(1) − f(0))

∑x
`=1

∏`−1
k=1

qx

px
if x > 0,

f(0) − (f(1) − f(0))
∑0

`=x+1

∏0
k=`

px

qx
if x < 0,

f(0) + (f(1) − f(0))(x − 1) if px = 1
2 for all x ∈ Z.

If for given ε > 0, qx > (1 + ε)px holds except for finite positive integers x, or
px > (1 + ε)qx holds except for finite negative integers x, then any bounded
P -harmonic function f satisfies f(x) ≡ f(0). More strongly, if px = 1

2 for all
x ∈ Z, then any non-negative P -harmonic function f satisfies f(x) ≡ f(0),
namely, M possesses the strong Liouville property.

A symmetric simple random walk on an infinite weighted graph treated
in [47] satisfying elliptic or parabolic Harnack inequality possesses a strong
Liouville property (cf. 5.4.5 in [56]). Other examples on (strong) Liouville
property of Markov chains can be found in [49],[26],[15] (see also section 5 in
[57]).

Proof of Theorem 3.1. Suppose that u : X → Y is a bounded P -harmonic
map, that is, u = Pu and Φ(u, y) is a bounded P -subharmonic function for any
point y ∈ Y by Lemma 2.1. We may assume that the image of u is contained
in a closed ball B̄R(o) for some o ∈ Y . We set My := supx∈X Φ(u(x), y) < ∞.
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Then hy(x) := My − Φ(u(x), y) is a P -superharmonic function. According to
the Riesz decomposition (Theorem 1.4 in [54]), we have the following:

hy = h∞,y + Ggy,

where h∞,y(x) := limn→∞ Pnhy(x) is the P -harmonic part of hy and Ggy

with gy := (I − P )hy ≥ 0 is the potential part. Here G is the potential
kernel of P defined by G :=

∑∞
n=0 Pn. By assumption, h∞,y is a constant cy.

Consequently, by putting dy := My − cy, we have dy −Φ(u(x), y) = Ggy(x) for
all x ∈ X, in particular, Φ(u(x), y) ≤ dy holds for all x ∈ X.

Let {yj} ⊂ Y be a countable dense subcollection of Y . We denote gyi
by

gi. For each z ∈ X, r > 0 and N ∈ N, we claim that there exists n ∈ N such
that

Pn

(
z,

N∩
i=1

{
x ∈ X

∣∣∣ Ggi(x) ≤ r
})

> 0. (3.1)

If the left hand side of (3.1) vanishes for all n ∈ N with some z ∈ X, r > 0 and
N ∈ N, then

G(g1 + g2 + · · · + gN ) > r Pn(z, ·)-a.s. on X for all n ∈ N.

Hence, for such z ∈ X, PnG(g1 + g2 + · · · + gN )(z) > r for all n ∈ N, which
contradicts limn→∞ PnGgy(z) = 0 for any y ∈ Y . Here we use Pn1 = 1 on X.

From (3.1), for each z ∈ X, r > 0 and N ∈ N,

N∩
i=1

{
x ∈ X

∣∣∣ Ggi(x) ≤ r
}
6= ∅,

in particular,
N∩

i=1

{
y ∈ B̄R(o)

∣∣∣ dyi − Φ(y, yi) ≤ r
}
6= ∅.

If (Y, d) is proper, B̄R(o) is compact. When (Y, d) is a CAT(0)-space with
Φ = d, we employ the weak topology on Y in terms of the weak convergence of
net (see [48]). In this case, by Theorem 2.1 in [30], B̄R(o) is sequentially weakly
compact, hence it is countably weakly compact, in particular, any decreasing
sequence of non-empty closed subsets of B̄R(o) has a non-empty intersection
(see Definition 1.10 and Remark 1.11 in [11]). Thus, for each z ∈ X,

∞∩
n=1

∞∩
i=1

{
y ∈ B̄R(o)

∣∣∣ dyi − Φ(y, yi) ≤ 1/n
}
6= ∅.
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That is, there exists y0 ∈ B̄R(o) which may depend on z such that

dyi − Φ(y0, yi) ≤ 1/n for all i, n ∈ N,

which yields dyi ≤ Φ(y0, yi) for each i ∈ N. Therefore, Φ(u(x), yi) ≤ Φ(y0, yi)
for all x ∈ X and i ∈ N, hence u(x) ≡ y0.

Next we prove the assertion for the case that Y is a separable Banach
space. Recall that Φ(z, w) is given by the distance d(z, w) = ‖z − w‖Y and Φ-
barycenter is the barycenter defined by Bochner integrals. Let u : X → Y be a
bounded P -harmonic map. Then for each ` ∈ Y ∗, we see x 7→ Y ∗〈`, u(x)〉Y is a
P -harmonic function by use of a property of Bochner integrals. By assumption,
Y ∗〈`, u(x)〉Y ≡ c`. Hence for x, y ∈ X

‖u(x) − u(y)‖Y = sup
`∈Y ∗,‖`‖Y ∗≤1

Y ∗〈`, u(x) − u(y)〉Y = 0. (3.2)

Therefore, u ≡ x0 for some x0 ∈ Y .

§4. Appendix: k-convex space

In this section, we clarify that k-convex space can be an admissible space.

Lemma 4.1. Let (Y, d) be a k-convex space. Then every open or closed
ball B in Y is always convex. In particular, any closed ball B is again a k-
convex space.

Proof. Noting the convexity of x 7→ d2(z, x), the proof is easy.

We can define the notion of barycenter of probability measures on a k-
convex space (cf. also Section 5.3 in [51]):

Definition 4.1 (Barycenter). For µ ∈ P2(Y ), we set

Var(µ) := inf
z∈Y

∫
Y

d2(z, y)µ(dy)(< ∞)

and call it the variance of µ. If µ ∈ P2(Y ) for z 7→
∫

Y
d2(z, x)µ(dx) admits a

unique minimizer, i.e., there exists a unique b(µ) ∈ Y such that

Var(µ) =
∫

Y

d2(b(µ), y)µ(dy), (4.1)
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then b(µ) is called the barycenter of µ ∈ P2(Y ). For µ ∈ P1(Y ) and w ∈ Y ,
we consider a function Fw defined by

Fw(z) : =
∫

Y

(d2(z, x) − d2(w, x))µ(dx)

≤ d(z, w)
∫

Y

(d(z, x) + d(w, x))µ(dx) < ∞. (4.2)

If Y 3 z 7→ Fw(z) admits a unique minimizer b(µ), then it is also called the
barycenter for µ ∈ P1(Y ). The barycenter for µ ∈ P2(Y ) is automatically the
barycenter for µ ∈ P1(Y ).

For any closed set F , we denote by C(F ) the closed convex hull of F ,
which is the smallest closed convex set containing F , that is, C(F ) :=

∩
CF ,

CF := {A | A is closed convex and F ⊂ A}.

Definition 4.2 (Pure Barycenter). Take µ ∈ P1(Y ) and w ∈ Y . If
C(supp[µ]) 3 z 7→ Fw(z) admits a unique minimizer b̄(µ) ∈ C(supp[µ]), then it
is called the pure barycenter of µ ∈ P1(Y ).

The following lemma can be similarly proved as in the case of CAT(0)-
space.

Lemma 4.2. Let (Y, d) be a k-convex space. Then every µ ∈ P1(Y )
admits both the barycenter b(µ) and the pure barycenter b̄(µ).

Remark. Let (Y, d) be a k-convex space.

(1) The pure barycenter b̄(µ) of µ ∈ P1(Y ) is nothing but the barycenter of
µ ∈ P1(C(supp[µ])) over the k-convex space (C(supp[µ]), d). If b(µ) ∈
C(supp[µ]), in particular, if µ has full support, then b̄(µ) = b(µ).

(2) Let K be a closed convex subset of (Y, d). The inequality (2.3) yields that
there exists a unique minimizer of K 3 y → d2(y, x) denoted by πKx,
called the foot-point or projected point to K from x and we call the map
πK : Y → K the convex projection to K. For µ ∈ P1(Y ), we set K =
C(supp[µ]). Assume that πK is contractive, that is, d(πKx, πKy) ≤ d(x, y)
for all x, y ∈ Y . Then we have b̄(µ) = b(µ). Indeed, for w, z ∈ Y we see∫

Y

(d2(b̄(µ), y) − d2(w, y))µ(dy) ≤
∫

K

(d2(πKz, πKy) − d2(w, y))µ(dy)

≤
∫

Y

(d2(z, y) − d2(w, y))µ(dy).

From Proposition 2.6 in [63], if (Y, d) is a CAT(0)-space, then πK is always
contractive for any closed convex K, hence b̄(µ) = b(µ) for µ ∈ P1(Y ).
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(3) Let (Y, d) be a k-convex space. For x0, x1 ∈ Y and t ∈ [0, 1], b̄((1− t)δx0 +
tδx1) = b((1 − t)δx0 + tδx1) = γt, where γt is the point at t of the minimal
geodesic γ joining x0 = γ0 and x1 = γ1. Indeed, C(supp[µ]) is the minimal
geodesic joining x0 and x1 and we see for µ := (1 − t)δx0 + tδx1 and any
z ∈ Y ,∫

Y

d2(γt, y)µ(dy) = (1 − t)d2(γt, γ0) + td2(γt, γ1)

= (1 − t)t2d(x0, x1) + t(1 − t)2d2(x0, x1)

= t(1 − t)d2(x0, x1) ≤ (1 − t)d2(z, x0) + td2(z, x1)

=
∫

Y

d2(z, y)µ(dy).

(4) Let (Y, d) be a 2-dimensional `p space (R2, ‖ · ‖p), p ∈]1, 2[. Then (Y, d)
is a 2(p − 1)-convex space by [50]. In this case, b(µ) 6=

∫
Y

xµ(dx) and
b̄(µ) 6=

∫
Y

xµ(dx) for some µ ∈ P1(Y ), where
∫

Y
xµ(dx) is the Bochner

integral (see Example 6 below).

Proposition 4.1 (Jensen’s Inequality). Suppose that (Y, d) is a k-
convex space. Let ϕ be a lower semi continuous convex function on Y and take
µ ∈ P1(Y ). Then we have

ϕ(b̄(µ)) ≤
∫

Y

ϕdµ (4.3)

provided the right hand side is well-defined.

Proof. We may assume Y = C(supp[µ]) replacing Y with C(supp[µ]).
Under this assumption, pure barycenter can be treated as the barycenter. Then
the proof is quite same as in the proof for the case of CAT(0)-spaces (see
Theorem 6.2 in [63]).

By Proposition 4.1, we can see that every k-convex space (Y, d) is an
admissible space admitting Φ-barycenter by taking Φ = d2 with the notion of
pure barycenters. Finally, we show that Φ-barycenter of a probability measure
on (Y,B(Y )) is not unique over a k-convex space (Y, d).

Example 6. Let us consider a 2-dimensional `p space (R2, d`p), p ∈]1, 2[
with d`p(x, y) := ‖x−y‖p = (|x1−x2|p+|y1−y2|p)1/p, x = (x1, x2), y = (y1, y2).
Take three points 0 = (0, 0), e1 := (1, 0), e2 = (0, 1) in R2 and a probability
measure µ := 1

3δe1 + 1
3δ0 + 1

3δe2 , and let 40e1e2 be the closed convex set
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surrounded by the geodesic triangle among 0, e1, e2. Note that any line segment
between two points in R2 is the minimal geodesic in (R2, d`p) joining them. We
show b(µ) 6=

∫
R2 xµ(dx) and b̄(µ) 6=

∫
R2 xµ(dx). For (x1, x2) ∈ R2, set

fp(x1, x2) := (|1 − x1|p + |x2|p)
2
p + (|x1|p + |x2|p)

2
p + (|x1|p + |1 − x2|p)

2
p .

Then b(µ) ∈ R2 (resp. b̄(µ) ∈ 40e1e2) is the unique minimizer of R2 3
(x1, x2) 7→ fp(x1, x2) (resp. 40e1e2 3 (x1, x2) 7→ fp(x1, x2)). On the other
hand, we see

∫
R2 xµ(dx) = (1/3, 1/3). Since

fp

(
1
3
,
1
3

)
=

2(2p + 1)2/p + 22/p

9
→ 22

9
> 2 = fp(0, 0) ≥ fp(b̄(µ)) ≥ fp(b(µ))

as p → 1, we have b(µ) 6= (1/3, 1/3) and b̄(µ) 6= (1/3, 1/3) for some p ∈]1, 2[.
We consider Φ(x, y) := ‖x−y‖2

p for x, y ∈ R2. Then (R2, d`p ,Φ) is an admissible
space. But we have two kinds of different Φ-barycenters for such µ and p. One
is b̄(µ), another is

∫
R2 xµ(dx).
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