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Abstract
We construct a Riemannian manifold where the Kendall-Cranston coupling of two Brownian
particles does not maximize the coupling probability.

1 Introduction

Given two stochastic processes Xt and Yt on a state space M , a coupling Zt = (Z(1)
t , Z

(2)
t ) is

a process on M × M so that Z(1) or Z(2) has the same distribution as X or Y respectively.
Of particular interest in many applications is the distribution of the coupling time T (Z) :=
inf{t > 0 ; Z

(1)
s = Z

(2)
s for all s > t}. The goal is to make the coupling probability P[T (Z) ≤ t]

as large as possible by taking a suitable coupling. When X and Y are Brownian motions
on a Riemannian manifold, Kendall [3] and Cranston [1] constructed a coupling by using
the Riemannian geometry of the underlying space. Roughly speaking, under their coupling,
infinitesimal motion ΔYt ∈ TYtM at time t is given as a sort of reflection of ΔXt via the minimal
geodesic joining Xt and Yt. Their coupling has the advantage of controlling the coupling
probability by using geometric quantities such as the Ricci curvature. As a result, Kendall-
Cranston coupling produces various estimates for heat kernels, harmonic maps, eigenvalues
etc. under natural geometric assumptions.
On the other hand, there is the question of optimality. We say that a coupling Z of X and Y
is optimal at time t if

P[T (Z) ≤ t] ≥ P[T (Z̃) ≤ t]

holds for any other coupling Z̃. Though Kendall-Cranston coupling has a good feature as
mentioned, in general there is no reason why it should be optimal.
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The Kendall-Cranston coupling is optimal if the underlying space has a good symmetry. For
example, in the case M = Rd, the Kendall-Cranston coupling (Z(1), Z(2)) is nothing but the
mirror coupling. It means that Z

(2)
t = Ψ(Z(1)

t ) up to the time they meet, where Ψ is a
reflection with respect to a hyperplane in Rd so that Ψ(X0) = Y0. It is well known that the
mirror coupling is optimal. Indeed, it is the only coupling which is optimal and Markovian [2].
More generally, the same result holds if there is a sort of reflection structure like a map Ψ on
Rd (see [4]).
In this paper, we show that the Kendall-Cranston coupling is not optimal in general.

Theorem 1.1 For each t > 0, there is a complete Riemannian manifold M where the Kendall-
Cranston coupling of two Brownian motions X· and Y· with specified starting points is not
optimal.

The proof of Theorem 1.1 is reduced to the case t = 1 by taking a scaling of Riemannian
metric. We construct a manifold M in the next section and prove Theorem 1.1 in section 3.

Notation: Given a Riemannian manifold N we denote by BN
r (x) or simply Br(x) the open

ball in N of radius r centered at x.
Given a Brownian motion (Xt)t≥0 on N we denote by τA = inf {t > 0 : Xt ∈ A} the hitting
time of a set A ⊂ N . We remark that, throughout this article, τA always stands for the hitting
time for the process (Xt)t≥0 even when we consider a coupled motion (Xt, Yt)t≥0.

2 Construction of the manifold

We take three parameter R > 0, ζ > 0 and δ > 0 such that ζ < R/4 and δ < ζ/3. Let
C = R × S1 be a cylinder with a flat metric such that the length of a circle S1 equals ζ. For
simplicity of notation, we write z = (r, θ) for z ∈ C where r ∈ R and θ ∈ (−ζ/2, ζ/2] such
that the Riemannian metric is written as dr2 +dθ2. If appropriate, any θ ∈ R will be regarded
mod ζ and considered as element of (−ζ/2, ζ/2]. We put

M1 := ([−R,∞) × S1) \ BC
δ ((0, ζ/2)) ⊂ C

and write ∂1,0 := ∂BC
δ ((0, ζ/2)) as well as ∂1,2 := {−R}× S1 (see Fig.1). Let C′ be a copy of

C. Then we put analogously

M2 := ((−∞, R] × S1) \ BC′
δ ((0, 0)) ⊂ C′

and write ∂2,0 := ∂BC′
δ ((0, 0)) as well as ∂2,1 := {R} × S1. Let M0 = S1 × [−1, 1] be another

cylinder. We write z ∈ M0 by z = (ϕ, r) where ϕ ∈ (0, 2π] and r ∈ [−1, 1]. Now we define a
C∞-manifold M (see Fig.2) by M = M0 � M1 � M2/∼, where the identification “∼” means

∂1,2 	 (−R, θ) ∼ (R, ζ/2 − θ) ∈ ∂2,1 for θ ∈ (−ζ/2, ζ/2] ,

∂1,0 	 (δ cosϕ, ζ/2 − δ sin ϕ) ∼ (ϕ, −1) ∈ M0 for ϕ ∈ (0, 2π] ,

∂2,0 	 (δ cosϕ, δ sin ϕ) ∼ (ϕ, 1) ∈ M0 for ϕ ∈ (0, 2π] .

We endow M with a C∞-metric g such that (M, g) becomes a complete Riemannian manifold
and:

(i) g|M1 coincides with the metric on M1 inherited from C,
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(ii) g|M2 coincides with the metric on M2 inherited from C′,

(iii) g|M0 is invariant under maps (θ, r) �→ (θ,−r) and (θ, r) �→ (θ + ϕ, r) on M0,

(iv) d((−1, 0), (1, 0)) = ζ for z1 = (−1, 0), z2 = (1, 0) ∈ M0

where d is the distance function on M .

3 Comparison of coupling probabilities

Let M be the manifold constructed above (with suitably chosen parameters R, ζ and δ) and
fix two points x = (0, ζ/6) ∈ M1 and y = (0, ζ/3) ∈ M2.
In this paper, the construction of Kendall-Cranston coupling is due to von Renesse [5]. We
will try to explain his idea briefly. His approach is based on the approximation by coupled
geodesic random walks {Ξ̂k}k∈N starting in (x, y) whose sample paths are piecewise geodesic.
Given their positions after (n − 1)-th step, one determines its next direction ξn according to
the uniform distribution on a small sphere in the tangent space and the other does it as the
reflection of ξn along a minimal geodesic joining their present positons. We obtain a Kendall-
Cranston coupling (Xt, Yt) by taking the (subsequential) limit in distribution of them. We
will construct another Brownian motion (Ŷt)t≥0 on M starting in y, again defined on the same
probability space as we construct (Xt, Yt) such that

P (X and Y meet before time 1) < P

(
X and Ŷ meet before time 1

)
.

In other words, if Q denotes the distribution of (X, Y ) and Q̂ denotes the distribution of (X, Ŷ )
then

Proposition 3.1 Q [T ≤ 1] < Q̂ [T ≤ 1] .

Our construction of the process Ŷ will be as follows. We define a map Φ : M1 → M2 by
Φ((r, θ)) = (−r, ζ/2 − θ) and then put
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(i) Ŷt = Φ(Xt) for t ∈ [0, τ∂1,0 ∧ T );

(ii) X and Ŷ move independently for t ∈ [τ∂1,0 , T ) in case τ∂1,0 < T ;

(iii) Ŷt = Xt for t ∈ [T,∞).

Note that τ∂1,2 = T holds when τ∂1,2 ≤ τ∂1,0 under Q̂.
Set H = S1 ×{0} ⊂ M0 ⊂ M . For z1, z2 ∈ M and A ⊂ M , minimal length of paths joining z1

and z2 which intersect A is denoted by d(z1, z2 ; A). We define a constant L0 by

L0 := inf
{

L ∈ (δ, R] ; d(z1, z2 ; H) ≥ d(z1, z2 ; ∂1,2)
for some z1 = (L, θ) ∈ M1, z2 = (L, ζ/2 − θ) ∈ M2

}
.

Lemma 3.2 R − ζ < L0 < R.

Proof. First we show L0 < R. Let z1 = (R, 0) ∈ M1 and z2 = (R, ζ/2) ∈ M2. Obviously
there is a path of length 2R joining z1 and z2 across ∂1,2. Thus we have d(z1, z2 ; ∂1,2) ≤ 2R.
By symmetry of M ,

d(z1, z2 ; H) = 2d(z1, H) = 2
(

d(z1, ∂1,0) +
ζ

2

)
= 2

(√
R2 + ζ2/4 − δ

)
+ ζ > 2R,

where the second equality follows from the third and fourth properties of g and the last
inequality follows from the choice of δ. These estimates imply L0 < R.
Next, let z′1 = (R − ζ, θ) ∈ M1 and z′2 = (R − ζ, ζ/2 − θ) ∈ M2. In the same way as observed
above, we have

d(z′1, z
′
2 ; H) = 2

(√
(R − ζ)2 + θ2 − δ

)
+ ζ ≤ 2R − 2δ.

Note that the length of a path joining z′1 and z′2 which intersects both of ∂1,2 and H is obviously
greater than d(z′1, z

′
2 ; H). Thus, in estimating d(z′1, z

′
2 ; ∂1,2), it is sufficient to consider all

paths joining z′1 and z′2 across ∂1,2 which do not intersect H . Such a path must intersect both
{δ} × S1 ⊂ M1 and {−δ} × S1 ⊂ M1 (see Fig.3). Thus we have

d(z′1, z
′
2 ; ∂1,2) ≥ d(z′1, {δ} × S1) + d({−δ} × S1, ∂1,2) + d(∂2,1, z

′
2)

≥ (R − ζ − δ) + (R − δ) + ζ

= 2R − 2δ.

Hence, the conclusion follows. �

Set M ′
1 := M1 ∩ [−L0, L0] × S1 ⊂ C and M ′

2 := M2 ∩ [−L0, L0] × S1 ⊂ C′. We define a
submanifold M ′ ⊂ M with boundary by M ′ = M0�M ′

1�M ′
2/∼ (see Fig.4). Let Ψ : M ′ → M ′

be the reflection with respect to H . For instance, for z = (r, θ) ∈ M ′
1, Ψ(z) = (r, ζ/2−θ) ∈ M ′

2.
Note that Ψ is an isometry, Ψ ◦ Ψ = id and {z ∈ M ′ ; Ψ(z) = z} = H .
Let X ′ be the given Brownian motion starting in x and now stopped at ∂M ′, i.e. X ′

t = Xt∧τ∂M′ .
Define a stopped Brownian motion starting in y by Y ′

t = Ψ(X ′
t) for t < τH and by Yt = Xt

for t ≥ τH (that is, the two Brownian particles coalesce after τH). Then we can prove the
following lemma.

Lemma 3.3 The law of (Xt∧τ∂M′ , Yt∧τ∂M′ )t≥0 coincides with that of (X ′
t, Y

′
t )t≥0.
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Proof. Note that the minimal geodesic in M joining z and Ψ(z) must intersect H for every
z ∈ M ′ by virtue of the choice of L0. Thus, by the symmetry of M ′ with respect to H , coupled
geodesic random walks Ξ̂k are in E defined by

E :=
{
(z(1)

· , z
(2)
· ) ∈ C([0,∞) → M × M) ; z

(2)
t = Ψ(z(1)

t ) before z
(1)
· exits from M ′

}

(cf. Theorem 5.1 in [4]). Since E is closed in C([0,∞) → M ×M), (X·, Y·) ∈ E holds P-almost
surely by taking a (subsequential) limit in distribution of {Ξ̂k}k∈N. Thus the conclusion follows.
�

We now begin to show Proposition 3.1. First we give a lower estimate of Q̂ [T ≤ 1]. Let

γ(a) :=
{
(x1, x2) ∈ R2 ; x2 = a

}
, a ∈ R,

A(δ) :=
⋃
n∈Z

BR
2

δ

((
ζ

(
n +

1
3

)
, 0

))
.

The remark after the definition of Q̂ implies

Q̂ [T ≤ 1] ≥ Q̂
[
T ≤ 1, τ∂1,2 < τ∂1,0

]
= Q̂

[
τ∂1,2 ≤ 1 ∧ τ∂1,0

]
.

By lifting Xt to R2, the universal cover of C,

Q̂
[
τ∂1,2 ≤ 1 ∧ τ∂1,0

]
= PR

2 [
τγ(R) ≤ 1 ∧ τA(δ)

]
≥ PR

2 [
τγ(R) ≤ 1, τA(δ) > 1

]
≥ PR [τR ≤ 1] − PR

2 [
τA(δ) ≤ 1

]
. (3.1)

Here PR
2

and PR denote the usual Wiener measure for Brownian motion (starting at the origin)
on R2 or R, resp. For simplicity, we write τR instead of τ{R}.
Next we give an upper estimate of Q [T ≤ 1]. Let E :=

{
τ∂1,0 < 1 ∧ τ∂M ′

}
. Then

Q [E] = P [E] ≤ PR
2 [

τA(δ) < 1
]
.
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Note that, on {T ≤ 1} ∩ Ec, X must hit ∂M ′ before T . It means

Q [{T ≤ 1} ∩ Ec] = Q [{τ∂M ′ < T ≤ 1} ∩ Ec] .

By Lemma 3.3, Yτ∂M′ = Ψ(Xτ∂M′ ) on Ec under Q. In order to collide two Brownian motions
starting at Xτ∂M′ and Ψ(Xτ∂M′ ), either of them must escape from the flat cylinder of length
2(L0 − δ) where its starting point has distance L0 − δ from the boundary. This observation
together with the strong Markov property yields

Q [{τ∂M ′ < T ≤ 1} ∩ Ec] = Q

[
Q(Xτ

∂M′ ,Ψ(Xτ
∂M′ )) [T ≤ 1 − s] |s=τ∂M′ ; τ∂M ′ < 1 ∧ τ∂1,0

]

≤ 2Q
[
PR

[
τ−(L0−δ) ∧ τL0−δ < 1 − s

] |s=τ∂M′ ; τ∂M ′ < 1 ∧ τ∂1,0

]
≤ 4Q

[
PR [τL0−δ < 1 − s] |s=τ∂M′ ; τ∂M ′ < 1 ∧ τ∂1,0

]
.

By Lemma 3.2 and the definition of ζ and δ, we have L0 − δ ≥ R − ζ − δ > 2R/3. Thus

Q
[
PR [τL0−δ < 1 − s] |s=τ∂M′ ; τ∂M ′ < 1 ∧ τ∂1,0

] ≤ 2 exp
(
− (L0 − δ)2

2

)
P

[
τ∂M ′ < 1 ∧ τ∂1,0

]

≤ 2 exp
(
−2R2

9

)
P

[
τ∂M ′ < 1 ∧ τ∂1,0

]
.

By lifting Xt to R2, we have

P
[
τ∂M ′ < 1 ∧ τ∂1,0

] ≤ PR
2 [

τγ(L0) ∧ τγ(−L0) < 1 ∧ τA(δ)

] ≤ 2PR [τL0 < 1] ≤ 2PR [τR−ζ < 1] .

Here the last inequality follows from Lemma 3.2. Consequently, we obtain

Q [T ≤ 1] ≤ PR
2 [

τA(δ) < 1
]
+ 16 exp

(
−2R2

9

)
PR [τR−ζ < 1] . (3.2)

Now take R > 3
√

2 log 2. After that we choose ζ so small that PR [τR−ζ < 1] ≈ PR [τR < 1].
Finally we choose δ so small that PR

2 [
τA(δ) < 1

] ≈ 0. Then Proposition 3.1 follows from (3.1)
and (3.2).

Acknowledgment. This work is based on the discussion when the first-named author stayed
in University of Bonn with the financial support from the Collaborative Research Center SFB
611. He would like to thank the institute for hospitality.

References

[1] Cranston, M., “Gradient estimates on manifolds using coupling”, J. Funct. Anal. 99 (1991),
no.1, 110–124.

[2] Hsu, E., Sturm, K.-T., “Maximal coupling of Euclidean Brownian motions” SFB Preprint
85, University of Bonn 2003

[3] Kendall, W., “Nonnegative Ricci curvature and the Brownian coupling property”, Stochas-
tics 19 (1986), 111–129



A counterexample for the optimality of Kendall-Cranston coupling 7

[4] Kuwada, K., “On uniqueness of maximal coupling for diffusion processes with a reflection”,
preprint

[5] von Renesse, M.-K., “Intrinsic coupling on Riemannian manifolds and polyhedra”, Elec-
tron. J. Probab, 9 (2004), no.14, 411–435.


