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Abstract

We construct a Riemannian manifold where the Kendall-Cranston coupling of two Brownian
particles does not maximize the coupling probability.

1 Introduction

Given two stochastic processes X; and Y; on a state space M, a coupling Z; = (Zt(l), Zt(z)) is
a process on M x M so that Z(1) or Z(?) has the same distribution as X or Y respectively.
Of particular interest in many applications is the distribution of the coupling time T'(Z) :=
inf{t > 0; 7 = 7P for all s > t}. The goal is to make the coupling probability P[T'(Z) < ]
as large as possible by taking a suitable coupling. When X and Y are Brownian motions
on a Riemannian manifold, Kendall [3] and Cranston [1] constructed a coupling by using
the Riemannian geometry of the underlying space. Roughly speaking, under their coupling,
infinitesimal motion AY; € Ty, M at time ¢ is given as a sort of reflection of A X} via the minimal
geodesic joining X; and Y;. Their coupling has the advantage of controlling the coupling
probability by using geometric quantities such as the Ricci curvature. As a result, Kendall-
Cranston coupling produces various estimates for heat kernels, harmonic maps, eigenvalues
etc. under natural geometric assumptions.

On the other hand, there is the question of optimality. We say that a coupling Z of X and Y
is optimal at time ¢ if

PIT(Z) <f] > PIT(Z) < ¢

holds for any other coupling Z. Though Kendall-Cranston coupling has a good feature as
mentioned, in general there is no reason why it should be optimal.
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The Kendall-Cranston coupling is optimal if the underlying space has a good symmetry. For
example, in the case M = R?, the Kendall-Cranston coupling (Z("), Z()) is nothing but the
mirror coupling. It means that Zt(Q) = \IJ(Zt(l)) up to the time they meet, where U is a
reflection with respect to a hyperplane in R? so that ¥(X() = Y. It is well known that the
mirror coupling is optimal. Indeed, it is the only coupling which is optimal and Markovian [2].
More generally, the same result holds if there is a sort of reflection structure like a map ¥ on
R (see [4]).

In this paper, we show that the Kendall-Cranston coupling is not optimal in general.

Theorem 1.1 For eacht > 0, there is a complete Riemannian manifold M where the Kendall-
Cranston coupling of two Brownian motions X. and Y. with specified starting points is not
optimal.

The proof of Theorem 1.1 is reduced to the case t = 1 by taking a scaling of Riemannian
metric. We construct a manifold M in the next section and prove Theorem 1.1 in section 3.

Notation: Given a Riemannian manifold N we denote by B (x) or simply B,(z) the open
ball in N of radius r centered at x.

Given a Brownian motion (X;);>0 on N we denote by 74 = inf {¢t >0 : X, € A} the hitting
time of a set A C N. We remark that, throughout this article, 74 always stands for the hitting
time for the process (X;);>0 even when we consider a coupled motion (Xy,Y};)>o0.

2 Construction of the manifold

We take three parameter R > 0,¢ > 0 and § > 0 such that ( < R/4 and § < (/3. Let
C =R x S! be a cylinder with a flat metric such that the length of a circle S equals ¢. For
simplicity of notation, we write z = (r,0) for z € C where r € R and 0 € (—(/2,(/2] such
that the Riemannian metric is written as dr? 4+ d6?. If appropriate, any 6 € R will be regarded
mod ¢ and considered as element of (—(/2,(/2]. We put

M = ([-R,00) x §1)\ B§((0,¢/2)) ¢ C

and write 9y 0 := 0BS ((0,(/2)) as well as 0 5 := {—R} x St (see Fig.1). Let C’ be a copy of
C. Then we put analogously

M, := ((—o0, R] x SM)\ BS ((0,0)) c ¢’

and write da o := ABS ((0,0)) as well as ds 1 := {R} x S'. Let My = S* x [~1,1] be another
cylinder. We write z € Mg by z = (¢, r) where ¢ € (0,27 and r € [—1,1]. Now we define a
C*°-manifold M (see Fig.2) by M = M, U M; U My /~, where the identification “~” means

81729(—R, Q)N(R, C/2—9)662,1 fOr@E(—C/Q, C/Q},
103 (dcosg, (/2 —dsing) ~ (¢, —1) € My for ¢ € (0, 27]
02,0 2 (0 cose, dsing) ~ (p, 1) € My for ¢ € (0, 27 .

We endow M with a C*°-metric g such that (M, g) becomes a complete Riemannian manifold
and:

(i) g|ar, coincides with the metric on M; inherited from C,
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(ii) g|ar, coincides with the metric on Ms inherited from C”,
(iii) g|as, is invariant under maps (0,r) — (6, —r) and (0,7) — (6 + ¢, r) on My,
(iv) d((—1,0),(1,0)) = ¢ for z; = (—1,0),22 = (1,0) € My

where d is the distance function on M.

3 Comparison of coupling probabilities

Let M be the manifold constructed above (with suitably chosen parameters R, { and ) and
fix two points x = (0,(/6) € My and y = (0,(/3) € Mo.

In this paper, the construction of Kendall-Cranston coupling is due to von Renesse [5]. We
will try to explain his idea briefly. His approach is based on the approximation by coupled
geodesic random walks {2¥},cny starting in (z,y) whose sample paths are piecewise geodesic.
Given their positions after (n — 1)-th step, one determines its next direction &, according to
the uniform distribution on a small sphere in the tangent space and the other does it as the
reflection of &, along a minimal geodesic joining their present positons. We obtain a Kendall-
Cranston coupling (X;,Y;) by taking the (subsequential) limit in distribution of them. We
will construct another Brownian motion (}A’t)tzo on M starting in y, again defined on the same
probability space as we construct (X, Y;) such that

P (X and Y meet before time 1) < P (X and Y meet before time 1) .

In other words, if Q denotes the distribution of (X,Y) and Q denotes the distribution of (X,Y")
then
Proposition 3.1 Q[T <1] < Q[T <1] .

Our construction of the process Y will be as follows. We define a map ¢ : M; — My by
O((r,0)) = (—r,(/2 — 0) and then put
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(i) Vi = ®(X,) for t € (0,79, , AT);
(ii) X and Y move independently for ¢ € [Ta,,,T) in case 75, , < T}
(iii) ¥; = X, for t € [T, 00).

Note that 75, , = T" holds when 75, , < 75, , under Q.
Set H = S' x {0} C My C M. For 21,2 € M and A C M, minimal length of paths joining z;
and zo which intersect A is denoted by d(z1, 22 ; A). We define a constant Lo by

s Cd(z1, 22 H) > d(2z1, 22501 ,2)
LO ;= inf {L € (57R} ’ for some z21 = (L’e) c M],ZQ — (L7</2 _0) e M2 .

Lemma 3.2 R—( < Lo < R.

Proof. First we show Lo < R. Let z; = (R,0) € M; and 23 = (R,(/2) € M,. Obviously
there is a path of length 2R joining z; and 2z across 0y 2. Thus we have d(z1, 22 ;01,2) < 2R.
By symmetry of M,

(21,20 H) = 2d(z1, H) = 2 (d(zl,al,o) + g) =2 (\/R2 +(2/4— 5) +( > 2R,

where the second equality follows from the third and fourth properties of g and the last
inequality follows from the choice of §. These estimates imply Lo < R.

Next, let 21 = (R —(,0) € M; and 25 = (R —(,(/2 — 0) € M,. In the same way as observed
above, we have

d(Zi,Zé;H)=2( (R—C)2+92—6)+C§2R—26.

Note that the length of a path joining z{ and z5 which intersects both of 91 2 and H is obviously
greater than d(z],z5 ; H). Thus, in estimating d(z1, 25 ;01 2), it is sufficient to consider all
paths joining 2] and z5 across 01 2 which do not intersect H. Such a path must intersect both
{6} x S* € M; and {—4} x S' C M; (see Fig.3). Thus we have

(21,25 3012) > d(z1, {0} x S') + d({=8} x 5,1 2) + d(D21, 25)
> (R=C—8)+(R—8)+¢
=2R — 2.

Hence, the conclusion follows. O

Set M{ = M N [—Lo,Lo] x St c C and Mé = My N [—Lo,Lo] x St c C'. We define a
submanifold M’ C M with boundary by M’ = MyU M UM}, /~ (see Fig.4). Let ¥ : M’ — M’
be the reflection with respect to H. For instance, for z = (r,0) € M{, ¥(z) = (r,(/2—-0) € M},.
Note that U is an isometry, U o ¥ =id and {z € M'; ¥(z) = z} = H.

Let X' be the given Brownian motion starting in = and now stopped at M’ i.e. X{ = X, .,
Define a stopped Brownian motion starting in y by Y, = ¥(X]) for t < 77 and by Y; = X}
for t > 7y (that is, the two Brownian particles coalesce after 7). Then we can prove the
following lemma.

Lemma 3.3 The law of (Xiar,,,,, Yinry,, )i>0 coincides with that of (X{,Y/)i>o.
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Proof. Note that the minimal geodesic in M joining z and ¥(z) must intersect H for every
z € M’ by virtue of the choice of Lg. Thus, by the symmetry of M’ with respect to H, coupled
geodesic random walks = are in E defined by

E = {(z.(l),z.(2)) € C([0,00) = M x M) ; z§2) = \Il(zt(l)) before ") exits from M’}

(cf. Theorem 5.1 in [4]). Since £ is closed in C([0,00) — M x M), (X.,Y.) € E holds P-almost
surely by taking a (subsequential) limit in distribution of {=*},cy. Thus the conclusion follows.
O

We now begin to show Proposition 3.1. First we give a lower estimate of Q [T" < 1]. Let

v(a) = {(x1,22) € R?; 23 =a}, a €R,

A(8) = nLgJZBEZ <<< <n+ %) o)) .

The remark after the definition of Q implies
Qr<1>0Q [T <1, 79, <o, = Q [To,, S 1A T,
By lifting X; to R2, the universal cover of C,
Q[rors < 1ATo, ] = P [1y(m) < LATA)]
> P [rym) < 1, Tags) > 1]
> PR [rp < 1] = P¥ [ra0) <1]. (3.1)

Here P®* and P® denote the usual Wiener measure for Brownian motion (starting at the origin)
on R? or R, resp. For simplicity, we write 75 instead of T{R}-
Next we give an upper estimate of Q [T' < 1]. Let F := {7'3110 < 1 AT7ony } Then

Q[E] = P[E] < P* [r45) < 1].
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Note that, on {T' < 1} N E°, X must hit M’ before T'. It means
QT <1}NE]=Q[{rom <T <1}NE“].

By Lemma 3.3, Y., , = V(X,, ,)on E°under Q. In order to collide two Brownian motions
starting at X, , and U(X,, ), either of them must escape from the flat cylinder of length
2(Lo — ¢) where its starting point has distance Ly — ¢ from the boundary. This observation
together with the strong Markov property yields

Q{romr < T <1}NE]=Q {Q(x (X

<2Q[P* [7- (1) A TLo—5 < 1 =8| ls=rpy s Torr < 1A Toy ]
<4Q []P’R [TLo—s < 1 — 5] ‘s:-raM/ sTomr < 1A 7'81,0] :

T <1—=58]|s=r,,, iTomr < 1A Tal,o}

Tom’’ Tom’ )

By Lemma 3.2 and the definition of ¢ and §, we have Ly — 6 > R —( — § > 2R/3. Thus

(Lo —9)?
2

2R?

S 2€Xp —T P [TaM/ <1A Tal,o] .

Q [IP’R [TLo—s <1 = 8]|s=ry,, s Tomr <1 /\T@LD] < 2exp (— ) P [T@M/ <1 /\T@LD]

By lifting X, to R2?, we have
P [TaM/ <1A 7-81,0] < PR’ [T’Y(Lo) ANTy(—Lo) < 1A TA(5)] < 2P® [T, < 1] < 2Pk [Tr—¢ < 1].

Here the last inequality follows from Lemma 3.2. Consequently, we obtain

2 2R?
Q[T <1] <P¥ [ra@) < 1] + 16exp <_T) P*[rr_¢ < 1]. (3.2)

Now take R > 3v/2log2. After that we choose ¢ so small that P® [rp_ < 1] ~ PR [rp < 1].

Finally we choose § so small that P [Ta(s)y < 1] & 0. Then Proposition 3.1 follows from (3.1)
and (3.2).
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