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Abstract. We develop a theory of martingales with values in metric spaces of nonpositive cur-
vature. Our main results state existence of (continuous-time) martingales (Xt)0≤t≤T with given
terminal data XT . These processes will be constructed via time discretization. The notion of
discrete-time martingale is based on the concept of iterated conditional barycenters. Moreover,
in more specific cases we present martingale characterizations.

Introduction

In terms of Ito’s calculus, the martingale theory for time-continuous processes in Rn could be
successfully generalized to the case of Riemannian manifolds. Moreover, this definition turned
out to be equivalent to Darling’s characterization in terms of convex functions, being a localized
version of Jensen’s inequality (cf. [Dar82]). In singular metric spaces one does not have a smooth
calculus, so the former definition cannot be extended. The latter, can easily be extended to define
(’weak’) martingales with values in metric spaces. However, for general metric spaces the main
question remains to prove existence and uniqueness of martingales with given terminal data.
So far, existence results are only known in manifolds and trees, and typically the technique of
approximation of iterated barycenters is used (cf. [Ken90], [Pic91], [Arn95], [Pic04]).

In this paper we use the above technique in order to develop a theory of (’strong’) martingales,
based on time discretization and the concept of iterated barycenters in spaces of nonpositive
curvature (NPC spaces). The more elementary theory of time-discrete martingales with values
NPC spaces was already developed in [Stu02]. In order to define martingales for continuous-time
filtrations (Ft)0≤t≤T , we fix a refining sequence ∆n = {tn0 , tn1 , . . . , tnk(n)} of partitions of [0, T ]
with their mesh converging to 0. A process (Xt)0≤t≤T will be called martingale if it is the limit of
a sequence of processes (Xn

tn
k
)k=1,...,k(n) which are martingales with respect to the discrete-time

filtrations (Ftn
k
)k=1,...,k(n).

The main results of this paper will be two existence results for martingales (Xt)0≤t≤T with
given terminal data XT (Thm. 2.5 and Thm. 2.14). Moreover, we give a characterization of
martingales in terms of a ’quadratic variation process’ (Thm. 3.2). As a consequence, if N is a
Riemannian manifold, a continuous integrable semimartingale is a martingale if and only if it is a
∇−martingale in the classical sense. Moreover, on trees our definition is shown to be equivalent
to the one of Picard ([Pic04]).

1 NPC spaces

1.1 Barycenters and Expectations

Metric spaces with Curv ≤ κ in the sense of Alexandrov are defined by comparing geodesic
triangles in the two-dimensional Model space with constant curvature κ. For more details the
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reader is referred to [BH99]. Here we are interested in the case Curv ≤ 0, or in other words,
nonpositive curvature (NPC). Calculating Euclidean distances yields the following rigorous

Definition 1.1 A complete separable geodesic space (N, d) is called NPC-space if

d2(z, γ(t)) ≤ (1− t)d2(z, γ(0)) + td2(z, γ(1))− t(1− t)d2(γ(0), γ(1)) (1)

for any z ∈ N , any geodesic γ : [0, 1] → N and any t ∈ [0, 1].

A consequence of this definition is Reshetniak´s Quadruple inequality (cf [Jos97]) which we quote
for later use. Namely, for all x1, x2, x3, x4 ∈ N ,

d2(x1, x3) + d2(x2, x4) ≤ d2(x2, x3)d2(x1, x4) + 2d(x1, x2)d(x3, x4) (2)

Example 1.2 The following classes of spaces are NPC spaces:

• Complete Riemannian manifolds with nonpositive sectional curvature

• Hilbert spaces

• Bruhat Tits buildings, in particular metric trees

Moreover, if M is an NPC space and (Ω,F , P ) is a probability space, then L2(F , N) is an NPC
space, too (cf [Jos97]).

Let (N, d) be a complete separable metric space. Denote by P(N) the set of all probability
measures on (N,B(N)) and by Pθ(N) the set of p ∈ P(N) with

∫
dθ(x, y)p(dy) < ∞ for some

(and by the triangle inequality all) x ∈ N . On P1(N), we define the (L1-) Wasserstein-distance
by

dW (p, q) := inf
{∫

N2
d(x, y)µ(d(x, y)) : µ ∈M(p, q)

}
, (3)

where M(p, q) is the set of all couplings of p and q, i.e. all probability measures µ ∈ P(N2)
whose marginals are p and q, i.e.

µ(A×N) = p(A) and µ(N ×A) = q(A) (∀A ∈ B(N)).

Definition 1.3 A barycenter map is a map b : P1(N) → N satisfying

(i) b(δx) = x for all x ∈ N

(ii) d(b(p), b(q)) ≤ dW (p, q) for all p, q ∈ P1(N)

In NPC spaces, there is a canonical barycenter map in the following sense: From (1) follows that
for z ∈ N the function

fz(y) := d2(z, y) (4)

is strictly convex. Thus, a barycenter can be defined as the minimizer of the mean squared
distance in the spirit of C.F. Gauß. For details and proofs of the following Proposition we refer
to [Stu02] and [EF01].

Proposition 1.4 Let N be an NPC space. Then there is a unique barycenter map b : P1(N) →
N such that for all p ∈ P2(N)∫

d2(x, b(p))p(dx) ≤
∫

d2(x, z)p(dx)

for all z ∈ N . This map is called canonical barycenter and has the following properties:
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(i) (Variance inequality) For all p ∈ P2(N) and z ∈ N ,∫
d2(x, z)p(dx) ≥

∫
d2(x, b(p))p(dx) + d2(b(p), z). (5)

(ii) (Jensen’s inequality) For all p ∈ P1(N) and all lower semicontinuous convex fuctions
ϕ : N → R,

ϕ(b(p)) ≤
∫

ϕ(x)p(dx).

Remark 1.5 (i) If N is a Cartan-Hadamard-manifold, then the above barycenter is the expo-
nential barycenter (or Karcher´s mean), cf e.g. [ÉM91]. In general Riemannian manifolds, there
need not exist a barycenter map anymore and things become more involved, cf [Ken92].
(ii) Other barycenter maps in metric spaces were constructed in [LT91] and [ESH99].

Let (Ω,F , P ) be a probability space and X ∈ L1(F , N), the space of all F−measurable random
maps such that P ◦X−1 ∈ P1(N). Let G ⊂ F be a sub-σ-algebra and let PX|G : Ω → P(N) be
the regular conditional probability for X given G which exists and is a.s. unique because N is
separable. Then

EG [X] := E[X|G] := b ◦ PX|G

is called the conditional expectation of X, conditioned on G.
EG [X] : (Ω,G) → (N,B(N)) is measurable, which can be shown by approximating X by a
sequence of random variables with finite range, or directly by showing that PX|G : (Ω,G) →
(P(N),B(P(N))) is measurable, where B(P(N)) is the Borel σ−algebra induced by the topology
of the Wasserstein distance.
In particular, if G = {∅,Ω}, then

E[X] := EG [X]

is a constant and is called the expectation of X.

Example 1.6 Let (M,ρ) be a separable metric space. Let (pt)t>0 be a Markovian transition
function on M and (Ω, Xt,Ft, P

x) the corresponding Markov process with canonical filtration.
For a measurable map f : M → N such that pt(x) ◦ f−1 ∈ P1(N) for all t and x (where pt(x) is
regarded as a probability measure on M), we define the nonlinear Markov operator Ptf : M → N
by

Ptf(x) := b(pt(x) ◦ f−1). (6)

If we put Yt := f(Xt) then for all x ∈ M

Px
Ys+t|Fs

(ω) = pt(Xs(ω)) ◦ f−1

and hence Ex[Ys+t|Fs] = Ptf(Xs).

1.2 Martingales in Discrete Time

We will now come to the notion of martingales. Let (Ω, (Fn)n∈N,F , P ) be a filtered probability
space, m ∈ N and X ∈ L1(Fm, N). Unfortunately, the conditional expectation is in general not
projective, i.e. for k ≤ l ≤ m the classical identity

EFk [X] = EFkEFl [X]
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does not hold in general (c.f. [Stu02], Example 3.2.).
However, we can define the discrete filtered conditional expectation (short: FCE) of X w.r.t.
(Fn)n∈N by

E(Fn)n≥k [X] := E[X|(Fn)n≥k] :=
{

EFkEFk+1 . . .EFm−1 [X] if k < m
X if k ≥ m.

Clearly,
E(Fn)n≥k [X] = E(Fn)n≥k [E(Fn)n≥l [X]] for all k ≤ l

or in words, the discrete FCE is projective.
We will call an adapted process (Xn)n∈N such that Xn ∈ L1(Fn, N) for all n a martingale if
E(Fn)n≥k [Xl] = Xk for all k ≤ l, or equivalently, if EFk [Xk+1] = Xk for all k ∈ N.

As we have seen, the canonical barycenter enjoys certain properties, in particular the variance
inequality and Jensen’s inequality. In [Stu02] was developed a discrete-time martingale theory.
We will shortly quote some results, which can be derived from Proposition 1.4:

Proposition 1.7 Let (Xn)n∈N0 be a martingale. Then

(i) (ϕ(Xn))n∈N is a submartingale for all lower semicontinuous convex functions ϕ : N → R
such that ϕ(Xn) ∈ L1 for all n.

(ii) Let Xn ∈ L2(Fn, N) for all n. Define

Vn :=
n∑

k=1

EFk−1 [d2(Xk−1, Xk)].

Then fz(Xn)− Vn := d2(z,Xn)− Vn is a submartingale for all z ∈ N . �

1.3 Martingales in Continuous Time

Let 0 ≤ s < t ≤ ∞ and (Ω, (Fτ )s≤τ≤t,F , P ) be a filtered probability space and ξ ∈ L1(Ft, N).
In order to define FCE in continuous time, we take a sequence of partitions of [s, t] with their
mesh converging to 0 and consider the limit of the discrete FCE, provided it exists.
In order to formulate this rigorously, we need some notation. A partition of [0,∞[ is a set
∆ = {tk : k ∈ N} such that t0 = 0, tk < tk+1 and tk →∞ as k →∞. The mesh of ∆ is defined
by

‖∆‖ := sup
tk∈∆

|tk+1 − tk|.

For the sequel we fix a sequence (∆n)n∈N of partitions of [0,∞[ such that ∆n ⊂ ∆n+1 and
‖∆n‖ → 0 and put T :=

⋃
∆n. T is a dense subset of [0,∞[.

Let n ∈ N and s, t ∈ ∆n such that s < t. Then ∆n ∩ [s, t] = {t0, . . . , tm} with s = t0 <
t1 < · · · < tm = t. For ξ ∈ L1(Ft, N) we define

ξn
tk

:= E∆n

k [ξ] := EFtk EFtk+1 . . .EFtm−1 [ξ], k = 0 . . .m− 1

and the elementary process
ξn
τ := ξn

tk
for τ ∈ [tk, tk+1[. (7)
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Note that (ξn
tk

)0≤k≤m is the martingale w.r.t. the discrete-time filtration (Ftk
)0≤k≤m with end-

point ξn
m = ξ. If ξn

s converges to some (ξs) in L1, then ξs is called the (continuous-time) FCE of
ξ w.r.t (∆n)n∈N, conditioned on Fs and we write

E(Fτ )τ≥s [ξ] := ξs.

Now we can introduce the notion of a martingale.

Definition 1.8 Let (Ω, (Ft)t∈T,F , P ) be a filtered probability space and X = (Xt)t∈T be a process
such that Xt ∈ L1(Ft, N) for all t ∈ T. X is called a martingale w.r.t. (∆n)n∈N if for all s, t ∈ T
with s ≤ t, E(Fτ )τ≥s [Xt] exists and is equal to Xs.

Theorem 1.9 Let X = (Xt)t∈T be a martingale. Then (ϕ(Xt))t∈T is a submartingale for all
lower semicontinuous convex functions ϕ : N → R such that ϕ(Xt) ∈ L1 for all t.

Proof : Let s, t ∈ T with s < t. Put ξ := Xt. We use the notation of (7). Then ξn
s → Xs in L1,

and by choosing a subsequence we can assume that ξn
s → Xs P−a.s. Now ϕ(ξn

s ) ≤ EFs [ϕ(Xt)]
for all n, P−a.s. Due to the lower semicontinuity of ϕ we have

ϕ(Xs) ≤ lim inf
n→∞

ϕ(ξn
s ) ≤ EFs [ϕ(Xt)] P-a.s.�

Another feature of a martingale is that it ’respects’ the product structure of NPC spaces. For
instance, let (N1, d1), (N2, d2) be two NPC spaces. On N1 ×N2 define the product distance by
d2((x1, x2), (y1, y2)) := d2

1(x1, y1) + d2
2(x2, y2). Then N1 ×N2 is again an NPC space, cf [Jos97].

Proposition 1.10 Let N1, N2 be two NPC spaces. Let (X1
t )t∈T and (X2

t )t∈T be two adapted
processes in N1 and N2, respectively. Then (X1, X2) is a martingale in N1 ×N2 if and only if
Xi is a martingale in Ni for i = 1, 2.

Proof : The definition of the canonical barycenter implies that if pi ∈ P2(Ni), then b(p) =
(b(p1), b(p2)) for any coupling p of p1 and p2. Since P2(Ni) is dense in P1(Ni), this is also true
for pi ∈ P1(Ni). So if Xi ∈ L1(F , Ni), then EG [(X1, X2)] = (EG [X1],EG [X2]) and consequently
the assertion holds for time-discrete martingales. Thus by approximation the Proposition is
proved. �

It is known that the distance function is convex on N ×N , cf [Jos97]. So combining the above
proposition and Theorem 1.9 immediately yields

Corollary 1.11 Let (Xt)t∈T and (Yt)t∈T be two martingales w.r.t. the same filtration and se-
quence of partitions. Then the distance process (d(Xt, Yt))t∈T is a submartingale.

In particular, if (Xt)t∈T is a martingale, then (d(Xt, z))t∈T is a submartingale for all z ∈ N . Thus
X is a martingale in the sense of [Dos62]. For these ’martingales’, Doss proved a convergence
theorem; for a proof see e.g. [Stu02]).

Recall that a complete metric space is called proper if all closed balls are compact. For instance,
an NPC space is proper if and only if it is locally compact (cf. [Bal95]).

Proposition 1.12 (Convergence Theorem) Let (Ω,F , (Fn)n∈N, P ) be a filtered probability
space and N a proper metric space. Let (Xn)n∈N be an adapted process such that d(z,X) is a
submartingale with supn∈N E[d(z,Xn)] < ∞ for all z ∈ N . Then there is an F∞− measurable
map X∞ : Ω → N such that

lim
n→∞

Xn = X∞ P-a.s.

If d(X, z) is uniformly p−integrable, then we also have convergence in Lp.
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Remark 1.13 (i) One can prove a corresponding backward martingale convergence theorem,
i.e. for decreasing filtrations.

(ii) The convergence theorem immediately implies an analogous result for contiuous-time pro-
cesses (Xt)t∈T and hence we have the following

Corollary 1.14 Let N be a proper NPC space and let (Xt)t∈T be a martingale such that supt∈T E[d(z,Xt)] <
∞ for all z ∈ N . Then there is an F∞− measurable map X∞ : Ω → N such that

lim
t→∞

Xt = X∞ P-a.s.

If d(X, z) is uniformly p−integrable, then we also have convergence in Lp.

2 Existence of FCE and martingales

Given a filtered probability space (Ω,Ft,F , P ), we want to formulate conditions under which
we can prove existence of continuous-time FCE’s, or equivalently, of martingales with prescribed
limit. For similar results in the case of Riemannian manifolds, see e.g. [Ken90], [Pic91] and
[Arn95].

2.1 A coupling condition

For simplicity, we will only consider dyadic partitions. More precisely, let ∆n := {k2−n : k ∈ N}
and T :=

⋃
∆n, the set of nonnegative dyadic numbers.

Let (Ω, (Ft)t∈T,F , P ) be a filtered probability space such that Ω is a Polish space and F ⊂ B(Ω).
Then for all s ∈ T, the regular conditional probability of P given Fs, denoted by

Qs(ω) := Pid|Fs
(ω) ∈ P(Ω), (8)

exists and is unique. Let (ρt)t∈T be a family of symmetric nonnegative functions on Ω × Ω.
Assume that each of the ρs is a.s. separable in the sense that there is a countable set Ω1 ⊂ Ω
such that for all s ∈ T and almost all ω ∈ Ω

inf{ρs(ω, ω̃) : ω̃ ∈ Ω1} = 0. (9)

Moreover, assume that for all t, s ∈ T with s ≤ t

ρW
t (Qs(ω1), Qs(ω2)) ≤ ρs(ω1, ω2) (10)

where ρW
t is defined as in (3). Note that since ρt need not be a metric on Ω, ρW

t will not be a
metric in general.

Let now N be an NPC space and put

LN := {Y : Ω× T → N : E[d(Ys, z)] < ∞ for all s ∈ T and z ∈ N}.

For Y ∈ LN we define a new process PtY ∈ LN by

PtY (ω, s) := EFs [Yt+s](ω) = b(Qs(ω) ◦ Y −1
t+s). (11)
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Lemma 2.1 Let Y ∈ LN be a process such that for all s ∈ T and almost all ω1, ω2

d(Ys(ω1), Ys(ω2)) ≤ Cρs(ω1, ω2). (12)

Then
d((Pn

t Y )s(ω1), (Pn
t Y )s(ω2)) ≤ Cρs(ω1, ω2).

Proof : Let n = 1. From (12) and (10) it follows that

dW (Qs(ω1) ◦ Y −1
t+s, Qs(ω2) ◦ Y −1

t+s) ≤ CρW
s+t(Qs(ω1), Qs(ω2))

≤ Cρs(ω1, ω2)

and hence by the barycenter contraction property we derive the claim for n = 1. For arbitrary
n, this can be iterated. �

A process Y satisfying (12) is a kind of ’Lipschitz continuous’ map (regarding the ρt as a family
of pseudometrics on Ω). We set

Lip(Ω, N) := {Y ∈ LN : Y satisfies (12) }

Theorem 2.2 Let N be a proper NPC space. Let (Ω, (Ft)t∈T,F , P ) be a filtered probability
space satisfying (10). Then there is a subsequence nk such that for all Y ∈ LN satisfying (12),
all s, t ∈ T and almost all ω ∈ Ω

P ∗
t Y (ω, s) := lim

k→∞
P

t/δk

δk
Y (ω, s)

exists, where δk := 2−nk . The family (P ∗
t )t≥0 is a semigroup acting on Lip(Ω, N). Moreover,

for any t, the process ((PtY )s)s∈T is a martingale.

Proof : First note that by Corollary 1.11,

d(Pn
t Y (ω, s), Pn

t Ỹ (ω, s)) ≤ EFs [d(Ys+nt, Ỹs+nt)](ω) (13)

for almost all ω. Thus there is a set Ω0 ⊂ Ω with P (Ω0) = 1 such that (10) and (13) hold
pointwise for all s, t ∈ T, n ∈ N and ω ∈ Ω0.
Fix t ∈ T. Let s ∈ T. and ω ∈ Ω0. Put zn(ω, s, Y ) := P t2n

2−nY (ω, s) ∈ N , where n is assumed
to be large enough such that t2n ∈ N. Let z ∈ N . From (13), applied to Y and the constant
process Ỹ (ω, s) ≡ z, follows that

d(zn(ω, s, Y ), z) ≤ EFs [d(Ys+t, z)](ω) < ∞

for all n. In other words, all zn(ω, s, Y ) are contained in a closed ball, which is compact by
assumption. Thus there is a subsequence (nk) such that znk

(ω, s, Y ) converges. By passing to
another subsequence, again denoted by nk, znk

(ω, s, Y ) converges for all Y ∈ L0
N and s ∈ T.

Now since L1(Ω, N) is separable, there is a countable set L0
N ⊂ LN such that for all s ∈ T

inf{Ed(Ys, Ỹs) : Ỹ ∈ L0
N} = 0.

and hence by (13), a standard ε/3−argument yields that znk
(ω, s, Y ) converges for all Y ∈ LN

and s ∈ T. Finally, since Ω1 is countable, we find a subsequence, again denoted by (nk), such
that znk

(ω̃, s, Y ) converges for all ω̃ ∈ Ω1, Y ∈ LN and s ∈ T. By Lemma 2.1 we have

d(P t/δk

δk
Y (ω1, s), P

t/δk

δk
Y (ω2, s)) ≤ Cρs(ω1, ω2)
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for all k ∈ N and ω1, ω2 ∈ Ω0. Again an ε/3−argument yields that P
t/δk

δk
Y (ω, s) converges for

all ω ∈ Ω0, Y ∈ LN and s ∈ T.
Now for any t ∈ T, PtY is a martingale by construction. The semigroup property follows from
the projectivity of the filtered conditional expectation.�

Example 2.3 The previous Theorem becomes a bit clearer when the filtered probability space
comes from a Markov process. For instance, consider the situation of Example 1.6. Assume that
there exists a κ ∈ R such that

ρW (pt(x), pt(y)) ≤ eκtρ(x, y) ∀x, y ∈ M,∀t > 0 (14)

Now put ρt(ω, ω̃) := e−κtρ(Xt(ω), Xt(ω̃)). If the Markov semigroup is regular enough (e.g. if X
has continuous paths), then Ω can be chosen to be a polish space such that also (9) is fulfilled.
Since X is a Markov process, we have Qs(ω)◦X−1

t+s = pt(Xs(ω), ·) and hence (10) holds. Moreover,
for all f ∈ Lip(M,N) the process Yt := f(Xt) satisfies (12). Thus by Theorem 2.2, for all t ∈ T
and x ∈ M , P ∗

t Y exists under P x,the probability measure for the Markov process starting at
x ∈ M . If we set p∗t f(x) := (P ∗

t Y )0 (under P x), then (p∗t )t≥0 is a semigroup acting on Lip(M,N)
which is called the nonlinear semigroup associated with pt. In [Stu05] it is studied in great detail.
Geometrically, condition (14) can be regarded as a kind of lower curvature bound. For instance,
in [vRS04] was shown that if (M,ρ) is a Riemannian manifold and pt the heat kernel on M , then
(14) holds with κ if and only if RicM ≥ −κ.

With the same technique we can prove the existence of martingales with a given terminal value
Z. More precisely, fix T ∈ T and let Z ∈ L1(FT , N) such that there is some C > 0 such that for
almost all ω1, ω2 ∈ Ω,

d(Z(ω1), Z(ω2)) ≤ CρT (ω1, ω2) (15)

Lemma 2.4 Let Z ∈ L1(FT , N) satisfying (15). Put Yt := Z if t ≥ T and Yt ≡ y0 ∈ N if
t < T . Then for all s ∈ T with s ≤ T and all t ∈ T, n ∈ N and almost all ω1, ω2 ∈ Ω,

d((Pn
t Y )s(ω1), (Pn

t Y )s(ω2)) ≤ ρs(ω1, ω2).

Proof : Again we first prove the assertion for n = 1. Let s, t ∈ T such that s ≤ T . If s + t < T ,
then (PtY )s ≡ y0. Moreover, if s + t ≥ T , then

dW (Qs(ω1) ◦ Y −1
t+s, Qs(ω2) ◦ Y −1

t+s) ≤ CρW
T (Qs(ω1), Qs(ω2))

≤ Cρs(ω1, ω2).

An iteration in n now proves the Lemma. �

Theorem 2.5 Under the assumptions of Theorem 2.2, there is a subsequence such that for all
T ∈ T, all s ∈ T with s ≤ T and all Z ∈ L1(FT , N) satisfying (15), E(Fτ )τ≥s [Z] exists w.r.t.
the sequence of partitions ∆δk . In other words, for any such Z there is martingale (Xs)s∈T∩[0,T ]

with XT = Z.

Proof : Put Yt := Z if t ≥ T and Yt ≡ y0 ∈ N if t < T . We can now imitate the proof of
Theorem 2.2 except that we use Lemma 2.4 instead of Lemma 2.1. �

Example 2.6 (i) Let (Ω, (Ft)t≥0,F , P ) be the canonical Wiener space on Rd. Fix T ∈ R+ and
let Xt(ω) := ω(t ∧ T ) be the stopped process. Put

ρt(ω1, ω2) :=

{
u(‖Xt(ω1)−Xt(ω2)‖

2
√

T−t
) if t < T

1 if t ≥ T.
(16)
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where ‖ · ‖ denotes the Euclidean norm and u(r) := 2√
π

∫ r

0
e−y2/2dy.

Then condition (15) is equivalent to

Z ∈ L∞(FT , N).

Moreover, (10) is satisfied for all s ≤ t ∈ R+. Indeed, define metrics dt on Rk by dt(x1, x2) :=
u(‖x1−x2‖

2t ) for t > 0 and dt(x1, x2) := 1 for t ≤ 0 . Then according to [Stu05], Ex. 4.6. (i),
equation (22)

dW
s (pt(x1), pt(x2)) ≤ ds+t(x1, x2)

for all s, t ∈ R+ and x1, x2 ∈ Rd. Moreover, ρt(ω1, ω2) = dT−t(Xt(ω1), Xt(ω2)) and hence for all
s, t ∈ T with s < T

ρW
s+t(Qs(ω1), Qs(ω2)) = dw

T−(s+t)(Qs(ω1) ◦X−1
s+t, Qs(ω2) ◦X−1

s+t)

= dw
T−(s+t)(pt(Xs(ω1)), pt(Xs(ω2)))

≤ dT−s(Xs(ω1), Xs(ω2)) = ρs(ω1, ω2).

Note that (10) is trivially satisfied for s ≥ T . Thus by Theorem 2.5, for all Z ∈ L∞(FT , N)
there exists a martingale X with XT = Z.

(ii) Analogous arguments apply if (Ω, (Ft)t≥0,F , P ) is the standard path space for a Lévy process
on Rd with generator A = −Ψ(− 1

2∆), where Ψ is some Lévy function on R+ with Ψ(0) = 0. In
this case, the pseudo metrics ρt will be chosen as ρ(ω1, ω2) := 2u(T − t, ‖Xt(ω1),Xt(ω2)‖

2 ), where
u(s, r) =

∫
Rd 1[0,r](y1)ks(y)dy and the transition kernel (ks)s≥0 is given by its Fourier transform:

k̂s(y) = exp(−sΨ(‖y‖2/2), cf [Stu05] Ex. 4.6. (iii).

Remark 2.7 (i) Although in the two theorems of this section N was supposed to be an NPC
space with the canonical barycenter, in the proofs we only used the contraction property of this
barycenter, cf Definition 1.3. Thus these Theorems are also valid if N is more generally a proper
metric space with a barycenter map b : P1(N) → N .

(ii) Picard ([Pic04]) uses similar techniques in order to prove the existence of martingales with
prescribed terminal value of the form Y = f(XT ), where X is a Markov process on a metric space
M satisfying a certain coupling condition and f : M → N is uniformly continuous and bounded.
Although Picard stated his result only for trees, the techniques also apply in our context in order
to prove martingales along subsequences in general NPC spaces (or proper metric spaces with
barycenter).

Lemma 2.8 Let (M,F), (N,G) be measurable spaces such that M is a polish space and F ⊂
B(M). Let f : M → N and h : N×N → R be measurable maps. Define hf (x, y) := h(f(x), f(y)).
Then for all p1, p2 ∈ P(M) such that hf is intergrable for some µ ∈M(p1, p2) we have

hW
f (p1, p2) = hW (p1 ◦ f−1, p2 ◦ f−1).

Proof : Let µ ∈M(p1, p2). Then µ ◦ (f−1, f−1) ∈M(p1 ◦ f−1, p2 ◦ f−1) and∫
N×N

h(y1, y2)[µ ◦ (f−1, f−1)](d(y1, y2)) =
∫

M×M

hf (x1, x2)µ(d(x1, x2))

which implies that hW
f (p1, p2) ≥ hW (p1 ◦ f−1, p2 ◦ f−1).

For the other inequality put A := f−1(G). Then for i = 1, 2, the regular conditional probability
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pi
id|A exists, since M is polish. Let A ∈ B(M). Since x 7→ pi

id|A(x,A) is A−measurable, there
is a G−measurable map Ki

A : N → [0, 1] such that pi
id|A(x,A) = KA(f(x)) for all x ∈ M . Note

that Ki is a Markov kernel from (N,G) to Ω. Let now ν ∈ M(p1 ◦ f−1, p2 ◦ f−1). We define a
probability measure µ on M ×M by

µ(A1 ×A2) :=
∫

N×N

K1
A1

(y1)K2
A2

(y2)ν(d(y1, y2)).

It is easy to see that µ ∈M(p1, p2). Moreover, since Ki
f−1(B)(y) = 1B(y) for (pi ◦ f−1)− almost

all y ∈ N and all B ∈ G, it follows that µ = ν ◦ (f−1, f−1) and hence∫
M×M

h(f(x1), f(x2))µ(d(x1, x2)) =
∫

N×N

h(y1, y2)ν(d(y1, y2)).

Thus, hW
f (p1, p2) ≤ hW (p1 ◦ f−1, p2 ◦ f−1). �

2.2 Lower Curvature Bounds

Analogously to the case of upper curvature bounds, lower curvature bounds will be defined
by comparing triangles. Let us briefly sketch the definition. Let z ∈ N and γ : [a, b] → N
be a unit-speed geodesic. z and γ span a triangle. Let z and γ be a comparison triangle
in Hκ (the Hyperbolic plane of constant curvature −κ), i.e. d(γ(i), z) = d(γ(i), z), i = a, b
and d(γ(a), γ(b)) = d(γ(a), γ(b)) (such a comparison triangle always exists, cf [BH99]). Then
Curv(N) ≥ −κ means nothing else but d(γ(t), z) ≥ d(γ(t), z) for all z ∈ N , all geodesics
γ : [a, b] → N and t ∈ [a, b].
In the above situation define a function ga,b : [a, b] → R by ga,b(t) := d2(γ(t), z) (here the distance
is taken in Hκ). We have ga,b(t) ≤ fz(γ(t)) for all t ∈ [a, b] with equality if t = a and t = b.
Moreover, it follows from Riemannian comparison theorems (c.f. [Jos02], Thm. 4.6.1) that for
R > 0 there is a C = C(R) such that whenever γ([a, b]) ⊂ BR(z), then

0 ≤ 1
2
g′′a,b(t)− 1 ≤ Cd2(γ(t), z) ≤ Cd2(γ(t), z). (17)

In particular, g′′a,b is uniformly bounded for all geodesics which are contained in BR(z).

Lemma 2.9 Let ϕ : R → R be a convex function such that for all a, b with a < b there is a
smooth function ga,b : [a, b] → R such that ga,b(t) ≤ ϕ(t) for all t ∈ [a, b] and ga,b(a) = ϕ(a),
ga,b(b) = ϕ(b).
Let I be an open interval and c : I → [0,∞[ such that |g′′a,b(t)| ≤ c(t) for all a, b ∈ I and all
t ∈ [a, b]. Moreover, let

D := sup{|g′′′a,b(t)| : a, b ∈ I; t ∈ [a, b]} < ∞.

Then ϕ is differentiable in I and we have for all s, t ∈ I

|ϕ(s)− ϕ(t)− ϕ′(t)(s− t)| ≤ 1
2
c(t)(t− s)2 + D|t− s|3

Proof : Let ε > 0. We can assume that 0 ∈ I and, by adding an affine function if necessary,
that ϕ(0) = 0 and ϕ(t) ≥ 0 for all t ∈ [−ε, ε]. We show that ϕ is differentiable in 0. Since ϕ is
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convex, the one-sided derivatives ϕ′+(0) and ϕ′−(0) exist and a := ϕ′+ − ϕ′− ≥ 0. Thus ϕ is
differentiable in 0 if and only if a = 0.
Assume that a > 0. Then 0 = ϕ(0) ≤ 1

2 (ϕ(−ε) + ϕ(ε)) − a
2 ε. But g−ε,ε(0) ≤ 0 and hence there

is a ξ ∈]− ε, ε[ such that g′−ε,ε(ξ) = 0. Thus by the Taylor formula

ϕ(ε) ≤ g−ε,ε(ε)− g−ε,ε(ξ) ≤
1
2
c(ξ)(ε− ξ)2 ≤ 2Cε2.

The same holds for −ε. Letting ε → 0 yields a contradiction. Hence, a = 0 and so ϕ is
differentiable in 0.
Now we prove the second claim. Let t = 0 . Again we can add an affine function and can hence
assume that ϕ(0) = 0 and ϕ′(0) = 0. Let s ∈ I. Then Taylor’s formula yields

ϕ(s) = g0,ε(s)− g0,ε(0) ≤ g′0,ε(0)s +
1
2
c(0)s2 +

D

3
|s|3

≤ 1
2
c(0)s2 +

D

3
|s|3

because g′0,ε(0)s ≤ 0. �

Recall that the functions fz from (4) are convex. Hence we can define dfz
x(y) := limt→0

1
t (f

z(γ(t))−
fz(x)), where γ : [0, 1] → N is the unique geodesic from x to y.

Corollary 2.10 Let N be a geodesically complete NPC space of lower bounded curvature on all
balls, i.e. for all z ∈ N and all R > 0 there is a κ > 0 such that Curv(BR(z)) ≥ −κ. Let
z ∈ N . Then fz, is differentiable along geodesics, i.e. for all geodesics γ : R → N the map
fz ◦ γ is differentiable. Moreover, for all z0 ∈ N and all R > 0 there is a C > 0 such that for all
x, y, z ∈ BR(z0)

fz(y)− fz(x)− dfz
x(y)− d2(x, y) ≤ Cd2(x, z)d2(x, y) + Cd3(x, y)

Proof : Let x, y, z ∈ BR(z0). Let γ : R → N be the (unit-speed) geodesic with γ(0) = x and
γ(d(x, y)) = y. Let I := γ−1(BR(z0)). Then we can apply the preceding Lemma to ϕ := fz ◦ γ.
Note that dfz

x(y) = ϕ′(0)d(x, y). Moreover, by (17) we can choose c(t) = Cd2(z, γ(t))+1. Putting
this together proves the Corollary. �

Lemma 2.11 Let N be an NPC space of lower bounded curvature on all balls. Let X ∈ L2(F).
Then for all z ∈ N

(i)
EG [dfZ

EG [X](X)] = 0 P-a.s.

(ii) Let z0 ∈ N and R > 0 such that X(Ω) ⊂ BR(z0). Then there is a C > 0 such that for all
z ∈ BR(z0)

EG [d2(X, z)−d2(EG [X], z)− d2(X,EG [X])]

≤ CEG [d2(EG [X], z)d2(X,EG [X]) + Cd3(X,EG [X])]

Proof : Fix z ∈ N . For y ∈ N let γy : [0, 1] → N be the geodesic from y to z. Since N is
geodesically complete, we can extend it to a geodesic γ : R → N . Moreover, the map y 7→ γy(t)
is continuous for all t ∈ R.
Now put Y := EG [X]. Then γY (t) ∈ L2(G, N) for all t, hence γY is a geodesic in L2(G, N).
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Since t 7→ d2(X(ω), γY (ω)(t)) is differentiable for all ω by Corollary 2.10 (i), so is the map
t 7→ ϕA(t) :=

∫
A

d2(X(ω), γY (ω)(t))P (dω) for all A ∈ G. Moreover, since γY (0) = EG [X], 0 is
the minimizer of ϕA and hence∫

A

dfz
Y (X)dP =

∫
A

dfX
Y (z)dP = ϕ′A(0) = 0

for all A ∈ G, proving (i).
(ii) follows from (i) and Corollary 2.10. �

For the rest of this section let (∆n)n∈N be a refining sequence of partitions such that the mesh
converges to 0 as n tends to infinity. Put T :=

⋃
n∈N ∆n. The next Lemma will give a sufficient

condition for the existence of continuous-time FCE’s. Again we will use the notation of (7) and
define

vn,m
t :=

∑
tk∈∆n

Ed2(ξm
tk∧t, ξ

m
tk+1∧t). (18)

Let n ≤ m. Let ∆n = {tk : k = 0, . . . Kn}. Then an iterated application of the Variance
Inequality yields that for all Z ∈ L2(Ftk−1)

Ed2(ξ∆m

tk
, Z)−Ed2(ξ∆m

tk−1
, Z) ≥ vm,m

tk
− vm,m

tk−1
. (19)

Lemma 2.12 Let s < t. If

lim sup
n→∞

lim sup
m→∞

vn,m
t − vn,m

s − (vm,m
t − vm,m

s ) ≤ 0,

then ξn
s → E(Fτ )τ≥s [ξ] in L2.

Proof : Let ∆n = {tk : k = 0, . . . K}. Let k ∈ {0, . . . K}. Then (19) implies that

Ed2(ξn
tk−1

, ξm
tk−1

) ≤ Ed2(ξn
tk−1

, ξm
tk

)− (vm,m
tk

− V m,m
tk−1

)

and
Ed2(ξn

tk−1
, ξm

tk−1
) ≤ Ed2(ξn

tk
, ξm

tk−1
)−Ed2(ξn

tk−1
, ξn

tk
).

Adding up the two inequalities and applying the quadruple inequality (2) yields

2Ed2(ξn
tk−1

, ξm
tk−1

) ≤ Ed2(ξn
tk−1

, ξm
tk

) + Ed2(ξn
tk

, ξm
tk−1

)

−Ed2(ξn
tk−1

, ξn
tk

)− (vm,m
tk

− vm,m
tk−1

)

≤ Ed2(ξn
tk

, ξm
tk

) + Ed2(ξn
tk−1

, ξm
tk−1

)

+ Ed2(ξm
tk−1

, ξm
tk

)− (vm,m
tk

− vm,m
tk−1

)

and hence

Ed2(ξn
tk−1

, ξm
tk−1

) ≤ Ed2(ξn
tk

, ξm
tk

) + Ed2(ξm
tk−1

, ξm
tk

)− (vm,m
tk

− vm,m
tk−1

)

By iteration we get for all n ≤ m

Ed2(ξn
s , ξm

s ) ≤ vn,m
t − vn,m

s − (vm,m
t − vm,m

s ).

Thus, by assumption, ξn
s is a Cauchy sequence for all s ∈ T , converging to some ξs ∈ L2(Fs)

which is, by definition, equal to E(Fτ )τ≥s [ξ]. �
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Definition 2.13 Let ξt ∈ L2(Ft). ξ is called regular for (∆n)n∈N if the increments of vm,mt

are finally controlled by a continuous function, i.e. there is a continuous function vt such that
for all s, t ∈ T,

lim sup
m→∞

vm,m
t − vm,m

s ≤ vt − vs

Theorem 2.14 Let N be a geodesically complete NPC space of lower bounded curvature on all
balls. Let (Ω, (Ft)0≤t≤T ,F , P ) be a filtered probability space. Let t ∈ T and ξ ∈ L∞(Ft, N) be
regular for (∆n)n∈N. Then E(Fτ )τ≥s [ξ] exists for all s ∈ T.

Proof : Recall the notations of Lemma 2.12. Let n ≤ m. Let ∆n ∩ [s, t] = {tk : k = 0, . . . K}
and ∆m ∩ [s, t] = {sl : l = 0, . . . L}.

vn,m
tk

− vn,m
tk−1

= Ed2(ξm
tk

, ξm
tk−1

) =
∑

tk−1<sl≤tk

Ed2(ξm
sl

, ξm
tk−1

)−Ed2(ξm
sl−1

, ξm
tk−1

)

≤
∑

tk−1<sl≤tk

Ed2(ξm
sl

, ξm
sl−1

) + C
∑

tk−1<sl≤tk

Ed2(ξm
sl

, ξm
tk−1

)Ed2(ξm
sl

, ξm
sl−1

)

+ C
∑

tk−1<sl≤tk

E[d3(ξm
sl

, ξm
sl−1

)]

= V m,m
tk

− V m,m
tk−1

+ C
∑

tk−1<sl≤tk

Ed2(ξm
sl

, ξm
tk−1

)Ed2(ξm
sl

, ξm
sl−1

)

+ C
∑
sl

E[d3(ξm
sl

, ξm
sl−1

)]

≤ C̃(V m,m
tk

− V m,m
tk−1

).

Since ξ is regular, εn := suptk∈∆n,m≥n d2(ξm
tk

, ξm
tk−1

) tends to 0 as n → ∞. So, looking again at
the first inequality, we have

V n,m
t − V n,m

s ≤ V m,m
t − V m,m

s + C
∑
tk

∑
tk−1<sl≤tk

Ed2(ξm
sl

, ξm
tk−1

)Ed2(ξm
sl

, ξm
sl−1

)

+ C
∑
sl

E[d3(ξm
sl

, ξm
sl−1

)]

The second sum tends to 0 for n → ∞ by the preceding considerations. Clearly, the third sum
goes to 0, too. Hence the assumptions of Lemma 2.12 are satisfied and it follows that E(Fτ )τ≥s [ξ]
exists. �

3 Characterization of martingales

The next Theorem gives a characterization of martingales in terms of their ’quadratic variation’.
The prove will use similar techniques as those in Lemma 2.12. Again let (∆n)n∈N be a refining
sequence of partitions such that the mesh converges to 0 as n tends to infinity. Put T :=

⋃
n∈N ∆n.

Definition 3.1 We say that a process (Xt)t∈T has a quadratic variation if there is a nondecreas-
ing process (〈X〉t)t∈T such that for all t ∈ T, Xt ∈ L2(Ft) and

V n
t :=

∑
tk∈∆n

EFtk [d2(Xtk∧t, Xtk+1∧t)] → 〈X〉t

13



in L1 as n →∞.

Theorem 3.2 Let N be a separable NPC space and (Ω, (Ft)t∈T,F , P ) be a filtered probability
space. Let (Xt)t∈T be an adapted process with quadratic variation 〈X〉. Then X is a martingale
if and only if d2(Xt, z)− 〈X〉t is a submartingale for all z ∈ N .

Proof : The ’only if’-implication follows from Proposition 1.7.
For the ’if’-implication we first remark that since d2(Xt, z) − 〈X〉t is a submartingale for all
z ∈ N and N is separable, it follows that for all s < t and Z ∈ L2(Fs, N)

EFs [d2(Xt, Z)− d2(Xs, Z)− (〈X〉t − 〈X〉s)] ≥ 0 (20)

Let s, t ∈ T with s < t. Put ξ := Xt. We have to prove that ξn
s → Xs. Let ∆n ∩ [s, t] =

{t0, . . . , tm} with s = t0 < t1 < · · · < tm = t. Using the notation of (7), we have for k = 1, . . . m

d2(ξn
tk−1

, Xtk−1) ≤ EFtk−1 [d2(ξn
tk−1

, Xtk
)− (〈X〉tk

− 〈X〉tk−1)]

by (20), and the variance inequality yields

d2(ξn
tk−1

, Xtk−1) ≤ EFtk−1 [d2(ξn
tk

, Xtk−1)− d2(ξn
tk−1

, ξn
tk

)]

Adding up the two inequalities and applying the quadruple inequality (2) yields

2d2(ξn
tk−1

, Xtk−1) ≤ EFtk−1 [d2(ξn
tk−1

, Xtk
) + d2(ξn

tk
, Xtk−1)

− d2(ξn
tk−1

, ξn
tk

)− (〈X〉tk
− 〈X〉tk−1)]

≤ EFtk−1 [d2(ξn
tk

, Xtk
) + d2(ξn

tk−1
, Xtk−1)

+ d2(Xtk
, Xtk−1)− (〈X〉tk

− 〈X〉tk−1)]

and hence

d2(ξn
tk−1

, Xtk−1) ≤ EFtk−1 [d2(ξn
tk

, Xtk
) + (V n

tk
− V n

tk−1
)− (〈X〉tk

− 〈X〉tk−1)]. (21)

Iterating this yields

E[d2(ξn
s , Xs)] ≤ E[(V n

t − V n
s )− (〈X〉t − 〈X〉s)]

while the right-hand side tends to 0 as n tends to infinity. �

Remark 3.3 (i) From (21) follows that the process Sk := d2(ξn
tk

, Xtk
) + V n

tk
− 〈X〉tk

is a sub-
martingale w.r.t. the filtration (Ftk

)0≤k≤m. Let ε > 0. Then

P ( sup
0≤k≤m

d2(ξn
tk

, Xtk
) > ε) ≤ P ( sup

0≤k≤m
Stk

> ε) + P ( sup
0≤k≤m

|V n
tk
− 〈X〉tk

| > ε)

≤ 1
ε
E[|V n

t − 〈X〉t|] + P ( sup
0≤k≤m

|V n
tk
− 〈X〉tk

| > ε)

where the last inequality follows from Doob’s inequality. In particular, if V n → 〈X〉 locally
uniformly in L1, then ξn → X locally uniformly in L2.

(ii) If N is a Riemannian manifold, then Theorem 3.2 yields that every continuous ∇−martingale
is (locally) a martingale in our sense. Together with Corollary 1.9 we deduce that a continuous
semimartingale X such that Xt ∈ L2(Ft, N) is a ∇−martingale if and only if it is a martingale.
�
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3.1 Martingales in Stars

The simplest example of a singular NPC space is the n-star (or n-pod), a particular example
of a tree. In this section we will use Theorem 3.2 to show that our notion of martingales and
Darling’s characterization are basically the same for continuous processes.

A star is obtained by gluing n copies of [0,∞[ at 0. Let Ri := [0,∞[×{i} and N := (
⋃

i Ri)/∼,
where (ξ, i) ∼ (η, j) if and only if ξ = η = 0. The intrinsic distance is given by

d((ξ, i), (η, j)) :=
{
|ξ − η| if i = j
|ξ + η| if i 6= j.

(N, d) is an NPC space. For x ∈ N we define the i−th projection xi ∈ [0,∞[ by

xi :=
{
|x| if x ∈ Ri

0 else

For a function f : N → R we define functions fi : [0,∞[→ R by fi(ξ) := f((ξ, i)). Then we have
the decomposition

f(x) =
∑

i

(fi(xi)− f(0)). (22)

A stochastic calculus on stars was developed in [Pic04], and sufficient conditions for the existence
of weak martingales are given. For details we refer to that paper. Here we will briefly quote
some notations and results from there.

Let (Ω, (Ft)t≥0,F , P ) be a filtered probability space and X = (Xt)t≥0 be a continuous adapted
process. X will be called a semimartingale if ϕ(X) is a semimartingale for every convex function
ϕ : N → R. In this case the calculus of local times (c.f. [RY99]) yields

ϕ(Xt)− ϕ(Xs) =
∑

i

∫ t

s

1{Xi
τ >0}dϕi(Xi

τ ) +
1
2

∑
i

ϕ′+i (0)(Li
t − Li

s)

=
∑

i

[
∫ t

s

1{Xi
τ >0}ϕ

′−
i (Xi

τ )dXi
τ +

1
2

∫
]0,∞[

(Li,a
t − Li,a

s )ϕ′′i (da)]

+
1
2

∑
i

ϕ′+i (0)(Li
t − Li

s)

where Li,a denotes the local time at a of the [0,∞[−valued process Xi and ϕ′+i (t) (resp. ϕ′−i (t))
is the right (resp. left) hand side derivative of ϕ in t.

Picard defines a (local) martingale to be process such that ϕ(X) is a local submartingale for
all convex functions ϕ : N → R. We will refer to these processes as weak martingales. The
following Proposition from [Pic04] gives a characterization of weak martingales in terms of a
stochastic calculus. We denote with Σ+ the set of nonnegative local submartingales Y = M + A
such that A only increases at {Y = 0}, i.e.

∫ t

0
1{Ys 6=0}dAs = 0.

Proposition 3.4 Let (Ω, (Ft)t≥0,F , P ) be a filtered probability space such and let X be a con-
tinuous adapted process. Then X is a weak martingale if and only if Xi ∈ Σ+ for all i and the
local times Li of Xi at 0 satisfy

dLi
t/dLt ≤ 1/2 (23)

with Lt :=
∑

i Li
t.
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Lemma 3.5 Let (Xt) be a continuous semimartingale such that Xt ∈ L2(Ft, N) for all t. Put
〈X〉t :=

∑
〈Xi〉t, where 〈Xi〉 is the quadratic variation of the [0,∞)- valued semimartingale Xi.

Then ∑
tk∈∆

Ed2(Xtk
, Xtk+1) → 〈X〉t for ‖∆‖ → 0.

If X is a weak martingale, then for all s ≥ 0 and all Z ∈ L2(Fs) the process

(d2(Z,Xt)− 〈X〉t)t≥s

is a submartingale.

Proof : We apply the above decomposition to ϕ(y) := fXs(y) := d2(Xs, y) and get

d2(Xs, Xt) =
∑

i

[
∫ t

s

1{Xi
τ >0}(fXs)′−i (Xi

τ )dXi
τ + (〈Xi〉t − 〈Xi〉s)]

+
1
2

∑
i

(fXs)′+i (0)(Li
t − Li

s)

and for a partition∑
tk∈∆

d2(Xtk
, Xtk+1) =

∑
tk∈∆

∑
i

∫ tk+1

tk

1{Xi
τ >0}(fXtk )′−i (Xi

τ )dXi
τ

+
∑

i

(〈Xi〉t]

+
1
2

∑
tk∈∆

∑
i

(fXtk )′+i (0)(Li
tk+1

− Li
tk

)

=
∑

i

[
∫ t

0

Hi
τdXi

τ +
∫ t

0

Gi
τdLi

τ ] + 〈X〉t

with
Hi

τ :=
∑

tk∈∆

1{Xi
τ >0}(fXtk )′−i (Xi

τ )1]tk,tk+1](τ)

and
Gi

τ :=
∑

tk∈∆

(fXtk )′+i (0)1]tk,tk+1](τ).

Since Xt is continuous, Ht tends to 0 uniformly on [0, T ] a.s. and so does
∫ t

0
Hi

τdXi
τ . Moreover,

|Gi
t| = 2|Xt| and hence

|
∫ t

0

Gi
τdLi

τ | ≤ 2
∫ t

0

|Xτ |dLτ = 0

which proves the first claim.
For the second assertion we choose ϕ := fZ which yields

fZ(Xt)− fZ(Xs) =
∑

i

[
∫ t

s

1{Xi
τ >0}(fZ)′−i (Xi

τ )dXi
τ +

1
2
(fZ)′+i (0)(Li

t − Li
s)]

+ 〈X〉t − 〈X〉s.
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Now since X is a weak martingale, Xi ∈ Σ+ and hence
∫

1{Xi
τ >0}(fZ)′−i (Xi

τ )dXi
τ is a real-valued

martingale for all i, which yields

EFs [fZ(Xt)− fZ(Xs)] = EFs [
1
2

∑
i

(fZ)′+i (0)(Li
t − Li

s) + 〈X〉t − 〈X〉s].

Now |(fZ)′+i (0)| = |(fZ)′+j (0)|. Moreover, (fZ)′+j (0) < 0 only on {Z ∈ Rj}. Thus (23) yields
that

1
2

∑
i

(fZ)′+i (0)(Li
t − Li

s)(ω) ≥ 0

for all ω ∈ {Z ∈ Rj}. Since j is arbitrary, we get

EFs [fZ(Xt)− fZ(Xs)] ≥ EFs [〈X〉t − 〈X〉s].�

Theorem 3.6 Let (Ω, (Ft)t≥0,F , P ) be a filtered probability space such and let X be a continuous
adapted process such that Xt ∈ L2(Ft, N) for all t. Then the following are equivalent:

(i) ϕ(X) is a submartingale for any convex function s.t. ϕ(Xt) ∈ L1(Ft, R) for all t.

(ii) X is a martingale w.r.t. all sequences (∆n) of refining partitions of [0,∞[ such that the
mesh goes to 0.

(iii) X is a martingale w.r.t. one sequence (∆n) of refining partitions of [0,∞[ such that the
mesh goes to 0.

Proof : (i) ⇒ (ii) by the preceding Lemma and Theorem 3.2.
(iii) ⇒ (i): Let T :=

⋃
n∈N ∆n. Then (iii) yields that ϕ(Xt) ≤ EFs [ϕ(Xt)] for all s, t ∈ T with

s ≤ t. By continuity of X we can extend this to all s ≤ t ∈ [0,∞[. �
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