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On the Geometry of Metric Measure Spaces. II.

Karl-Theodor Sturm

This is a continuation of our previous paper [St04]1 ’On the Geometry of Metric Measure Spaces’
where we introduced and analyzed lower (’Ricci’) curvature bounds Curv ≥ K for metric mea-
sure spaces (M, d,m). The definition used there is based on convexity properties of the relative
entropy Ent(.|m) regarded as a function on P2(M, d), the L2-Wasserstein space of probability
measures on the metric space (M, d). For Riemannian manifolds, Curv(M, d,m) ≥ K if and
only if RicM (ξ, ξ) ≥ K · |ξ|2 for all ξ ∈ TM .
This notion of lower curvature bound is a dimension independent (or, in a certain sense, ’infinite
dimensional’) concept. In order to obtain more precise estimates one has to reinforce the curva-
ture bound Curv ≥ K to a curvature-dimension condition CD(K, N) involving two parameters
K and N playing in some generalized sense the roles of a lower bound for the Ricci curvature
and an upper bound for the dimension, resp.

The main topic of the present paper is the curvature-dimension condition CD(K, N) for metric-
measure spaces (M, d,m) . In some sense, it will be the geometric counterpart to the curvature-
dimension condition for Markov operators and Dirichlet forms by Bakry and Émery [BE85].
We will also study a weak variant of the latter, namely the measure contraction property
MCP(K, N). It is a slight modification of a property introduced in [St98] and in a similar
form in [KS03].
As in [St04], our definition of the curvature-dimension condition is based on a kind of convexity
property for suitable functionals on the L2-Wasserstein space P2(M, d). The previous curvature
condition Curv ≥ K is included as the limit case CD(K,∞). For finite N the basic object now
is the Rényi entropy functional

SN (ρm|m) = −
∫

ρ1−1/Ndm,

replacing the relative (’Shannon’) entropy

Ent(ρm|m) =
∫

ρ log ρ dm = lim
N→∞

N(1 + SN (ρm|m)).

For Riemannian manifolds, the curvature-dimension condition CD(K, N) will be satisfied if and
only if dim(M) ≤ N and RicM (ξ, ξ) ≥ K · |ξ|2 for all ξ ∈ TM .
Under minimal regularity assumptions, condition CD(K,N) will imply property MCP(K, N); the
latter will be strictly weaker. Roughly spoken, CD(K, N) is a condition on the optimal transport
between any pair of (absolutely continuous) probability measures on M whereas MCP(K,N) is
a condition on the optimal transport between Dirac masses and the uniform distribution on M .

One of the fundamental results is that the curvature-dimension condition as well as the mea-
sure contraction property are stable under convergence w.r.t. the distance D. The latter was
introduced in [St04] as a complete separable metric on the family of (isomorphism classes of)

1See also [St05a] for a comprehensive version.
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normalized metric measure spaces. Moreover, we deduce that for each triple (K, N, L) ∈ R3,
the family of normalized metric measure spaces (M, d,m) which have diameter ≤ L and which
satisfy condition CD(K,N) (or alternatively, property MCP(K, N)) is compact.

Furthermore, we present various geometric consequences of the curvature-dimension condition
(or alternatively of the measure contraction property). The most prominent among them being
the Bishop-Gromov theorem on the volume growth of concentric balls and the Bonnet-Myers
theorem on the diameter of metric measure spaces with positive lower curvature bounds. In
both cases, we obtain the sharp estimates known from the Riemannian case.
Of particular interest are the analytic consequences of property MCP(K,N). It allows to con-
struct a canonical Dirichlet form and a canonical Laplace operator on L2(M, m), it implies a
local Poincaré inequality, a scale invariant Harnack inequality, and Gaussian estimates for heat
kernel and it yields Hölder continuity of harmonic functions.

The curvature-dimension condition can be interpreted as a control on the distortion of infinites-
imal volume elements under transport along geodesics. Let us briefly try to explain this.
The curvature-dimension condition CD(0, N) — which besides the condition CD(K,∞) is the
easiest to formulate — simply states that for all N ′ ≥ N the functional SN ′(.|m) is convex on
the L2-Wasserstein space P2(M, d). In the Riemannian case, it was already observed in [St05]
that the latter characterizes manifolds with dimension ≤ N and Ricci curvature ≥ 0. This is
basically due to the fact that the Jacobian determinant Jt = det dFt of any ’transport’ map
Ft := exp(−t∇ϕ) : M → M satisfies

∂2

∂t2
J

1/N
t (x) ≤ 0 (0.1)

if and only if M has dimension ≤ N and Ricci curvature ≥ 0. Essentially equivalent to (0.1) is
the Brunn-Minkowski inequality:

m(At)1/N ′ ≥ (1− t) ·m(A0)1/N ′
+ t ·m(A1)1/N ′

(0.2)

for any N ′ ≥ N , any t ∈ [0, 1], and any pair of sets A0, A1 ⊂ M where At denotes the set of
point γt on geodesics with endpoints γ0 ∈ A0, γ1 ∈ A1.
The curvature-dimension condition CD(K, N) for general K and N is more involved. As a first
step, the inequality (0.1) can be replaced by

∂2

∂t2
J

1/N
t (x) ≤ −K

N
J

1/N
t (x) · d2(x, F1(x))

(see [St05], Corollary 3.4). A more refined analysis yields

J
1/N
t (x) ≥ τ

(1−t)
K,N ( d(x, F1(x))) · J1/N

0 (x) + τ
(t)
K,N ( d(x, F1(x))) · J1/N

1 (x) (0.3)

for t ∈ [0, 1] and x ∈ M where

τ
(t)
K,N (θ) = t1/N ·

(
sin (κ tθ)
sin (κ θ)

)1−1/N

with κ =
√

K
N−1 (and with appropriate interpretation if K ≤ 0). The curvature-dimension

condition CD(K,N) to be discussed in the sequel can be regarded as a robust version of (0.3).
Assume for simplicity that for m⊗m-a.e. (x, y) ∈ M2 there exists a unique geodesic t 7→ γt(x, y)
depending in a measurable way on the endpoints x and y. Then CD(K,N) states that that for
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any pair of absolutely continuous probability measures ρ0m and ρ1m on M there exists an
optimal coupling q such that

ρt(γt(x, y)) ≤
[
τ

(1−t)
K,N ( d(x, y)) ρ

−1/N
0 (x) + τ

(t)
K,N ( d(x, y)) ρ

−1/N
1 (y)

]−N
(0.4)

for all t ∈ [0, 1], and q-a.e. (x, y) ∈ M2 where ρt is the density of the push forward of q under
the map (x, y) 7→ γt(x, y). Roughly spoken, MCP(K, N) is the particular case where ρ0m is
degenerated to a Dirac mass. This amounts to say that for every x ∈ M and t ∈ [0, 1] the
’contracted measure’ mt,x := γt(x, .)∗m satisfies

t ·
[

sin (κ d(x, y))
sin (κ d(x, y)/t)

]N−1

mt,x(dy) ≤ m(dy). (0.5)

In the general case, the assumption of a measurable choice of a unique geodesic is replaced by
the assumption of a measurable choice of a measure on the geodesics.

Independently of [St05] and [St04], the particular cases CD(K,∞) and CD(0, N) of the curvature-
dimension condition — defined in essentially the same form — were also discussed in a recent
paper [LV04] by John Lott and Cédric Villani.

In the first chapter of this paper, we introduce the curvature-dimension condition and we deduce
some of the basic properties.
In the second chapter, we derive various geometric consequences of the curvature-dimension con-
dition like Brunn-Minkowski inequality, Bishop-Gromov volume growth estimate, and Bonnet-
Myers theorem.
The topic of chapter 3 is the stability of the curvature-dimension condition under convergence.
Moreover, compactness of families of normalized metric measure spaces with suitable bounds on
the diameter, the dimension and the curvature is deduced.
In chapter 4 we study the curvature-dimension condition under the additional assumption that
the underlying space is nonbranching.
In chapter 5 we introduce and study the measure contraction property, including its geometric
consequences, and its stability under convergence.
Chapter 6 is devoted to the analytic consequences of the measure contraction property, in
particular, the construction of Sobolev spaces and Dirichlet forms as well as the derivation of a
scale invariant local Poincaré inequality.

Throughout this paper, we freely use definitions and results from our previous paper [St04].
Theorem x.y and equation (a.b) of that paper will be quoted as Theorem I.x.y or (I.a.b), resp.

1 The Curvature-Dimension Condition

A metric measure space will always be a triple (M, d,m) where (M, d) is a complete separable
metric space and m is a locally finite measure (i.e. m(Br(x)) < ∞ for all x ∈ M and all
sufficiently small r > 0) on M equipped with its Borel σ-algebra. To avoid pathologies, we
exclude the case m(M) = 0.
G(M) will denote the space of geodesics γ : [0, 1] → M , equipped with the topology of uniform
convergence. Here and in the sequel by definition each geodesic is minimizing and parametrized
proportional to arclength. A point z will be called t-intermediate point of points x and y if
d(x, z) = t · d(x, y) and d(z, y) = (1− t) · d(x, y).
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P2(M, d) denotes the L2-Wasserstein space of probability measures on M and dW the corre-
sponding L2-Wasserstein distance. The subspace of m-absolutely continuous measures is denoted
by P2(M, d,m).
X denotes the family of all isomorphism classes of metric measure spaces and X1 the subfamily
of isomorphism classes of normalized metric measure spaces (M, d,m) with finite variances (i.e.
m(M) = 1 and

∫
M d2(o, y) dm(y) < ∞). On X1 we have introduced the distance D, see chapter

3 in [St04].

Given a metric measure space (M, d,m) and a number N ∈ R, N ≥ 1 we define the Rényi
entropy functional

SN (.|m) : P2(M, d) → R

with respect to m by

SN (ν|m) := −
∫

ρ−1/Ndν

where ρ denotes the density of the absolutely continuous part νc in the Lebesgue decomposition
ν = νc + νs = ρm + νs of ν ∈ P2(M, d). Note that in the borderline case N = 1 this reads
S1(ν|m) := −m(supp[νc]). Instead of SN , mostly in the literature the functional S̃N := N+N SN

is considered.The latter shares various properties with the relative Shannon entropy Ent(.|m).
For instance, if m is a probability measure then S̃N (.|m) ≥ 0 on P2(M, d) and S̃N (ν|m) = 0
if and only if ν = m. For the purpose of this paper, the functional SN from above is more
convenient. We recall two important facts from the proof of Lemma I.4.1.

Lemma 1.1. Assume that m(M) is finite.

(i) Then for each N > 1 the Rényi entropy functional SN (.|m) is lower semicontinuous and
satisfies −m(M)1/N ≤ SN (.|m) ≤ 0 on P2(M, d).

(ii) For each ν ∈ P2(M, d)

Ent(ν|m) = lim
N→∞

N(1 + SN (ν|m)).

Given two numbers K,N ∈ R with N ≥ 1 we put for (t, θ) ∈ [0, 1]× R+:

τ
(t)
K,N (θ) :=





∞, if Kθ2 ≥ (N − 1)π2

t1/N
(
sin

(√
K

N−1 tθ
)/

sin
(√

K
N−1 θ

))1−1/N

, if 0 < Kθ2 < (N − 1)π2

t, if Kθ2 = 0 or
if Kθ2 < 0 and N = 1

t1/N
(
sinh

(√
−K
N−1 tθ

) /
sinh

(√
−K
N−1 θ

))1−1/N

, if Kθ2 < 0 and N > 1.

That is, τ
(t)
K,N (θ) := t1/N · σ(t)

K,N−1(θ)
1−1/N where σ

(t)
K,N (θ) := sin

(√
K
N tθ

)/
sin

(√
K
N θ

)
if

0 < Kθ2 < Nπ2 and with appropriate interpretation otherwise. Moreover, we put

ς
(t)
K,N (θ) := τ

(t)
K,N (θ)N .

Straightforward calculations yield that for fixed t ∈ ]0, 1[ and θ ∈ ]0,∞[ the function (K, N) 7→
τ

(t)
K,N (θ) is continuous, nondecreasing in K and nonincreasing in N . Moreover,
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Lemma 1.2. For all K, K ′ ∈ R, all N,N ′ ∈ ]0,∞[, all t ∈ [0, 1] and all θ ∈ R+:

σ
(t)
K,N (θ)N · σ(t)

K′,N ′(θ)N ′ ≥ σ
(t)
K+K′,N+N ′(θ)N+N ′

and, if N ≥ 1,
τ

(t)
K,N (θ)N · σ(t)

K′,N ′(θ)N ′ ≥ τ
(t)
K+K′,N+N ′(θ)N+N ′

.

Proof. We derive the first inequality; the rest follows easily. For each fixed t ∈ ]0, 1[ the function
f : K 7→ log sin(

√
Kt)

sin(
√

K)
(with canonical interpretation for nonpositive K) is convex on ]−∞, π2[.

Hence, for all K, K ′ ∈ R, all N, N ′ > 0 and all θ ∈ R under consideration

N

N + N ′ · f
(

K

N
θ2

)
+

N ′

N + N ′ · f
(

K ′

N ′ θ
2

)
≥ f

(
K + K ′

N + N ′ θ
2

)
.

In other words,




sin
(√

K
N tθ

)

sin
(√

K
N θ

)




N

·




sin
(√

K′
N ′ tθ

)

sin
(√

K′
N ′ θ

)




N ′

≥




sin
(√

K+K′
N+N ′ tθ

)

sin
(√

K+K′
N+N ′ θ

)




N+N ′

.

In particular, τ
(t)
K,N (θ) ≥ σ

(t)
K,N (θ) provided N > 1 since τN

K,N = σ1
0,1 · σN−1

K,N−1.

Definition 1.3. Given two numbers K, N ∈ R with N ≥ 1 we say that a metric measure
space (M, d,m) satisfies the curvature-dimension condition CD(K,N) iff for each pair ν0, ν1 ∈
P2(M, d,m) there exist an optimal coupling q of ν0, ν1 and a geodesic Γ : [0, 1] → P2(M, d, m)
connecting ν0, ν1 with

SN ′(Γ(t)|m) ≤ −
∫

M×M

[
τ

(1−t)
K,N ′ ( d(x0, x1)) · ρ−1/N ′

0 (x0)

+ τ
(t)
K,N ′( d(x0, x1)) · ρ−1/N ′

1 (x1)
]
dq(x0, x1) (1.1)

for all t ∈ [0, 1] and all N ′ ≥ N . Here ρi denotes the density of the absolutely continuous part
of νi w.r.t. m (for i = 0, 1).

The definition of the curvature-dimension condition immediately implies its invariance under
standard transformations of metric measure spaces. (Cf. also Propositions I.4.12, I.4.13, and
I.4.15 as well as the proofs of these results.)

Proposition 1.4. Let (M, d,m) be a metric measure spaces which satisfies the CD(K, N) con-
dition for some pair of real numbers K, N . Then the following properties hold:

(i) ’Isomorphism’: Each metric measure space (M ′, d′,m′) which is isomorphic to (M, d, m)
satisfies the CD(K, N) condition.

(ii) ’Scaled spaces’: For each α, β > 0 the metric measure space (M, α d, βm) satisfies the
CD(α−2K,N) condition.

(iii) ’Subsets’: For each convex subset M ′ of M the metric measure space (M ′, d,m) satisfies
the same CD(K, N) condition.
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Remark 1.5. In order that the curvature-dimension condition is invariant under isomorphisms
we require (1.1) to hold true only for ν0, ν1 ∈ P2(M, d,m) and not for all ν0, ν1 ∈ P2(M, d). For
instance, consider M = Rn equipped with the Euclidean distance d and let m be the (n − 1)-
dimensional Lebesgue measure on M0 := {0} × Rn−1. Then (M, d,m) satisfies the condition
CD(0, n− 1). However, choose ν0 = 1A m for some set A ⊂ M0 with m(A) = 1 and ν1 = δz for
some point z = (z1, . . . , zn) with z1 6= 0. Then for each midpoint Γ1/2 of them

0 = Sn−1(Γ1/2|m) 6≤ 1
2
Sn−1(ν0|m) +

1
2
Sn−1(ν1|m) = −1

2
.

Proposition 1.6.

(i) If (M, d,m) satisfies the curvature-dimension condition CD(K, N) then it also satisfies the
curvature-dimension conditions CD(K ′, N ′) for all K ′ ≤ K and N ′ ≥ N .

Conversely, if (M, d,m) is compact with diameter ≤ L and satisfies the curvature-dimension
conditions CD(Kn, Nn) for a sequence of pairs (Kn, Nn) with limn→∞(Kn, Nn) = (K,N)
and K ·L2 < (N−1)π2 then it also satisfies the curvature-dimension conditions CD(K, N).

(ii) If (M, d,m) has finite mass and satisfies the curvature-dimension condition CD(K, N) for
some K and N then it has curvature ≥ K in the sense of Definition I.4.5.

Therefore, the condition Curv(M, d,m) ≥ K may be interpreted as the curvature-dimension
condition CD(K,∞) for (M, d,m).

(iii) A metric measure space (M, d,m) satisfies the curvature-dimension condition CD(0, N)
for some N ≥ 1 if and only if the Rényi entropy functionals SN ′(.|m) for N ′ ≥ N are
weakly convex on P2(M, d,m) in the following sense: for each pair ν0, ν1 ∈ P2(M, d, m)
there exist a geodesic Γ : [0, 1] → P2(M, d,m) connecting ν0, ν1 with

SN ′(Γ(t)|m) ≤ (1− t) · SN ′(ν0|m) + t · SN ′(ν1|m) (1.2)

for all t ∈ [0, 1] and N ′ ≥ N .

Proof. (i): The first assertion is obvious. The second one will follow from Theorem 3.1 below.
(ii): Let ν0, ν1 ∈ P2(M, d,M) be given with Ent(ν0|m) < ∞ and Ent(ν1|m) < ∞. By assump-
tion, (M, d,m) satisfies the curvature-dimension condition CD(K,N) for some K and N . Hence,
there exists there exist an optimal coupling q of ν0, ν1 and a geodesic Γ : [0, 1] → P2(M, d, m)
connecting ν0, ν1 with (1.1) for all t ∈ [0, 1] and all N ′ ≥ N .
The assumption m(M) < ∞ implies that Ent(Γt|m) = limN ′→∞N ′(1 + S′N (Γt|m)) for all t ∈
[0, 1]. Hence,

Ent(Γt|m) − (1− t)Ent(Γ0|m)− tEnt(Γ1|m)
= lim

N ′→∞
N ′ (SN ′(Γt|m)− (1− t)SN ′(Γ0|m)− tSN ′(Γ1|m))

≤ lim
N ′→∞

∫ (
N ′

[
(1− t)− τ

(1−t)
K,N ′ ( d(x0, x1))

]
ρ
−1/N ′
0 (x0)

+ N ′
[
t− τ

(t)
K,N ′( d(x0, x1))

]
ρ
−1/N ′
1 (x1)

)
dq(x0, x1)

≤ lim
N ′→∞

∫ (
N ′

[
(1− t)− τ

(1−t)
K,N ′ ( d(x0, x1))

]

+ N ′
[
t− τ

(t)
K,N ′( d(x0, x1))

])
dq(x0, x1)

= − t(1− t)
2

K

∫
d2(x0, x1)dq(x0, x1) = − t(1− t)

2
K d2

W (ν0, ν1).

(iii): Obvious.
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Proposition 1.6(iii) gives an elementary characterization of the condition CD(0, N) through con-
vexity of the Rényi entropy functionals SN ′ for N ′ ≥ N . A generalization of this characterization
to K 6= 0 will be discussed in chapter 4. Moreover, we will present various modifications of the
curvature-dimension condition which formally are more restrictive.
Of course, the most important case to be studied is the case of Riemannian manifolds. Let us
mention here the basic result. We postpone its proof to the end of the chapter.

Theorem 1.7. Let M be a complete Riemannian manifold with Riemannian distance d and
Riemannian volume m and let numbers K,N ∈ R with N ≥ 1 be given.
(i) The metric measure space (M, d,m) satisfies the curvature-dimension condition CD(K,N)
if and only if the Riemannian manifold M has Ricci curvature ≥ K and dimension ≤ N .
(ii) Moreover, in this case for every measurable function V : M → R the weighted space
(M, d, V m) satisfies the curvature-dimension condition CD(K + K ′, N + N ′) provided

HessV 1/N ′ ≤ −K ′

N ′ · V 1/N ′

for some numbers K ′ ∈ R, N ′ > 0 in the sense that

V (γt)1/N ′ ≥ σ
(1−t)
K′,N ′( d(γ0, γ1))V (γ0)1/N ′

+ σ
(t)
K′,N ′( d(γ0, γ1))V (γ1)1/N ′

(1.3)

for each geodesic γ : [0, 1] → M and each t ∈ [0, 1].

Let us have a closer look on these results if M is a subset of the real line equipped with the
usual distance d and the 1-dimensional Lebesgue measure m.

Example 1.8. (i) For each pair of real numbers K > 0, N > 1 the space ([0, L], d, V m) with

L :=
√

N−1
K π and

V (x) = sin

(√
K

N − 1
x

)N−1

satisfies the curvature-dimension condition CD(K, N).

(ii) For each pair of real numbers K ≤ 0, N > 1 the space (R+, d, V m) with

V (x) = sinh

(√
−K

N − 1
x

)N−1

,

if K < 0, and V (x) = xN−1, if K = 0, satisfies the curvature-dimension condition
CD(K,N).

(iii) For each pair of real numbers K < 0, N > 1 the space (R, d, V m) with

V (x) = cosh

(√
−K

N − 1
x

)N−1

satisfies the curvature-dimension condition CD(K, N).

Note that for N →∞ the weight V from example (iii) from above converges to the weight

V (x) = exp
(−K

2
x2

)

from example I.4.10.(ii). Also note that according to [BQ00], the examples (i)-(iii) equipped with
natural weighted Laplacians are also the prototypes for the Bakry-Emery curvature-dimension
condition.
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Proof of Theorem 1.7.
(a) Let M be a complete Riemannian manifold with Ricci curvature ≥ K and dimension
n ≤ N and assume that we are given two absolutely continuous probability measures ν0 = ρ0m
and ν1 = ρ1m in P2(M, d,m). Without restriction, we may assume that both are compactly
supported. (Otherwise, we have to choose compact exhaustions of M ×M and to consider the
restriction of the coupling to these compact sets). According to Remark I.2.12(iii), there exists
a weakly differentiable function ϕ : M → R such that the push forward measures

Γt = (Ft)∗ν0

with
Ft(x) = expx(−t∇ϕ(x))

for t ∈ [0, 1]1 define the unique geodesic t 7→ Γt in P2(M, d) connecting ν0 and ν1. Again each
Γt is compactly supported and absolutely continuous, say Γt = ρtm.
Following [CMS01] we may choose ϕ in such a way that it is d2/2-concave2 and such that for
ν0-a.e. x ∈ M the Hessian of ϕ at x exists and the Jacobian dFt(x) is nonsingular for all
t ∈ [0, 1].
(b) For each x and t as above, consider the matrix of Jacobi fields

At(x) := dFt(x) : TxM → TFt(x)M

along the geodesic F¦(x). (More precisely, At(x)v is a Jacobi field along F¦(x) for each v ∈ TxM .)
It is the unique solution of the Jacobi equation

∇t∇tAt(x) + R
(
At(x), Ḟt(x)

)
Ḟt(x) = 0

with initial conditions A0 = Id, ∇tAt|{t=0} = −Hessϕ. Here R is the curvature tensor and
∇t denotes covariant derivates along the geodesics F¦(x) (cf. [Ch93] (3.4)). By assumption,
the matrix At(x) is non-degenerate for all x, t under consideration. Hence, the Jacobi equation
immediately implies that the self-adjoint matrix valued map Ut := ∇tAt ◦A−1

t solves the Riccati
type equation

∇tUt + U2
t + R

(
¦ , Ḟt

)
Ḟt = 0 (1.4)

and thus
tr(∇tUt) + tr(U2

t ) + Ric
(
Ḟt, Ḟt

)
= 0. (1.5)

Now consider yt := log Jt = log detAt. Then trUt = tr(∇tAt ◦ A−1
t ) = d

dt(log detAt) = ẏt

(cf. [Ch93], Prop. 2.8). Hence, tr(∇tUt) = d
dttr(Ut) = ÿt. By means of the standard estimate

tr(U2
t ) ≥ 1

n(trUt)2 for the trace of the square of a self-adjoint matrix, we obtain from (1.5)

ÿt ≤ − 1
n

ẏ2
t − Ric

(
Ḟt, Ḟt

)
. (1.6)

Using our estimates for the dimension and the Ricci curvature of M we get ÿt ≤ − 1
N ẏ2

t −Kθ2

with θ(x) := |Ḟt(x)| = d(x, F1(x)) or equivalently

d2

dt2
J

1/N
t ≤ −Kθ2

N
· J1/N

t . (1.7)

2This notion of concavity is defined in terms of some generalized Legendre transform. It is completely different
from the notion of ’convexity/concavity along geodesics’ used at all other instances in this paper.
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Integrating (1.7) for fixed x along the geodesic t 7→ Ft(x) yields

J
1/N
t ≥ σ

(1−t)
K,N (θ) · J1/N

0 + σ
(t)
K,N (θ) · J1/N

1 . (1.8)

This is close to the estimate (1.12) which we aim for. In the case n = 1 we are already done.
(c) In order to improve upon (1.8) in the case n ≥ 2, we will separately study the deformation
of the volume element in directions parallel and orthogonal to the transport direction. To
be precise, fix x as above and let e1

t , . . . , e
n
t be an orthonormal basis of TFt(x)M with e1

t =

Ḟt(x)
/
|Ḟt(x)| for all t ∈ [0, 1[. Put uij(t) = 〈ei

t,Ute
j
t 〉, λt = 1 +

∫ t
0 u11(s)ds and Lt = exp(λt).

Then (1.4) implies

− d

dt
u11(t) =

n∑

j=1

u2
1j(t) ≥ u2

11(t). (1.9)

That is, −λ̈t ≥ λ̇2
t or, equivalently, L̈t ≤ 0 which in integrated form reads

Lt ≥ (1− t)L0 + tL1 (1.10)

for all t ∈ [0, 1]. Now put αt = yt − λt, At = exp(αt) = Jt/Lt and Vt = (uij(t))i,j=2,...,n. Then
(1.4) together with (1.9) imply

−α̈t −K · θ2 ≥ −ÿt − Ric
(
Ḟt, Ḟt

)
+ λ̈t

= tr(U2
t ) + λ̈t =

n∑

i,j=1

u2
ij(t)−

n∑

j=1

u2
1j(t)

≥
n∑

i,j=2

u2
ij(t) = tr(V2

t )

≥ 1
n− 1

(trVt)2 =
1

n− 1
α̇2

t ≥
1

N − 1
α̇2

t .

Hence,
d2

dt2

(
A

1/(N−1)
t

)
≤ − Kθ2

N − 1
A

1/(N−1)
t

and thus
A

1/(N−1)
t ≥ σK,N−1((1− t), θ) ·A1/(N−1)

0 + σK,N−1(t, θ) ·A1/(N−1)
1 . (1.11)

Finally, (1.11) and (1.10) together with Hölder’s inequality yield

J
1/N
t = (Lt ·At)

1/N

≥ ((1− t)L0 + tL1)
1/N ·

(
σ

(1−t)
K,N−1(θ) ·A1/(N−1)

0 + σ
(t)
K,N−1(θ) ·A1/(N−1)

1

)(N−1)/N

≥ ((1− t)L0)
1/N ·

(
σ

(1−t)
K,N−1(θ) ·A1/(N−1)

0

)(N−1)/N

+(tL1)
1/N ·

(
σ

(t)
K,N−1(θ) ·A1/(N−1)

1

)(N−1)/N

= τ
(1−t)
K,N (θ) · J1/N

0 + τ
(t)
K,N (θ) · J1/N

t .

That is, the Jacobian determinant Jt(x) := det dFt(x) satisfies

Jt(x)1/N ≥ τ
(1−t)
K,N ( d(x, F1(x)) · J0(x)1/N + τ

(t)
K,N ( d(x, F1(x)) · J1(x)1/N (1.12)
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This estimate is – from the technical point of view – the main result in [CMS01] (Lemma 6.1 and
Cor. 2.2. To be precise, it is stated there only for the case N = n. However, the extension to the
general case N ≥ n is straightforward.) For the convenience of the reader, we have presented
here an alternative, essential self-contained derivation, following similar calculations in [St05].
(d) The change of variable formula for Ft yields that ρt(Ft) · Jt = ρ0 a.e. Thus together with
(1.12) and (1.3) we obtain

SN+N ′(Γt|V m) = −
∫ (ρt

V

)− 1
N+N′

ρtdm = −
∫

J
1

N+N′
t V (Ft)

1
N+N′ ρ

1− 1
N+N′

0 dm

≤ −
∫ (

τ
(1−t)
K,N ( d) · J1/N

0 + τ
(t)
K,N ( d) · J1/N

1

) N
N+N′

·
(
σ

(1−t)
K′,N ′( d) · V (F0)1/N ′

+ σ
(t)
K′,N ′( d) · V (F1)1/N ′) N′

N+N′
ρ
1− 1

N+N′
0 dm

≤ −
∫ (

τ
(1−t)
K,N ( d)

N
N+N′ · σ(1−t)

K′,N ′( d)
N′

N+N′ · J
1

N+N′
0 · V (F0)

1
N+N′

+ τ
(t)
K,N ( d)

N
N+N′ · σ(t)

K′,N ′( d)
N′

N+N′ · J
1

N+N′
1 · V (F1)

1
N+N′

)
ρ
1− 1

N+N′
0 dm

(∗)
≤ −

∫ (
(τ (1−t)

K+K′,N+N ′( d) · (J0 V (F0))
1

N+N′

+ τ
(t)
K+K′,N+N ′( d) · (J1 V (F1))

1
N+N′

)
ρ
1− 1

N+N′
0 dm

= −
∫ (

(τ (1−t)
K+K′,N+N ′( d) ·

(ρ0

V

)− 1
N+N′

+ τ
(t)
K+K′,N+N ′( d) ·

(ρ1

V

)− 1
N+N′

)
dq

which proves the claim. Here (∗) is due to Lemma 1.2. For the final equality we have used the
fact that the unique optimal coupling of ν0 and ν1 is given by dq(x0, x1) = δF1(x0)(dx1)dν(x0).
To simplify the above formulae, we always have dropped the arguments x0 and x1. To be more
specific, d will denote d(x0, F1(x0)) if we integrate with respect to dm(x0) and it will denote
d(x0, x1) if we integrate with respect to dq(x0, x1).

(e) Necessity: Assume that (M, d,m) satisfies the curvature-dimension condition CD(K,N) for
some pair of real numbers K, N with N ≥ 1. Then according to Corollary 2.5, N ≥ Hausdorff
dimension of M . In the Riemannian case, the latter coincides with the dimension.
In order to prove that K ≤ Ricci curvature of M , let us first investigate the case n ≥ 2. Assume
the contrary: Ricz(ξ, ξ) ≤ (K − δ) · |ξ|2 for some δ > 0, some point z ∈ M and some ξ ∈ Tz(M).
Consider the sets A0 = Bε(expz(−rξ)) and A1 = Bε(expz(+rξ)). Then for sufficiently small
ε ¿ r ¿ 1, Riemannian calculation yields

m(A1/2) ≤ (1 +
K − δ

2
r2 + O(r4))

m(A0) + m(A1)
2

(cf. [St05], Thm. 5.2) whereas Proposition 2.1 gives

m(A1/2) ≥ (1 +
K

2
r2 + O(r4))

m(A0) + m(A1)
2

.

Hence, Ric ≥ K.
Now let us investigate the case n = 1. Here the Ricci curvature always vanishes. On the other
hand, n = 1 implies N = 1 (according to Corollary 2.5) and thus necessarily K ≤ 0 (according
to Corollary 2.6, the generalized Bonnet-Myers theorem). Hence, also in this case Ric ≥ K.
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2 Geometric Consequences of the Curvature-Dimension Condi-
tion

Compared with our defining property (1.1), the following version of the Brunn-Minkowski in-
equality will be a very weak statement. However, it will still be strong enough to imply all the
geometric consequences which we formulate in the sequel.

Proposition 2.1 (’Generalized Brunn-Minkowski Inequality’). Assume that the metric
measure space (M, d,m) satisfies the curvature-dimension condition CD(K, N) for some real
numbers K, N ∈ R, N ≥ 1. Then for all measurable sets A0, A1 ⊂ M with m(A0) ·m(A1) > 0,
all t ∈ [0, 1] and all N ′ ≥ N

m(At)1/N ′ ≥ τ
(1−t)
K,N ′ (Θ) ·m(A0)1/N ′

+ τ
(t)
K,N ′(Θ) ·m(A1)1/N ′

(2.1)

where At denotes the set of points which divide geodesics starting in A0 and ending in A1 with
ratio t:(1-t) and where Θ denotes the minimal/maximal length of such geodesics, that is,

At := {y ∈ M : ∃(x0, x1) ∈ A0 ×A1 : d(y, x0) = t · d(x0, x1), d(y, x1) = (1− t) · d(x0, x1)}

and

Θ :=
{

infx0∈A0,x1∈A1 d(x0, x1), if K ≥ 0
supx0∈A0,x1∈A1

d(x0, x1), if K < 0.

In particular, if K ≥ 0 then

m(At)1/N ′ ≥ (1− t) ·m(A0)1/N ′
+ t ·m(A1)1/N ′

. (2.2)

Proof. Let us first assume that 0 < m(A0) · m(A1) < ∞. Applying the curvature-dimension
condition CD(K,N) to νi := 1

m(Ai)
1Ai m for i = 0, 1 yields

∫

At

ρt(y)1−1/N ′
dm(y) ≥ τ

(1−t)
K,N ′ (Θ) ·m(A0)1/N ′

+ τ
(t)
K,N ′(Θ) ·m(A1)1/N ′

(2.3)

where ρt denotes the density of some geodesic Γt connecting ν0 and ν1. (Here without restriction
we assume N ′ 6= 1). Now by Jensen’s inequality the LHS of (2.3) is dominated by m(At)1/N ′

.
This proves the claim, provided m(A0) ·m(A1) < ∞. The general case follows by approximation
of Ai by sets of finite volume.

Remark 2.2. The assumption m(A0)·m(A1) > 0 can not be dropped. For instance, let M = R2

and let m be the 1-dimensional Lebesgue measure on A0 := {0} × R and choose A1 = {1} × R.

Now let us fix a point x0 ∈ supp[m] and study the growth of the volume of concentric balls

v(r) := m(Br(x0))

as well as the growth of the volume of the corresponding spheres

s(r) := lim sup
δ→0

1
δ
·m (

Br+δ(x0) \Br(x0)
)
.

Theorem 2.3 (’Generalized Bishop-Gromov Volume Growth Inequality’). Assume
that the metric measure space (M, d,m) satisfies the curvature-dimension condition CD(K,N)
for some real numbers K,N ∈ R, N ≥ 1. Then each bounded set M ′ ⊂ M has finite volume.
Moreover, either m is supported by one point or all points and all spheres have mass 0.
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More precisely, if N > 1 then for each fixed x0 ∈ supp[m] and all 0 < r < R ≤
√

N−1
K∨0 · π

s(r)
s(R)

≥




sin
(√

K
N−1r

)

sin
(√

K
N−1R

)




N−1

(2.4)

and

v(r)
v(R)

≥
∫ r
0 sin

(√
K

N−1 t
)N−1

dt

∫ R
0 sin

(√
K

N−1 t
)N−1

dt

(2.5)

with s(.) and v(.) defined as above and with the usual interpretation of the RHS if K ≤ 0. In
particular, if K = 0

s(r)
s(R)

≥
( r

R

)N−1
and

v(r)
v(R)

≥
( r

R

)N
.

The latter also holds true if N = 1 and K ≤ 0.

For each K and each integer N > 1 the simply connected spaces of dimension N and constant
curvature K/(N − 1) provide examples where these volume growth estimates are sharp. But
also for arbitrary real numbers N > 1 these estimates are sharp as demonstrated by Example
1.8(i) and (ii) where equality is attained.

Proof. Let us fix a point x0 ∈ supp[m] and assume first that m({x0}) = 0. Let numbers
r,R with 0 < r < R be given and put t = r

R . Choose numbers ε > 0 and δ > 0. We
will apply the generalized Brunn-Minkowski inequality from above to A0 := Bε(x0) and A1 :=
BR+δR(x0) \BR(x0). One easily verifies that

At ⊂ Br+δr+εr/R(x0) \Br−εr/R(x0)

and R− ε ≤ Θ ≤ R + δR + ε. Hence, Proposition 2.1 implies

m
(
Br+δr+εr/R(x0) \Br−εr/R(x0)

)1/N ≥ τ
(1−r/R)
K,N (R∓ δR∓ ε) ·m (Bε(x0))

1/N

+τ
(r/R)
K,N (R∓ δR∓ ε) ·m (

BR+δR(x0) \BR(x0)
)1/N

where ∓ has to be chosen to coincide with the sign of K. In the limit ε → 0 this yields

m
(
B(1+δ)r(x0) \Br(x0)

)1/N ≥ τ
(r/R)
K,N ((1∓ δ)R) ·m (

B(1+δ)R(x0) \BR(x0)
)1/N

or, in other words,

v((1 + δ)r)− v(r) ≥ τ
(r/R)
K,N ((1∓ δ)R)N · [v((1 + δ)R)− v(R)] . (2.6)

For r small enough, the LHS will be finite since by assumption m is locally finite and thus

v(R) will be finite for all R ∈ R+ and it will coincide with v(R∗) for all R ≥ R∗ :=
√

N−1
K∨0 · π.

Moreover, by construction v will be right continuous and nondecreasing with at most countably
many discontinuities. In particular, there will be arbitrarily small r > 0 and δ > 0 such that v is
continuous on the interval [r, (1 + δ)r). Hence, by (2.6) v will be continuous on R+. Therefore,
m(∂Br(x0)) = 0 for all r > 0 and in turn m({x}) = 0 for all x 6= x0.
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Inequality (2.6) can be restated as

1
δr
· [v((1 + δ)r)− v(r)] ≥ 1

δR
· [v((1 + δ)R)− v(R)] ·


 sin(

√
K

N−1(1∓ δ)r)

sin(
√

K
N−1(1∓ δ)R)




N−1

(2.7)

with the usual interpretation if K ≤ 0. In the limit δ → 0 this yields the first claim (2.4).
Furthermore, given r and δ by successive subdivision of the interval [r, (1+δ)r] one can construct
a sequence (rn)n of points in [r, (1 + δ)r] with

0 ≤ 1
2−nδr

[
v((1 + 2−nδ)r)− v(r)

] ≤ 1
δr

[v((1 + δ)r)− v(r)] =: C.

Together with (2.7) this implies that v is locally Lipschitz continuous on R+. Therefore, in
particular, it is weakly differentiable a.e. on R+ and it coincides with the integral of its weak
derivative s. We thus may apply Lemma 3.1 from [Ch93] according to which the inequality (2.4)
implies the integrated version (2.5).
It only remains to treat the case m({x0}) > 0. If there were a point x1 ∈ supp[m]\{x0} then we
could apply the previous arguments (now with x1 in the place of x0) and deduce that m({x}) = 0
for all x 6= x1 which would lead to the contradiction m({x0}) = 0. Hence, m({x0}) > 0 implies
supp[m] = {x0}. All the estimates of the theorem are trivially true in this case.

Corollary 2.4 (’Doubling’). For each metric measure space (M, d,m) which satisfies the
curvature-dimension condition CD(K,N) for some real numbers K,N ∈ R, N ≥ 1, the doubling
property holds on each bounded subset M ′ ⊂ supp[m]. In particular, each bounded closed subset
M ′ ⊂ supp[m] is compact.
If K ≥ 0 or N = 1 the doubling constant is ≤ 2N . Otherwise, it can be estimated in terms of
K, N and the diameter L of M ′ as follows

C ≤ 2N · cosh

(√
−K

N − 1
L

)N−1

.

Proof. Assume N > 1 and put κ =
√

(−K)∨0
N−1 . Then (2.5) immediately yields the doubling

property

m(B2r(x))
m(Br(x))

≤ 2
∫ r
0 sinh (κ2t)N−1 dt∫ r
0 sinh (κt)N−1 dt

≤ 2N · cosh(κr)N−1.

The doubling property, however, always implies compactness of the support, see e.g. the proof
of Theorem I.3.16.

Corollary 2.5 (’Hausdorff Dimension’). For each metric measure space (M, d,m) which
satisfies the curvature-dimension condition CD(K,N) for some real numbers K, N ∈ R, N ≥ 1,
the support of m has Hausdorff dimension ≤ N .

Proof. We will prove that for each N ′ > N the N ′-dimensional Hausdorff measure of M vanishes.
Without restriction we may assume that M is bounded and that it has full support. For each
ε > 0 we can estimate the ε-approximate N ′-dimensional Hausdorff measure of M as follows:

Hε
N ′(M) := cN ′ · inf





∞∑

j=1

(
1
2
diamSj

)N ′

:
∞⋃

j=1

Sj = M, diamSj ≤ ε





≤ cN ′ · εN ′ · inf



k ∈ N :

k⋃

j=1

Bε(xj) = M



 .
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According to the doubling property as derived in Corollary 2.4, the minimal number k in the
last term can be estimated by k ≤ C · εN (cf. also proof of Theorem I.4.9). Hence,

HN ′(M) := lim
ε→0

Hε
N ′(M) = 0

for each N ′ > N .

Corollary 2.6 (’Generalized Bonnet-Myers Theorem’). For every metric measure space
(M, d, m) which satisfies the curvature-dimension condition CD(K, N) for some real numbers
K > 0 and N ≥ 1 the support of m is compact and has diameter

L ≤
√

N − 1
K

π.

In particular, if K > 0 and N = 1 then supp[m] consists of one point.

Proof. Let two points x0, x1 ∈ supp[m] and ε > 0 be given with d(x0, x1) ≥
√

N−1
K π + 4ε and

0 < m(Bε(xi) < ∞. Put Ai = Bε(xi) for i = 0, 1. Then A1/2 ⊂ BR(x0) for some finite R.

Hence, Proposition 2.1 with Θ >
√

N−1
K π implies m(A1/2) = ∞ whereas Theorem 2.3 implies

m(BR(x0)) < ∞. This contradiction shows that d(x0, x1) ≤
√

N−1
K π for all x0, x1 ∈ supp[m].

Finite diameter, however, implies compactness of supp[m] according to Corollary 2.4.

3 Stability under Convergence

Theorem 3.1. Let ((Mn, dn,mn))n∈N be a sequence of normalized metric measure spaces where
each n ∈ N the space (Mn, dn,mn) satisfies the curvature-dimension condition CD(Kn, Nn) and
has diameter ≤ Ln. Assume that for n →∞

(Mn, dn,mn) D−→ (M, d,m)

and (Kn, Nn, Ln) → (K,N,L) for some triple (K, N, L) ∈ R2 satisfying K ·L2 < (N−1)π2. Then
the space (M, d,m) satisfies the curvature-dimension condition CD(K, N) and has diameter ≤ L.

Corollary 3.2. For each triple (K, L,N) ∈ R3 with K ·L2 < (N−1)π2 the family X1(K, N, L) of
isomorphism classes of normalized metric measure spaces which satisfy the curvature-dimension
condition CD(K, N) and which have diameter ≤ L is compact w.r.t. D.

Proof of the Corollary. Let numbers K,N,L as above be given. The volume growth estimate
(2.5) implies that each element in X1(K,N,L) satisfies the doubling property with some uniform
doubling constant C = C(K,N,L). According to Theorem I.3.16, the family of all (M, d, m)
with doubling constant ≤ C and diameter ≤ L is compact. Hence, it suffices to prove that
X1(K, N,L) is closed under D-convergence. This is the content of the previous theorem.

Given t ∈ [0, 1],K ∈ R and N ≥ 1 we introduce for the sequel the abbreviation

T
(t)
K,N (q|m) = −

∫ [
τ

(1−t)
K,N ( d(x0, x1)) · ρ0(x0)−1/N + τ

(t)
K,N ( d(x0, x1)) · ρ1(x1)−1/N

]
dq(x0, x1)

whenever q is coupling of ν0 = ρ0m and ν1 = ρ1m.
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Lemma 3.3. Let K,N ∈ R with N > 1. For each sequence q(k) of optimal couplings with the
same marginals ν0 and ν1 which converge to some coupling q(∞)

lim sup
k→∞

T
(t)
K,N (q(k)|m) ≤ T

(t)
K,N (q|m).

Proof. Let q(k), k ∈ N, and q(∞) as above. We will prove that

lim infk→∞
∫

τ
(1−t)
K,N ( d(x0, x1))ρ0(x0)−1/N dq(k)(x0, x1)

≥
∫

τ
(1−t)
K,N ( d(x0, x1))ρ0(x0)−1/N dq(∞)(x0, x1). (3.1)

Together with an analogous assertion with ρ1 in the place of ρ0 (and t in the place of 1− t) this
will prove the claim.
For k ∈ N ∪ {∞} and C ∈ R+ ∪ {∞} put

v
(k)
C (x0) =

∫ [
τ

(1−t)
K,N ( d(x0, x1)) ∧ C

]
Q(k)(x0, dx1)

where Q(k)(x0, dx1) denotes the disintegration of dq(k)(x0, x1) w.r.t. dν(x0). Now fix C ∈ R+.
Since Cb(M) is dense in L1(M, ν0) and since 0 ≤ v

(k)
C (.) ≤ C, for each ε > 0 there exists a

function ψ ∈ Cb(M) such that
∫

v
(k)
C ·

∣∣∣
[
ρ
−1/N
0 ∧ C

]
− ψ

∣∣∣ dν0 ≤ ε (3.2)

for all k ∈ N ∪ {∞}. The weak convergence q(k) → q on M × M implies that there exists a
k(ε) ∈ N such that for each k ≥ k(ε):

∫
v

(∞)
C ψ dν0 ≤

∫
v

(k)
C ψ dν0 + ε. (3.3)

Summing up (3.2) and (3.3) we obtain
∫

v
(∞)
C ·

[
ρ
−1/N
0 ∧ C

]
dν0 ≤

∫
v

(∞)
C · ψ dν0 + ε ≤

∫
v

(k)
C · ψ dν0 + 2ε

≤
∫

v
(k)
C ·

[
ρ
−1/N
0 ∧ C

]
dν0 + 3ε ≤

∫
v(k)
∞ · ρ−1/N

0 dν0 + 3ε.

That is, for each C ∈ R+

∫
v

(∞)
C ·

[
ρ
−1/N
0 ∧ C

]
dν0 ≤ lim inf

k→∞

∫
v(k)
∞ · ρ−1/N

0 dν0.

Finally, as C →∞ monotone convergence yields
∫

v(∞)
∞ · ρ−1/N

0 dν0 ≤ lim inf
k→∞

∫
v(k)
∞ · ρ−1/N

0 dν0.

This is precisely our claim (3.1).

Proof of the Theorem. (i) Let ((Mn, dn, mn))n∈N be a sequence of normalized metric measure
spaces as above, each of them satisfying a curvature-dimension condition CD(Kn, Nn) and having
diameter ≤ Ln. Moreover, assume that (Mn, dn,mn)−→(M, d,m) as n → ∞. Then obviously
also (M, d,m) has diameter ≤ L. Without restriction, we may assume that Nn > 1 and that
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there exists a triple (K0, N0, L0) with K0 · L2
0 < (N0 − 1)π2 and Kn ≤ K0, Ln ≤ L0, Nn ≥ N0

for all n ∈ N. In order to verify the curvature-dimension condition CD(K,N) let two arbitrary
measures ν0 = ρ0m and ν1 = ρ1m in P2(M, d,m) and a number ε > 0 be given.
(ii) Fix an arbitrary optimal coupling q̃ of them and put Er := {(x0, x1) ∈ M2 : ρ0(x0) <
r, ρ1(x1) < r}, αr := q̃(Er) and q̃(r)(.) := 1

αr
q̃(. ∩ Er) for r ∈ R+. The latter has marginals

ν̃
(r)
0 (.) := q̃(r)(.×M), ν̃

(r)
1 (.) := q̃(r)(M × .)

with bounded densities. Moreover, for sufficiently large r = r(ε)

dW (ν0, ν̃
(r)
0 ) ≤ ε, dW (ν1, ν̃

(r)
1 ) ≤ ε. (3.4)

(iii) Since the densities of ν̃
(r)
0 and ν̃

(r)
1 are bounded there exist a number R ∈ R such that

sup
i=0,1

Ent(ν̃(r)
i |m) +

supn |Kn|
8

d2
W (ν̃(r)

0 , ν̃
(r)
1 ) ≤ R. (3.5)

Choose n = n(ε) ∈ N and a coupling d̂ of the metrics d and dn with

1
2

d̂W (mn,m) ≤ D((Mn, dn,mn), (M, d,m)) ≤ min
{

exp
(
−2 + 4L2

0R

ε2

)
,

ε

4C

}
(3.6)

for some constant C to be specified later. Following the proofs of Lemma I.4.19 and Theorem
I.4.20, fix a coupling p of m and mn which is optimal w.r.t. d̂ and let P and P ′ be disintegrations
of p w.r.t. m and mn, resp. Recall that P ′ defines a canonical map P ′ : P2(M, d,m) →
P2(Mn, dn,mn). Put

νi,n := P ′(ν̃(r)
i ) = ρi,nmn

with ρi,n(y) =
∫

ρ̃
(r)
i (x)P ′(y, dx) for i = 0, 1. Then (3.5) and (3.6) imply, according to Lemma

I.4.19,

d̂W (ν̃(r)
0 , ν0,n) ≤ ε, d̂W (ν̃(r)

1 , ν1,n) ≤ ε. (3.7)

(iv) Due to the curvature-dimension condition on (Mn, dn,mn) there exist an optimal coupling
qn of ν0,n, ν1,n and a geodesic Γt,n connecting them and satisfying

SN ′(Γt,n|mn) ≤ T
(t)
K′,N ′(qn|mn) (3.8)

for all N ′ ≥ Nn, K ′ ≤ Kn and t ∈ [0, 1]. Put

Γε
t = P (Γt,n)

with n = n(ε) as above and P : P2(Mn, dn,mn) → P2(M, d,m) as introduced in Lemma
I.4.19. Then essentially with the same arguments as in the proof of Lemma I.4.19 (now Jensen’s
inequality applied to the convex function r 7→ −r1−1/N )

SN ′(Γε
t|m) ≤ SN ′(Γt,n|mn) (3.9)

for all N ′ and t under consideration. Moreover, we know that the curvature-dimension condition
CD(Kn, Nn) implies the curvature bound Curv(Mn, dn,mn) ≥ Kn (cf. Proposition 1.6(ii))
which in turn implies

Ent(Γε
t|m) ≤ Ent(Γt,n|mn) ≤ R.
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This (together with (3.6)) allows to apply again Lemma I.4.19 to deduce finally

d̂W (Γε
t, Γt,n) ≤ ε. (3.10)

(v) For fixed N ′,K ′ and t put

v0(y0) =
∫

Mn

τ
(1−t)
K′,N ′( dn(y0, y1))Qn(y0, dy1)

and
v1(y1) =

∫

Mn

τ
(t)
K′,N ′( dn(y0, y1))Q′

n(y1, dy0)

where Qn and Q′
n are disintegrations of qn w.r.t. ν0,n and ν1,n, resp. Then

−T
(t)
K′,N ′(qn|mn) =

1∑

i=0

∫

Mn

ρi,n(y)1−1/N ′ · vi(y) dmn(y)

=
1∑

i=0

∫

Mn

[∫

M
ρ̃
(r)
i (x)P ′(y, dx)

]1−1/N

· vi(y) dmn(y)

≥
1∑

i=0

∫

Mn

∫

M
ρ̃
(r)
i (x)1−1/N P ′(y, dx) · vi(y) dmn(y)

=
1∑

i=0

∫

M
ρ̃
(r)
i (x)1−1/N

[∫

Mn

vi(y) P (x, dy)
]

dm(x).

Moreover,
∫

Mn

v0(y0) P (x0, dy0) =
∫

Mn

∫

Mn

τ
(1−t)
K′,N ′( dn((y0, y1))Qn(y0, dy1) P (x0, dy0)

≥
∫

Mn

∫

Mn

∫

M

[
τ

(1−t)
K′,N ′( d(x0, x1))− C · ( dn(y0, y1)− d(x0, x1))

]

ρ̃
(r)
1 (x1)

ρ1,n(y1)
P ′(y1, dx1) Qn(y0, dy1) P (x0, dy0)

≥
∫

Mn

∫

Mn

∫

M

[
τ

(1−t)
K′,N ′( d(x0, x1))− C ·

(
d̂(x0, y0) + d̂(x1, y1)

)]

ρ̃
(r)
1 (x1)

ρ1,n(y1)
P ′(y1, dx1) Qn(y0, dy1) P (x0, dy0)

where C denotes the maximum of ∂
∂θτ

(s)
K′,N ′(θ) for s ∈ [0, 1], N ′ ≥ N0, K ′ ≤ K0 and θ ≤ L0.

Analogously,
∫

Mn

v1(y1) P (x1, dy1) ≥
∫

Mn

∫

Mn

∫

M

[
τ

(t)
K′,N ′( d(x0, x1))− C ·

(
d̂(x0, y0) + d̂(x1, y1)

)]

ρ̃
(r)
0 (x0)

ρ0,n(y0)
P ′(y0, dx0) Q′

n(y1, dy0) P (x1, dy1).

Define a coupling qr (not necessarily optimal) of ν̃
(r)
0 and ν̃

(r)
1 by

dqr(x0, x1) =
∫

Mn×Mn

ρ̃
(r)
0 (x0)ρ̃

(r)
1 (x1)

ρ0,n(y0)ρ1,n(y1)
P ′(y1, dx1)P ′(y0, dx0) dqn(y0, y1)

=
∫

Mn×Mn

ρ̃
(r)
0 (x0)ρ̃

(r)
1 (x1)

ρ1,n(y1)
P ′(y1, dx1) Qn(y0, dy1) P (x0, dy0) m(dx0).
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and a coupling qε of ν0 and ν1 by

qε(.) := αrq
r + q̃(. ∩ (M2 \ Er))

for r = r(ε). Then the above estimates yield

T
(t)
K′,N ′(qn|mn) ≤ T

(t)
K′,N ′(qr|m) + C

∫

M

[
ρ̃
(r)
0 (x)1−1/N ′

+ ρ̃
(r)
1 (x)1−1/N ′] · d̂(x, y) dp(x, y)

≤ T
(t)
K′,N ′(qr|m) + 2C d̂W (m,mn) ≤ T

(t)
K′,N ′(qr|m) + ε

due to our choice of n. Moreover,

lim
ε→0

∣∣∣T (t)
K′,N ′(qε|m)− T

(t)
K′,N ′(qr(ε)|m)

∣∣∣ = 0. (3.11)

(vi) Summarizing, we have for each ε > 0 a probability measure qε on M2 and a family of
probability measures Γε

t, t ∈ [0, 1] on M satisfying

SN ′(Γε
t|m) ≤ SN ′(Γt,n|mn) ≤ T

(t)
K′,N ′(qn|mn) ≤ T

(t)
K′,N ′(qr(ε)|m) + ε. (3.12)

Compactness of M implies that there exists a sequence (ε(k))k∈N converging to 0 such that the
measures qε(k) converge to some q and for each rational t ∈ [0, 1] the measures Γε(k)

t converge
to some Γt. The measure q has marginals ν0 and ν1. According to (3.10), (3.7) and (3.4), it is
even an optimal coupling of them.
For each n ∈ N the family Γt,n, t ∈ [0, 1] is a geodesic in P2(Mn, dn,mn) connecting ν0,n and
ν1,n. As n →∞ the latter converge to ν0 and ν1, resp. Together with (3.10) this implies

dW (Γs, Γt) ≤ |s− t| · dW (ν0, ν1)

for all rational s, t ∈ [0, 1]. Hence, the family (Γt)t extends to a geodesic connecting ν0 and ν1.
Moreover, (3.12) and (3.11) together with lower semicontinuity of SN ′(.|m) (Lemma 1.1) and
upper semicontinuity of T

(t)
K′,N ′(.|m) (Lemma 3.3) imply

SN ′(Γt|m) ≤ lim inf
k→∞

SN ′(Γε(k)
t |m) ≤ lim inf

k→∞
T

(t)
K′,N ′(qε(k)|m) ≤ T

(t)
K′,N ′(q|m) (3.13)

for all t ∈ [0, 1], all N ′ > N = limn Nn and all K ′ < K = limn Kn. By continuity of SN ′ and
T

(t)
K′,N ′ in (K ′, N ′) the inequality SN ′(Γt|m) ≤ T

(t)
K′,N ′(q|m) also holds for (K ′, N ′) = (K,N).

This proves the Theorem.

4 Nonbranching Spaces

Several aspects of optimal mass transportation become much simpler if the underlying space
is nonbranching in the sense of Definition I.2.8. In this chapter, we will study the curvature-
dimension condition for nonbranching spaces.

Lemma 4.1. Assume that (M, d,m) is nonbranching and satisfies condition CD(K, N) for some
pair (K,N). Then for every x ∈ supp[m] and m-a.e. y ∈ M (with exceptional set depending on
x) there exists a unique geodesic between x and y.
Moreover, there exists a measurable map γ : M2 → G(M) such that for m⊗m-a.e. (x, y) ∈ M2

the curve t 7→ γt(x, y) is the unique geodesic connecting x and y.
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Proof. Fix x0 ∈ M , t ∈ ]0, 1[ and some closed set A1 ⊂ M . Let An
t for n ∈ N denote the set of

all t-intermediate points z = γt(x, y) between points x ∈ B1/n(x0) and y ∈ A1. Assume without
restriction m(B1/n(x0)) ·m(A1) > 0. According to Corollary 2.1

m(An
t ) ≥ inf

x∈B1/n(x0),y∈A1

ς
(t)
K,N ( d(x, y)) ·m(A1)

for each n and thus (as n →∞)

m(At) ≥ inf
y∈A1

ς
(t)
K,N ( d(x, y)) ·m(A1)

with At :=
⋂

n An
t .

Each point z ∈ At lies on some geodesic starting in x0 and ending somewhere in A1. Indeed,
for each n the point z will be a t-intermediate point of some xn ∈ B1/n(x0) and some yn ∈ A1.
By local compactness of M and closedness of A1 there exists a point y0 ∈ A1 such that (after
passing to a suitable subsequence) yn → y0 and thus z will also be a t-intermediate point of x0

and y0.

Now choose A1 = BR(x0) for some large R. Decomposing A1 into a disjoint union
⋃

i A
i
1 with

Ai
1 = A1 ∩

(
Bεi(x0) \Bε(i−1)(x0)

)
and applying the previous estimate to each of the Ai

1 yields
(as ε → 0)

m(At) ≥
∫

A1

ς
(t)
K,N ( d(x0, y))m(dy)

where At denotes the set of t-intermediate points between x0 and some y ∈ A1. Nonbranching
of M therefore will imply that for each z ∈ At the geodesic from x0 to z is unique.
Now ς

(t)
K,N ( d(x0, y)) → 1 as t → 1 for all y ∈ M with K · d2(x0, y) < (N − 1)π2 and

ς
(t)
K,N ( d(x0, y)) = ∞ and for all other y ∈ M . Hence, m(A1 \

⋃
t<1 At) = 0 and thus for m-

a.e. z ∈ A1 there exists a unique geodesic connecting x0 and z. Finally, for R →∞ this yields
the claim concerning uniqueness of geodesics.

For the claim concerning the measurable choice of geodesics (or intermediate points), fix a
number t ∈ ]0, 1[ and assume for simplicity m(M) = 1. For each k ∈ N let M =

⋃
i Mi,k

be a (finite or countable) covering of M by measurable sets Mi,k with diameter ≤ 1/k and
λi,k := m(Mi,k) > 0. Let pi,k be a probability measure on M3 with the following properties:
the projection (π1)∗pi,k onto the first component is the probability measure 1

λi,k
1Mi,k

m; the
projection on the third component is m; the joint distribution of the first and third component
is an optimal coupling of them; and conditioned under the first and third component, the second
component is a t-intermediate point of them.
Hence, for each k the probability measure pk :=

∑
i λi,kpi,k on M3 has the following properties:

the projection on the first component is m; the projection on the third component is m; and
conditioned under the first and third component, the second component is a t-intermediate point
of them.
Now by compactness there exists an accumulation point p of the pk, k ∈ N. It has the following
properties: the joint projection on the first and third component is m ⊗ m; and conditioned
under the first and third component, the second component is a t-intermediate point of them.
That is, p(A × M × C) = m(A) × m(C) for all measurable A,C ⊂ M ; moreover, for p-a.e.
(x, z, y) ∈ M3 the point z is a t-intermediate point of x and y. Disintegration of measures yields
a Markov kernel P from M2 to M such that

dp(x, z, y) = P (x, y; dz)m(dx)m(dy).
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According to the uniqueness of t-intermediate points

P (x, y; dz) = δγt(x,y)(dz)

for m2-a.e. (x, y). This finally proves the measurability of γt since by definition P is measurable
in (x, y).

Proposition 4.2. Given numbers K ∈ R and N ≥ 1 and a compact nonbranching metric
measure space (M, d,m). Then the following are equivalent:

(i) (M, d,m) satisfies the curvature-dimension condition CD(K, N);

(ii) For each pair ν0, ν1 ∈ P2(M, d,m) there exist a geodesic Γ : [0, 1] → P2(M, d,m) connecting
ν0, ν1 and an optimal coupling q such that for all t ∈ [0, 1] and all N ′ ≥ N

SN ′(Γ(t)|m) ≤ τ
(1−t)
K,N ′ (Θ) · SN ′(ν0|m) + τ

(t)
K,N ′(Θ) · SN ′(ν1|m) (4.1)

where Θ :=
{

q-essinfx0,x1 d(x0, x1), if K ≥ 0
q-esssupx0,x1

d(x0, x1), if K < 0

}
denotes the

{
minimal
maximal

}
transporta-

tion distance.

(iii) For each pair of points z0, z1 ∈ M there exists an ε > 0 such that for each pair ν0, ν1 ∈
P2(M, d,m) with supp[ν0] ⊂ Bε(z0), supp[ν1] ⊂ Bε(z1) there exist an optimal coupling q
and a geodesic Γ : [0, 1] → P2(M, d,m) connecting them and satisfying (1.1).

(iv) For each pair ν0, ν1 ∈ P2(M, d,m) and each optimal coupling q of them

ρt(γt(x0, x1)) ≤
[
τ

(1−t)
K,N ( d(x0, x1)) ρ

−1/N
0 (x0) + τ

(t)
K,N ( d(x0, x1)) ρ

−1/N
1 (x1)

]−N
(4.2)

for all t ∈ [0, 1], and q-a.e. (x0, x1) ∈ M2. Here ρt is the density of the push forward
of q under the map (x0, x1) 7→ γt(x0, x1). It is determined by

∫
M u(y)ρt(y) dm(y) =∫

M×M u(γt(x0, x1)) dq(x0, x1) for all bounded measurable u : M → R.

(v) For each pair ν0, ν1 ∈ P2(M, d,m) and each optimal coupling q of them there exists a
geodesic Γ : [0, 1] → P2(M, d, m) connecting ν0, ν1 and satisfying (1.1) for all t ∈ [0, 1]
and all N ′ ≥ N .

Proof. (i) ⇒ (iii), (iv) ⇒ (i), and (v) ⇒ (i): trivial.
(i)⇒ (ii): Immediate consequence of the fact that τ

(t)
K,N ′( d(x0, x1)) ≥ τ

(t)
K,N ′(Θ) for all t ∈ [0, 1]

and all x0, x1 with K d(x0, x1) ≥ KΘ. (Actually, this implication does not require that M is
compact and nonbranching.)

(iii) ⇒ (i): By compactness of M , there exist finitely many disjoint sets L1, . . . , Ln which cover
M such that for each pair i, j ∈ {1, . . . , n} and each pair ν0, ν1 ∈ P2(M, d,m) with supp[ν0] ⊂
Li, supp[ν1] ⊂ Lj there exist an optimal coupling q and a geodesic Γ : [0, 1] → P2(M, d, m)
connecting them and satisfying (1.1).
Now let arbitrary ν0 and ν1 ∈ P2(M, d,m) be given. Fix an arbitrary optimal coupling q̃ of
them and define probability measures νij

0 and νij
1 for i, j = 1, . . . , n by

νij
0 (A) :=

1
αij

q̃((A ∩ Li)× Lj) and νij
1 (A) :=

1
αij

q̃(Li × (A ∩ Lj)) (4.3)

provided αij := q̃(Li × Lj) 6= 0. Then supp[νij
0 ] ⊂ Li and supp[νij

1 ] ⊂ Lj . Therefore, for each
pair (i, j) ∈ {1, . . . , n}2 the assumption can be applied to the probability measures νij

0 and νij
1 .
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It yields the existence of an optimal coupling qij of them and of a geodesic Γij connecting them
with the property

SN ′(Γij
t |m) ≤ −

∫

M×M

[
τ

(1−t)
K,N ′ ( d(x0, x1)) ρij

0 (x0)−1/N ′

+ τ
(t)
K,N ′( d(x0, x1)) ρij

1 (x1)−1/N ′]
dqij(x0, x1) (4.4)

for all t ∈ [0, 1] and all N ′ ≥ N . Define

q :=
n∑

i,j=1

αijq
ij , Γt :=

n∑

i,j=1

αijΓ
ij
t . (4.5)

Then q is an optimal coupling of ν0 and ν1 and Γ is a geodesic connecting them. Moreover,
since the νij

0 ⊗ νij
1 for different choices of (i, j) ∈ {1, . . . , n}2 are mutually singular and since M

is nonbranching, also the Γij
t for different choices of (i, j) ∈ {1, . . . , n}2 are mutually singular,

Lemma I.2.11(iii) (for each fixed t ∈ [0, 1]). Hence,

SN ′(Γt|m) =
∑

i,j

α
1−1/N ′
ij · SN ′(Γij

t |m)

and one simply may sum up both sides of inequality (4.4) – multiplied by α
1−1/N ′
ij – to obtain

the claim.

(ii)⇒(i): Let numbers K, N and a compact nonbranching space (M, d,m) with the property
(4.1) be given. Moreover, let two measures ν0 = ρ0 and ν1 = ρ1m ∈ P2(M, d,m) be given
and choose an arbitrary optimal coupling q̃ of them. For each ε > 0 choose a finite covering
(Li)i=1,...,n of M by sets Li of diameter ≤ ε/2. Define numbers αij and probability measures νij

0

and νij
1 for i, j = 1, . . . , n as in the previous proof. Then by assumption there exist an optimal

coupling qij of them and a geodesic Γij connecting them with the property

SN ′(Γij
t |m) ≤ −

∫

M×M

[
τ

(1−t)
K,N ′ ( d(x0, x1)∓ ε) ρij

0 (x0)−1/N ′

+ τ
(t)
K,N ′( d(x0, x1)∓ ε) ρij

1 (x1)−1/N ′]
dqij(x0, x1) (4.6)

for all t ∈ [0, 1] and all N ′ ≥ N and with ∓ depending on the sign of K. Then for each ε > 0 as
before q(ε) :=

∑n
i,j=1 αijq

ij defines an optimal coupling of ν0 and ν1 and Γ(ε)
t :=

∑n
i,j=1 αijΓ

ij
t

defines a geodesic connecting ν0 and ν1. Compactness of M implies that there exists a sequence
(ε(k))k∈N converging to 0 such that q(ε(k)) converge to some q and such that the geodesics Γ(ε(k))

.

converge to some geodesic Γ. in P2(M, d,m). Hence, for each fixed ε′ > 0 and all t and N ′ > 1
under consideration

SN ′(Γt|m) ≤ lim inf
k→∞

SN ′(Γ(ε(k))
t |m)

≤ − lim sup
k→∞

∫

M×M

[
τ

(1−t)
K,N ′ ( d(x0, x1)∓ ε′) ρ

(ε(k))
0 (x0)−1/N ′

+ τ
(t)
K,N ′( d(x0, x1)∓ ε′) ρ

(ε(k))
1 (x1)−1/N ′]

dq(ε(k))(x0, x1)

≤ −
∫

M×M

[
τ

(1−t)
K,N ′ ( d(x0, x1)∓ ε′) ρ0(x0)−1/N ′

+ τ
(t)
K,N ′( d(x0, x1)∓ ε′) ρ1(x1)−1/N ′]

dq(x0, x1)
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where the last inequality is proven similarly as Lemma 3.3. Finally, by monotone convergence
the claim follows as ε′ → 0.

(i)⇒(iv): Assume that the CD(K,N) condition holds and that M is compact and nonbranching.
Let measures ν0 and ν1 be given as well as an optimal coupling q̃ of them.
Choose a ∩-stable generator {Mn}n∈N of the Borel σ-field of M with m(∂Mn) = 0 for all
n. For each n ∈ N consider the disjoint covering of M by the 2n sets L1 = M1 ∩ . . . Mn,
L2 = M1 ∩ . . .Mn−1 ∩ {Mn, . . . , L2n = {M1 ∩ . . . ∩ {Mn. For each fixed n, define probability
measures νij

0 and νij
1 as in (4.3) (proof of the implication ’(iii)⇒(i)’) and choose optimal couplings

qij of them with∫

M×M

[
τ

(1−t)
K,N ′ ( d(x0, x1)) · ρij

0 (x0)−1/N ′
+ τ

(t)
K,N ′( d(x0, x1)) · ρij

1 (x1)−1/N ′]
dqij(x0, x1)

≤
∫

M
ρij

t (γt(x0, x1))−1/N ′
dqij(x0, x1). (4.7)

Define as in (4.5)

q(n) :=
2n∑

i,j=1

αijq
ij . (4.8)

Then by construction for all i, j ≤ n∫

Mi×Mj

[
τ

(1−t)
K,N ′ ( d(x0, x1)) · ρ(n)

0 (x0)−1/N ′
+ τ

(t)
K,N ′( d(x0, x1)) · ρ(n)

1 (x1)−1/N ′]
dq(n)(x0, x1)

≤
∫

Mi×Mj

ρ
(n)
t (γt(x0, x1))−1/N ′

dq(n)(x0, x1). (4.9)

Compactness of M implies that – at least along a suitable subsequence – the q(n) converge to
an optimal coupling q of ν0 and ν1. Since m(∂Mi) = 0 for all i, we obtain for all i, j ∈ N

q(Mi ×Mj) = lim
n→∞ q(n)(Mi ×Mj) = q̃(Mi ×Mj).

Hence, q = q̃. Moreover, we may apply (modifications of) Lemma 1.1 and Lemma 3.3 to pass
to the limit in (4.9) and to obtain

∫

Mi×Mj

[
τ

(1−t)
K,N ′ ( d(x0, x1)) · ρ0(x0)−1/N ′

+ τ
(t)
K,N ′( d(x0, x1)) · ρ1(x1)−1/N ′]

dq(x0, x1)

≤
∫

Mi×Mj

ρt(γt(x0, x1))−1/N ′
dq(x0, x1).

Since this holds for all i, j it finally implies

τ
(1−t)
K,N ′ ( d(x0, x1)) · ρ0(x0)−1/N ′

+ τ
(t)
K,N ′( d(x0, x1)) · ρ1(x1)−1/N ′ ≤ ρt(γt(x0, x1))−1/N ′

for q-a.e. (x0, x1) ∈ M2. With the particular choice N ′ = N this is (iv).

(iv)⇒(v): We will prove that estimate (4.2) for a given N implies the corresponding estimate
for any N ′ ≥ N . Indeed, by Hölder’s inequality and Lemma 1.2

ρ
−1/N ′
t (γt(x0, x1)) ≥

[
τ

(1−t)
K,N ( d(x0, x1)) ρ

−1/N
0 (x0) + τ

(t)
K,N ( d(x0, x1)) ρ

−1/N
1 (x1)

]N/N ′

≥ τ
(1−t)
K,N ( d(x0, x1))N/N ′ · (1− t)1−N/N ′ · ρ−1/N ′

0 (x0)

+τ
(t)
K,N ( d(x0, x1))N/N ′ · t1−N/N ′ · ρ−1/N ′

1 (x1)

≥ τ
(1−t)
K,N ′ ( d(x0, x1)) ρ

−1/N ′
0 (x0) + τ

(t)
K,N ′( d(x0, x1)) ρ

−1/N ′
1 (x1).
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Finally, integrating this estimate with respect to the given optimal coupling q yields estimate
(1.1).

5 The Measure Contraction Property

Recall from chapter 1 that

ς
(t)
K,N (θ) = t ·

[
sin

(√
K

N − 1
tθ

)/
sin

(√
K

N − 1
θ

)]N−1

if 0 < Kθ2 < (N − 1)π2 and with appropriate interpretations otherwise.

Definition 5.1. Given two numbers K, N ∈ R with N ≥ 1 we say that a metric measure
space (M, d,m) satisfies the measure contraction property MCP(K,N) iff for each 0 < t < 1
there exists a Markov kernel Pt from M2 to M such that for m2-a.e. (x, y) and for Pt(x, y; .)-a.e.
z the point z is a t-intermediate point of x and y and such that for m-almost every x ∈ M and
for every measurable B ⊂ M

∫

M
ς
(t)
K,N ( d(x, y))Pt(x, y; B) dm(y) ≤ m(B), (5.1)

∫

M
ς
(1−t)
K,N ( d(x, y))Pt(y, x; B) dm(y) ≤ m(B). (5.2)

Lemma 5.2. A metric measure space (M, d,m) satisfies the measure contraction property
MCP(K, N) if and only if for each 0 < t < 1 there exists a measure pt on M3 such that for
pt-a.e. (x, z, y) the point z is a t-intermediate point of x and y and such that for all measurable
sets A,B, C ⊂ M

pt(A×M × C) = m(A) ·m(C), (5.3)∫

A×B×M
ς
(t)
K,N ( d(x, y)) dpt(x, z, y) ≤ m(A) ·m(B), (5.4)

∫

M×B×C
ς
(1−t)
K,N ( d(x, y)) dpt(x, z, y) ≤ m(B) ·m(C). (5.5)

Proof. (i) ⇔ (ii): Given the Markov kernel Pt define a measure pt as follows:

dpt(x, z, y) = Pt(x, y; dz)m(dx)m(dy).

Vice versa, given the measure pt define the Markov kernel Pt with the above properties by means
of disintegration of measures.

In the case K = 0 the previous conditions simply read as

pt(A×M × C) ≤ m(A) ·m(C),
tN · pt(A×B ×M) ≤ m(A) ·m(B),

(1− t)N · pt(M ×B × C) ≤ m(B) ·m(C).

For alternative formulations of conditions (6.1) (and (6.2)) see Remark 6.11 below.

Remark 5.3. Most of the results of chapter 2 also remain true with condition MCP(K,N) in
the place of condition CD(K, N). In particular, this is the case for

23



• Theorem 2.3, Generalized Bishop-Gromov Volume Growth Inequality;

• Corollary 2.4, Doubling;

• Corollary 2.5, Hausdorff Dimension;

• Corollary 2.6 Generalized Bonnet-Myers Theorem.

The proofs are essentially the same. Actually, for all these geometric consequences, property
(5.2) is not required (i.e. the so-called one-sided MCP suffices, see Remark 5.11).

Under minimal regularity assumptions on (M, d,m) condition CD(K, N) implies MCP(K,N).
These regularity assumptions are either that M is nonbranching or that geodesics in M are
unique (at least for m2-a.e. pair of endpoints). Indeed, the latter assumption will follow from
the former (Lemma 4.1).

Theorem 5.4. Assume that there exists a measurable map γ : M2 → G(M) such that for
m⊗m-a.e. (x, y) ∈ (supp[m])2 the curve γ¦(x, y) is the unique geodesic connecting x and y.
Then condition CD(K,N) implies property MCP(K,N).

Proof. Let γ : M2 → G(M) as above and define for each t ∈ [0, 1] a Markov kernel Pt from M2

to M by
Pt(x, y; B) := 1B(γt(x, y))

and for each t, x a measure mt,x =
∫

Pt(x, y; .)m(dy) on M by

mt,x(B) :=
∫

M
1B(γt(x, y))m(dy).

For each x ∈ M let Mx denote the set of all y ∈ M for which there exists a unique geodesic
connecting x and y and let M0 be the set of x such that m(M \ Mx) = 0. By assumption
m(M \M0) = 0.
Now assume CD(K, N). Fix a point x0 ∈ M0 and a closed subset B ⊂ M . Then by inner
regularity of m there exist closed sets Mk ⊂ Mx0 with m(M \Mk) ≤ 1

k . Put An
0 := B1/n(x0),

Ak
1 := γt(x0, .)−1(B)∩Mk. Moreover, let An,k

t denote the set of all γt(x, y) with x ∈ An
0 , y ∈ Ak

1.
Then for each k

⋂
n

An,k
t ⊂ B. (5.6)

Indeed, assume that z ∈ ⋂
n∈NAn,k

t , i.e. there exist xn ∈ B1/n(x0), yn ∈ Ak
1 with z = γt(xn, yn)

for all n. Then by definition of Ak
1 there exist wn ∈ B with wn = γt(x0, yn) for all n. Now

by local compactness of M (cf. Corollary 2.4) and by closedness of Mk and B there exist
y0 ∈ Mk, w0 ∈ B such that (after passing to suitable subsequences) yn → y0 and wn → w0 as
n →∞. Moreover, we have xn → x0. Hence, z as well as w0 will be t-intermediate points of x0

and y0. By uniqueness of intermediate points, z = w0 and thus z ∈ B.
Apply our version of the Brunn-Minkowski inequality, Proposition 2.1, to the sets An

0 and Ak
1.

It yields
m(An,k

t ) ≥ inf
x∈An

0 ,y∈Ak
1

ς
(t)
K,N ( d(x, y)) ·m(Ak

1)

for all k, n ∈ N. This, together with (5.6), implies as n →∞

m(B) ≥ inf
y∈Ak

1

ς
(t)
K,N ( d(x0, y)) ·m(Ak

1)
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for all k which in turn implies as k →∞
m(B) ≥ inf

y∈γt(x0,.)−1(B)
ς
(t)
K,N ( d(x0, y)) ·m (

γt(x0, .)−1(B)
)

= inf
z∈B

ς
(t)
K,N ( d(x0, z)/t) ·mt,x0(B).

Decomposing B into a disjoint union
⋃

i Bi with Bi = B ∩ (
Bεi(x0) \Bε(i−1)(x0)

)
and applying

the previous estimate to each of the Bi finally yields (as ε → 0)

m(B) ≥
∫

B
ς
(t)
K,N ( d(x0, z)/t) mt,x0(dz)

or equivalently

m(B) ≥
∫

M
ς
(t)
K,N ( d(x0, y)) · Pt(x0, y; B) m(dy).

Finally, by inner regularity these estimates carry over from all closed sets B to all measurable
sets B ⊂ M .

The assumptions of the previous Theorem are in particular satisfied in the Riemannian case.
The proof of the ’only if’ part of the assertion follows the argumentation in the proof of Theorem
1.7.

Corollary 5.5 (’Riemannian Spaces’). Let M be a complete Riemannian manifold with
Riemannian distance d and Riemannian volume m and let numbers K,N ∈ R with N ≥ 1 be
given.
(i) If the Riemannian manifold M has Ricci curvature ≥ K and dimension ≤ N then the metric
measure space (M, d,m) satisfies property MCP(K, N).
Moreover, in this case for every measurable function V : M → R the weighted space (M, d, V m)
satisfies property MCP(K + K ′, N + N ′) provided

HessV 1/N ′ ≤ −K ′

N ′ · V 1/N ′

for some numbers K ′ ∈ R, N ′ > 0 in the sense of (1.3).
(ii) Conversely, if (M, d,m) satisfies property MCP(K, N) then M has dimension ≤ N .
If (M, d,m) satisfies property MCP(K, n) where n denotes the dimension of M , then M has
Ricci curvature ≥ K.

In general, property MCP(K,N) for a Riemannian manifold will not imply that M has Ricci
curvature ≥ K. This can be seen from the following

Remark 5.6. 3 For each N > 1 there exists a constant cN > 0 such that each compact Rie-
mannian manifold M with Ricci curvature ≥ 0, dimension ≤ N − 1 and diameter ≤ L satisfies
property

MCP(K,N) for each positive K ≤ cN/L2.

Proof. According to part (i) of the previous theorem, the space (M, d,m) satisfies property
MCP(0, N − 1). It therefore suffices to prove that

tN−1 ≥ ς
(t)
K,N (θ)

for all t ∈ [0, 1] and θ ∈ [0, L]. Now for sufficiently small cN ∈ ]0, 1] and all Kθ2 ≤ cN the right
hand side can be estimated from above by tN · (1 + (1− t2)Kθ2/2). But obviously

tN−1 ≥ tN · (1 + (1− t2)Kθ2/2)

for all Kθ2 ≤ 1.
3As observed by S. Ohta, this remark (applied e.g. to small convex subsets of RN−1) proves that MCP(K, N)

is strictly weaker than CD(K, N). It also proves that MCP(K, N) is not a local property.
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Theorem 5.7 (’Alexandrov Spaces’). Let M be a complete locally compact geodesic space
with curvature ≥ κ in the sense of Alexandrov and with finite Hausdorff dimension n for some
numbers κ ∈ R, n ∈ N. Let m be the n-dimensional Hausdorff measure on M . Then the metric
measure space (M, d,m) satisfies property MCP((n− 1)κ, n).

Proof. Proposition 6.1, Lemma 6.1 and Theorem 6.1 in [KS01].

Remark 5.8. Let (M, d,m) be a metric measure space which satisfies property MCP(K,N) for
some pair of real numbers K, N . Then the following properties hold:

(i) ’Isomorphism’: Each metric measure space (M ′, d′,m′) which is isomorphic to (M, d, m)
satisfies property MCP(K, N).

(ii) ’Scaled spaces’: For each α, β > 0 the metric measure space (M,α d, βm) satisfies property
MCP(α−2K, N).

(iii) ’Subsets’: For each convex subset M ′ of M the metric measure space (M ′, d,m) satisfies
property MCP(K, N).

(iv) ’Hierarchy’: (M, d, m) satisfies conditions MCP(K ′, N ′) for all K ′ ≤ K and N ′ ≥ N .

Theorem 5.9 (’Stability under Convergence’). Let ((Mn, dn,mn))n∈N be a sequence of
normalized metric measure spaces where for each n ∈ N the space (Mn, dn, mn) satisfies property
MCP(Kn, Nn) and has diameter ≤ Ln. Assume that for n →∞

(Mn, dn,mn) D−→ (M, d,m)

and (Kn, Nn, Ln) → (K, N, L) for some triple (K,N, L) ∈ R3. Then the space (M, d,m) satisfies
property MCP(K,N) and has diameter ≤ L.

Proof. Let a sequence of normalized metric measure spaces ((Mn, dn, mn))n∈N, and a limit space
(M, d, m) be given as above. Passing to a suitable subsequence we may assume that there exist a
metric measure space (M̂, d̂, m̂) and a sequence of probability measures (m̂n)n∈N on M̂ , weakly
converging to m̂, such that for each n ∈ N the space (Mn, dn,mn) is isomorphic to the space
(M̂, d̂, m̂n) and the space (M, d,m) is isomorphic to the space (M̂, d̂, m̂), ([St04], part (v) in
the proof of Theorem 3.6, or ’Union Lemma’ 31

2 .12 in [Gr99] together with Lemma 3.7 in [St04]).
Without restriction, we therefore may assume Mn = M̂ = M , dn = d̂ = d for all n as well as
m̂n = mn for all n and m̂ = m.
Property MCP(K, N) for (M, d,mn) implies the (’restricted’) doubling property (Corollary 2.4
and Remark 5.3) and thus compactness of Mn. Since doubling constant and diameter can be
estimated uniformly in n, we may also assume that M is compact ([St04], Theorem 3.16 and
Lemma 3.15).

Property MCP(K,N) for (M, d, mn) states that for each t ∈ ]0, 1[ there exists a probability
measure p

(n)
t on M3 satisfying (5.3), (5.4), and (5.5). The latter conditions are equivalent to the

fact that for all nonnegative bounded measurable functions u on M2

∫

M3

u(x, y) dp
(n)
t (x, z, y) =

∫

M2

u(x, y) dmn(x) dmn(y) (5.7)
∫

M3

u(x, z) dp
(n)
t (x, z, y) ≤

∫

M2

u(x, z)
ς(t)( d(x, z)/t)

dmn(x) dmn(z) (5.8)
∫

M3

u(z, y) dp
(n)
t (x, z, y) ≤

∫

M2

u(z, y)
ς(t)( d(z, y)/(1− t))

dmn(z) dmn(y). (5.9)

26



Since p
(n)
t and mn are Radon measures on the compact space M , it suffices to verify (5.7), (5.8),

and (5.9) for all nonnegative bounded continuous functions u on M2. Note that also the function
1/ς(t)( d(x, y)/t) is bounded continuous on M2.
Compactness of M implies that there exists a probability measure pt on M3 such that (after
passing to an appropriate subsequence) p

(n)
t → pt weakly as n → ∞. Together with the weak

convergence of mn → m it implies that
∫

M3

u(x, y) dpt(x, z, y) =
∫

M2

u(x, y) dm(x) dm(y)
∫

M3

u(x, z) dpt(x, z, y) ≤
∫

M2

u(x, z)
ς(t)( d(x, z)/t)

dm(x) dm(z)
∫

M3

u(z, y) dpt(x, z, y) ≤
∫

M2

u(z, y)
ς(t)( d(z, y)/(1− t))

dm(z) dm(y).

for all nonnegative bounded continuous functions u on M . As mentioned before, this is equivalent
to properties (5.3), (5.4), and (5.5) for pt.

Corollary 5.10 (’Compactness’). For each triple (K,L, N) ∈ R3 the family X1(K, N,L) of
isomorphism classes of normalized metric measure spaces which satisfy property MCP(K, N) and
which have diameter ≤ L is compact w.r.t. D.

Proof. Analogous to the proof of Corollary 3.2.

Let us discuss some more conditions related to property MCP(K, N).

Remark 5.11. Given a metric measure space (M, d, m) the following properties are equivalent:

(i) For each 0 < t < 1 there exists a Markov kernel Pt from M2 to M such that for every
x ∈ supp[m], for m-a.e. y and for Pt(x, y; .)-a.e. z the point z is a t-intermediate point of
x and y and such that estimate (5.1) holds true for every x ∈ supp[m] and every measurable
subset B ⊂ M .

(ii) For each 0 < t < 1 there exists a Markov kernel Pt from M2 to M such that for m2-a.e.
(x, y) and for Pt(x, y; .)-a.e. z the point z is a t-intermediate point of x and y and such
that estimate (5.1) holds true for m-a.e. x ∈ M and every measurable subset B ⊂ M .

(iii) There exists a measure Υ on G(M) such that Υ0,1 = m⊗m and for each t ∈ [0, 1]

ς
(t)
K,N

(
d(., .)

t

)
Υ0,t ≤ m⊗m. (5.10)

Here Υs,t = (πs,t)∗Υ for s, t ∈ [0, 1] is the push forward of Υ under the projection πs,t :
G(M) → M2, γ 7→ (γs, γt).

In this case, we say that (M, d,m) satisfies the one-sided measure contraction property MCP1/2(K,N).

Proof. (i)⇒(ii) and (iii)⇒(ii) are trivial. (ii)⇒(i) follows by weak convergence of
∫

Pt(xn, y; .)m(dy) →∫
Pt(x, y; .)m(dy) as xn → x ∈ supp[m].

It remains to prove (ii)⇒(iii). According to Remark 5.3 (and Corollary 2.4) we may assume
without restriction that M is compact. For each n ∈ N we define a measure p(n) on Mn+1 by

dp(n)(x0, x1, . . . , xk, . . . , xn)
= P 1

2
(x0, x2; dx1) . . . P k−1

k
(x0, xk; dxk−1) . . . Pn−1

n
(x0, xn; dxn−1) dm(xn) dm(x0).
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Passing to a suitable subsequence, by compactness there exists a limit Υ, such that for infinitely
many n ∈ N (

π0, 1
n

,..., n−1
n

,1

)
?
Υ = p(n)

as measures on Mn+1. In particular, this implies (π0,1)∗Υ = m⊗m.
Moreover, for all such n, all k = 1, . . . , n − 1 and all measurable sets A0, Ak ⊂ M we obtain
(using estimate (5.1))

(
ς
( k

n
)

K,N

(
d(., .)
k/n

)
· (π0,k/n)∗Υ

)
(A0 ×Ak)

=
∫

. . .

∫
ς
( k

n
)

K,N

(
d(x0, xk)

k/n

)
· 1A0(x0) · 1Ak

(xk)

P 1
2
(x0, x2; dx1) . . . P k−1

k
(x0, xk; dxk−1) . . . Pn−1

n
(x0, xn; dxn−1) dm(xn) dm(x0)

(5.1)

≤
∫

. . .

∫
ς
( k

n
)

K,N ( d(x0, xn)) · 1A0(x0) · 1Ak
(xk) · ς(n−1

n
)

K,N ( d(x0, xn))−1

P 1
2
(x0, x2; dx1) . . . Pn−2

n−1
(x0, xn−1; dxn−2) dm(xn−1) dm(x0)

(5.1)

≤ . . .

≤
∫

. . .

∫
1A0(x0) · 1Ak

(xk) P 1
2
(x0, x2; dx1) . . . P k−1

k
(x0, xk; dxk−1) dm(xk) dm(x0)

= m(A0) ·m(Ak).

This already proves estimate (5.10) for all t = k
n as above. By weak convergence then the claim

follows for all t ∈ [0, 1].

Remark 5.12. Assume that the metric measure space (M, d, m) satisfies condition MCP(K,N).
Then there exists a measure Υ on G(M) such that Υ0,1 = m⊗m and ∀n ∈ N, ∀k = 1, . . . , 2n

ς
(2−n)
K,N (2n d(., .)) Υ(k−1)2−n,k2−n ≤ m⊗m. (5.11)

Proof. The measure Υ is obtained as the projective limit of measures p(n) on M2n+1 defined
recursively by p(0) = m⊗m and

dp(n)(x0, x1, . . . , x2n) = P2−n(x0, x2; dx1) . . . P2−n(x2n−2, x2n ; dx2n−1) dp(n−1)(x0, x2, . . . , x2n).

6 Analytic Consequences of the Measure Contraction Property

Throughout this chapter, assume that the metric measure space (M, d,m) satisfies property
MCP(K, N) for some K,N ∈ R.
For p ∈ [1,∞[ and u ∈ Lp(M, m) define the ’p-th order energy integral’ by

Ep
N (u) := sup

ϕ∈Cc(M),ϕ≤1
Ep

N (u, ϕ) (6.1)

where

Ep
N (u, ϕ) := lim sup

r→0

N

rN

∫ ∫

B∗r (x)

∣∣∣∣
u(x)− u(y)

d(x, y)

∣∣∣∣
p

ϕ(x) dm(y) dm(x). (6.2)

Moreover, define the ’p-th order Sobolev space’ by

W 1,p(M) := {u ∈ Lp(M, m) : Ep
N (u) < ∞}.
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Theorem 6.1. (i) For each p ∈ [1,∞[, each u ∈ W 1,p(M) and each ϕ ∈ Cc(M) the limit

lim
r→0

N

rN

∫ ∫

B∗r (x)

∣∣∣∣
u(x)− u(y)

d(x, y)

∣∣∣∣
p

ϕ(x) dm(y) dm(x)

exists and coincides with Ep
N (u, ϕ).

(ii) For each p and u as above there exists a measure µp
N (u, .) on M (’p-th order energy measure’)

such that
Ep

N (u, ϕ) =
∫

M
ϕ(x)µp

N (u, dx)

for all ϕ ∈ Cc(M).
(iii) For each p ∈ [1,∞[, the energy integral u 7→ Ep

N (u) is lower semicontinuous on Lp(M,m),
and W 1,p(M) is a Banach space.

The proof of the theorem follows the argumentation in [KS93], [St98] and [KS01]. The key
ingredient is the following lemma which uses approximation of Ep

N by functionals slightly different
from those in the theorem. Fix a nonnegative measurable function η on R with supp[η] ⊂ [0, 1]
and

∫
R η(s)ds = 1. (The choice η = N · sN−1 · 1[0,1] covers the situation from the theorem.) Put

Ep,r
K,N (u, ϕ) :=

1
r

∫ ∫ ∣∣∣∣
u(x)− u(y)

d(x, y)

∣∣∣∣
p

· η
(

d(x, y)
r

)
· sK,N ( d(x, y))1−N · ϕ(x) dm(y) dm(x)

where sK,N (Θ) :=
√

N−1
K · sin

(√
K

N−1Θ
)

(with the usual interpretation if K ≤ 0).

Lemma 6.2 (’Subpartitioning Lemma’). For all p ∈ [1,∞[, u ∈ W 1,p(M) and ϕ ∈ Cc(M),
ϕ ≥ 0, and for all 0 = t0 < t1 < t2 < . . . < tn−1 < tn = 1

Ep,r
K,N (u, ϕ) ≤

n∑

i=1

(ti − ti−1) · Ep,(ti−ti−1)r
K,N (u, ϕr) (6.3)

where ϕr(x) = ϕ(x) + supy∈Br(x) |ϕ(x)− ϕ(y)|.
Proof. For simplicity here we restrict ourselves to the case n = 2. The general case follows
analogously, see [St98].
Let us fix t ∈ ]0, 1[ and let Pt(x, y; dz) be the Markov kernel from M2 to M from the definition
of the measure contraction property MCP(K, N). Then

Ep,r
K,N (u, ϕ) =

1
r

∫ ∫ ∣∣∣∣
u(x)− u(y)

d(x, y)

∣∣∣∣
p

η

(
d(x, y)

r

)
sK,N ( d(x, y))1−Nϕ(x) dm(y) dm(x)

(∗)
≤ 1

r

∫ ∫ ∫ [
t1−p

∣∣∣∣
u(x)− u(z)

d(x, y)

∣∣∣∣
p

+ (1− t)1−p

∣∣∣∣
u(z)− u(y)

d(x, y)

∣∣∣∣
p]

Pt(x, y; dz)

·η
(

d(x, y)
r

)
sK,N ( d(x, y))1−Nϕ(x) dm(y) dm(x)

≤ 1
r

∫ ∫ ∫ ∣∣∣∣
u(x)− u(z)

d(x, z)

∣∣∣∣
p

η

(
d(x, z)

tr

)
t sK,N ( d(x, y))1−NPt(x, y; dz) dm(y) ϕr(x) dm(x)

+
1
r

∫ ∫ ∫ ∣∣∣∣
u(z)− u(y)

d(z, y)

∣∣∣∣
p

η

(
d(z, y)

(1− t)r

)
(1− t) sK,N ( d(x, y))1−NPt(x, y; dz) dm(x) ϕr(y) dm(y)

(∗∗)
≤ 1

r

∫ ∫ ∣∣∣∣
u(x)− u(z)

d(x, z)

∣∣∣∣
p

η

(
d(x, z)

tr

)
sK,N ( d(x, z))1−N dm(z) ϕr(x) dm(x)

+
1
r

∫ ∫ ∣∣∣∣
u(z)− u(y)

d(z, y)

∣∣∣∣
p

η

(
d(z, y)

(1− t)r

)
sK,N ( d(z, y))1−N dm(z) ϕr(y) dm(y)

= t · Ep,tr
K,N (u, ϕr) + (1− t) · Ep,(1−t)r

K,N (u, ϕr).
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Here (∗) is due to the standard estimate (a + b)p ≤ t1−pap + (1− t)1−pbp and (∗∗) is due to our
assumption (5.1).

Proof of the Theorem. We only sketch the main steps. See [KS93], [St98] and [KS01] for more
details.
(i) Using the estimate of the lemma, one verifies that for each p, u and ϕ as above the limit
limr→0 Ep,r

K,N (u, ϕ) exists and is independent of the choice of η and of K. It therefore coincides
with Ep

N (u, ϕ).
(ii) For each p ≥ 1 and each u ∈ W 1,p(M) the map ϕ 7→ Ep

N (u, ϕ) is linear. It is represented
by a measure µp

N (u, dx) (independent of K and η) which is the weak limit of the measures
ρp,r

K,N (u, x) dm(x) for r → 0 where

ρp,r
K,N (u, x) :=

1
r

∫ ∣∣∣∣
u(x)− u(y)

d(x, y)

∣∣∣∣
p

· η
(

d(x, y)
r

)
· sK,N ( d(x, y))1−N dm(y).

(iii) Now choose η(s) = (p+N)·sp+N−1·1[0,1](s). Then the densities ρp,r
K,N (u, .) of the approximate

energy measures are given by

ρp,r
K,N (u, x) =

p + N

rp+N

∫

Br(x)
|u(x)− u(y)|p ·

(
d(x, y)

sK,N ( d(x, y))

)N−1

dm(y).

Hence, if (uk)k is a sequence in W 1,p(M) converging in Lp(M, m) to some u ∈ Lp then
Ep,r

K,N (uk, ϕ) → Ep,r
K,N (u, ϕ) for each r > 0 and ϕ as k → ∞. Now assume supk Ep

N (uk) < C.
Then for all ϕ ≤ 1, all sufficiently small r > 0, and all k ∈ N

Ep,r
K,N (uk, ϕ) < C.

Thus Ep
N (u) ≤ C. Passing to a suitable subsequence finally yields

lim inf
k→∞

Ep
N (uk) ≥ Ep

N (u).

The last statement of the preceding theorem also admits an extension to varying state spaces.
Let (Mi, di,mi) for i ∈ N be a family of normalized metric measure spaces with

(Mi, di,mi)
D−→ (M, d,m)

as i →∞. Given functions ui ∈ Lp(Mi,mi) and u ∈ Lp(M, m) we say that

ui → u in Lp

iff there exist a family of couplings qi of the measures mi and m and a family of couplings d̂i of
the metrics di and d such that

∫
Mi×M d̂i(x, y)2 dqi(x, y) → 0 and

∫

Mi×M
|ui(x)− u(y)|p dqi(x, y) → 0 as i →∞.

Theorem 6.3. Let (Mi, di, mi), i ∈ N, be a family of normalized compact metric measure spaces
satisfying the measure contraction property MCP(K,N) for some pair (K,N) and converging to
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a metric measure space (M, d, m). For p ∈ [1,∞[ and i ∈ N, let E i,p
N and Ep

N be the p-th order
energy integral on Lp(Mi,mi) and Lp(M, m), resp. Then

lim inf
i→∞

E i,p
N (ui) ≥ Ep

N (u)

for all u ∈ Lp(M, m) and all sequences of ui ∈ Lp(Mi, mi), i ∈ N, with

ui → u in Lp.

Proof. Let u and (ui)i∈N be given as above. Let us first consider the case where all the ui are
uniformly bounded, say |ui| ≤ β. Put α := lim infi→∞ E i,p

N (ui). Without restriction, we may
assume α = limi→∞ E i,p

N (ui). (Otherwise, we pass to a suitable subsequence.) To simplify the
presentation we also assume K = 0. Since M is compact, it suffices to choose ϕ = 1. Then for
all r > 0 and all (sufficiently small) ε > 0

Ep,r
0,N (u, 1) =

N + p

rN+p

∫

M

∫

M
|u(x)− u(y)|p · 1{d(x,y)<r}m(dy) m(dx)

≤ N + p

rN+p

∫

Mi×M

∫

Mi×M

[|u(x)− ui(x′)|+ |ui(x′)− ui(y′)|+ |ui(y′)− u(y)|]p

·1{d(x,y)<r,
ˆdi(x,x′)<εr/2,

ˆdi(y,y′)<εr/2}dqi(y′, y) dqi(x′, x)

+2
N + p

rN+p
(2β)p · qi

(
{(x′, x) ∈ Mi ×M : d̂i(x′, x) ≥ εr/2}

)

≤ (1 + ε) · N + p

rN+p

∫

Mi

∫

Mi

∣∣ui(x′)− ui(y′)
∣∣p · 1{di(x′,y′)<(1+ε)r}mi(dy′) mi(dx′)

+
C(N, p, ε)

rN+p

∫

Mi×M

∣∣ui(x′)− u(x)
∣∣p dqi(x′, x)

+2
N + p

rN+p
(2β)p · 4

ε2r2
D2 ((Mi, di,mi), (M, d,m)) .

For fixed r and ε and sufficiently large i the second and third term on the RHS are arbitrarily
small. The first term can be estimated by

(1 + ε)1+N+p · E i,p,(1+ε)r
0,N (ui) ≤ (1 + ε)1+N+p · α.

Thus Ep
N (u) ≤ α. This proves the claim for uniformly bounded sequences of ui.

Now let an arbitrary sequence of ui be given with ui → u in Lp. For each β > 0 define
u

(β)
i := min(max(ui,−β), β) and similarly u(β). Then u

(β)
i → u(β) in Lp as i → ∞ (for each β)

and E i,p
N (u(β)

i ) ↗ E i,p
N (ui) as β →∞ (for each i).

Hence, α = lim infi→∞ E i,p
N (ui) implies lim infi→∞ E i,p

N (u(β)
i ) ≤ α for each β. By the first part of

the proof, it therefore follows Ep
N (u(β)) ≤ α for each β. This finally yields Ep

N (u) ≤ α.

Of particular interest is the case p = 2. It allows to define a Laplace operator on L2(M, m).
The definition depends on the number N from the measure contraction property MCP(K,N).
On the other hand, everything will be independent of the choice of K.

Theorem 6.4. (i) The 2-nd order energy integral E2
N extends to a bilinear form

EN (u, v) :=
1
4
E2

N (u + v)− 1
4
E2

N (u− v)
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with domain W 1,2
N (M). This is a strongly local Dirichlet form on L2(M, m) (not necessarily

densely defined).
(ii) There exists a unique linear operator ∆N with domain D(∆N ) ⊂ W 1,2

N (M) ⊂ L2(M, m) such
that

EN (u, v) = −
∫

(∆Nu) · v dm (6.4)

for all v ∈ W 1,2
N (M) and u ∈ D(∆N ).

(iii) For each compact K ⊂ M there exists a constant C > 0 such that for all x ∈ supp[m], all
r with Br(x) ⊂ K and all u ∈ W 1,2

N (M)
∫

B3r(x)
µN (u, dy) ≥ C

r2

∫

Br(x)
|u(y)− ur,x|2 dm(y).

Here µN (u, .) denotes the energy measure of u associated with EN and ur,x = 1
m(Br(x))

∫
Br(x) u dm.

Proof. (i) and (ii) are obvious. In order to prove (iii) we follow the argumentation in [St98],
Theorem 6.3 and Corollary 6.4. Assume without restriction that K = BR(x0). Choose a
continuous approximation ϕ of the indicator function 1Br(x) and choose η(s) = (p+N) ·sp+N−1 ·
1[0,1](s). Then ϕ2r ≤ 2 · 1B3r(x) and thus by the Subpartitioning Lemma

2
∫

B3r(x)
dµN (u, dy) ≥ 2 + N

(2r)2+N

∫

Br(x)

∫

B2r(y)
|u(y)− u(z)|2 ·

(
d(y, z)

sK,N ( d(y, z))

)N−1

dm(z) dm(y)

≥ C

r2+N

∫

Br(x)

∫

Br(x)
|u(y)− u(z)|2 dm(z) dm(y)

=
2C

r2
· m(Br(x))

rN

∫

Br(x)
|u(y)− ur,x|2 dm(y)

≥ 2C

r2
· m(BR(x0))

(2R)N

∫

Br(x)
|u(y)− ur,x|2 dm(y).

Recall that according to the Bishop-Gromov volume growth inequality (2.5) the limit

ωN (x) := lim
r→0

m(Br(x))
rN

exists for each x ∈ supp[m]. Moreover, it is positive and lower semicontinuous on supp[m].
Assume for the sequel

(*) M = supp[m] and ωN is locally bounded on M .

Note that ωN ≡ ∞ on supp[m] as soon as (M, d, m) also satisfies the measure contraction
property MCP(K ′, N ′) for some N ′ < N (and some K ′). Hence, there exists at most one
number N for which the above assumption is fulfilled.
Define ’the Dirichlet form’ (E ,W 1,2

0 (M)) on L2(M, m) as the closure of (E , CLip
c (M)) where

E(u, u) :=
∫

M

1
ωN (x)

µN (u, dx). (6.5)

Moreover, define ’the Laplace operator’ on M as the linear operator ∆ with domain D(∆) ⊂
W 1,2

0 (M) ⊂ L2(M, m) such that E(u, v) = − ∫
(∆u) · v dm for all v ∈ W 1,2

0 (M) and u ∈ D(∆).
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Example 6.5. In the case of a Riemannian manifold M as considered in Corollary 5.5(i), the
operator ∆ coincides with the Laplace-Beltrami operator on L2(M,m).

Corollary 6.6. For each metric measure space satisfying MCP(K,N) and condition (∗):
(i) (E , W 1,2

0 (M)) is a strongly local, regular Dirichlet form on L2(M, m), densely defined with
core CLip

c (M).

(ii) A scale invariant Poincaré inequality (in the same form as in the previous theorem) holds
true for E.

(iii) For each u ∈ CLip
loc (M)

µ(u, dx) ≤ N · |∇u|2(x) ·m(dx) (6.6)

where |∇u|(x) := lim supy→x
|u(x)−u(y)|

d(x,y)
denotes the ’length of the gradient’ of u. Moreover,

for each z ∈ M and u = d(z, .) we have |∇u|(.) ≡ 1 and

µ(u, dx) ≥ N + 2
23N+2

m(dx).

Proof. Properties (i) and (ii) are obvious due to the previous theorem. In order to see the first
assertion of (iii), note that by monotone convergence for all nonnegative continuous ϕ

∫

M
|∇u|2(x)ϕ(x) m(dx) = lim

r→0

∫

M
sup

y∈Br(x)

∣∣∣∣
u(x)− u(y)

d(x, y)

∣∣∣∣
2

· m(Br(x))
rN

ϕ(x)
ωN (x)

m(dx)

≥ lim
r→0

1
rN

∫

M

∫

Br(x)

∣∣∣∣
u(x)− u(y)

d(x, y)

∣∣∣∣
2

dm(y)
ϕ(x)

ωN (x)
m(dx)

=
1
N

∫
ϕ(x)

ωN (x)
µN (u, dx) =

1
N

∫
ϕ(x)µ(u, dx).

For the second assertion of (iii), let z, x ∈ M and r > 0 be given with r ≤ d(x, z). Choose a
point ξ on a geodesic connecting x and z with d(x, ξ) = 3

4r. Then |u(x) − u(y)| ≥ r/2 for all
y ∈ Br/4(ξ). Hence,

1
N + 2

∫
ϕ(x) µ(u, dx) = lim

r→0

1
rN+2

∫

M

∫

Br(x)
|u(x)− u(y)|2 m(dy)

ϕ(x)
ωN (x)

m(dx)

≥ lim
r→0

1
rN+2

∫

M
m(Br/4(ξ)) ·

(r

2

)2 ϕ(x)
ωN (x)

m(dx)

≥ lim
r→0

1
4rN8N

∫

M
m(B2r(ξ)) · ϕ(x)

ωN (x)
m(dx) ≥ 1

23N+2

∫

M
ϕ(x) m(dx).

Extending fundamental work of De Giorgi, Nash, Moser, Grigor’yan, Saloff-Coste and many
others, it was shown in [St96] that

(i) a doubling property for the volume of balls (as in Cor. 2.4),

(ii) a scale-invariant Poincaré inequality on balls (as in Thm. 6.4), and

(iii) a gradient estimate (as in (6.6)) for cut-off functions
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allow to deduce a variety of regularity results in the general framework of strongly local, regular
Dirichlet forms on locally compact metric spaces, generalizing classical regularity theory for sec-
ond order elliptic operators on Euclidean or Riemannian spaces. In particular, as an immediate
consequence of Corollary 6.6 and Corollary 2.4 we obtain

• Parabolic Harnack Inequality for local weak solutions of the equation (1
2∆− ∂

∂t)u = 0
on R×M ;

• Hölder Continuity for functions u as above and, in particular, for harmonic functions
on M ;

• Feller Property of the transition semigroup Tt := exp(t∆/2) on L2(M,m) resp. on
C0(M);

• Gaussian Estimates for the heat kernel pt(x, y), i.e. for the density of the transition
semigroup Tt.

We refer to [St96] and [St98] for detailed formulations of these properties as well as for proofs.
Instead of going into technicalities we will close here, presenting a simple nice application.

Corollary 6.7. The measure contraction property MCP(0, 2) for (M, d,m) together with as-
sumption (*) for N = 2 imply that the Dirichlet form (E ,W 1,2

0 (M)) is recurrent.
That is, every nonnegative superharmonic function on M must be constant. Or in other words,
the space M is ’parabolic’.

Remark 6.8. Defining the p-th order energy integral and the Dirichlet form on L2(M, m), we
followed our previous approach in [St98]. The latter provided the first construction of a Dirichlet
form on a metric measure space (M, d,m). Later on, Cheeger [Ch99] presented a remarkable
alternative construction, based on the concept of upper gradients. According to Corollary 7.6(iii)
the measure contraction property also implies the Poincaré inequality in Cheeger’s context.
There is a huge literature on Sobolev spaces over metric measure spaces, starting with the work
of Hajlasz [Ha96]. See [He01], [AT04] and references therein.
After this paper was completed, we learned of related work by Ohta [Oh05].4
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