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Abstract

We present a curvature-dimension condition CD(K, N) for metric measure spaces (M, d, m). In some sense, it will
be the geometric counterpart to the Bakry-Émery condition for Dirichlet forms [1]. For Riemannian manifolds, it
holds if and only if dim(M) ≤ N and RicM (ξ, ξ) ≥ K · |ξ|2 for all ξ ∈ TM . The curvature bound from [6,7] is the
limit case CD(K,∞).

Our curvature-dimension condition is stable under convergence, cf. [6,7]. Furthermore, it entails various geo-
metric consequences e.g. the Bishop-Gromov theorem and the Bonnet-Myers theorem. In both cases, we obtain
the sharp estimates known from the Riemannian case. To cite this article: K. T. Sturm, C. R. Acad. Sci. Paris,
Ser. I 336 (2003).

Résumé

Nous présentons une condition de type courbure-dimension CD(K, N) pour des espaces métriques mesurés
(M, d, m), qui se peut regarder comme une contrepartie géométrique de laquelle de Bakry-Émery pour les formes
Dirichlet [1]. Pour les varietés riemanniennes, elle est satisfaite si et seulement si dim(M) ≤ N et RicM (ξ, ξ) ≥
K · |ξ|2 pour tout ξ ∈ TM . La borne de la courbure de [6,7] est le cas limite CD(K,∞).

Notre condition est stable pour la convergence, selon [6,7]. Elle comporte des conséquences géométriques diverses,
comme les théorèmes de Bishop-Gromov et de Bonnet-Myers. Dans les deux cas, on obtient des estimations
optimales connues dans le cas riemannien. Pour citer cet article : K. T. Sturm, C. R. Acad. Sci. Paris, Ser. I 336
(2003).

A metric measure space will always be a triple (M, d,m) where (M, d) is a complete separable metric
space and m is a locally finite measure on M equipped with its Borel σ-algebra. The case m(M) = 0
will be excluded. P2(M, d) denotes the L2-Wasserstein space of probability measures on M and dW the
corresponding L2-Wasserstein distance. The subspace of m-absolutely continuous measures is denoted by
P2(M, d,m).
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Given a metric measure space (M, d,m) and a number N ∈ R, N ≥ 1 we define the Rényi entropy
functional SN (.|m) : P2(M, d) → R with respect to m by

SN (ν|m) := −
∫

ρ−1/Ndν

where ρ denotes the density of the absolutely continuous part νc in the Lebesgue decomposition ν =
νc +νs = ρm+νs of ν ∈ P2(M, d). Note that S1(ν|m) = −m(supp[νc]). The functional S̃N := N +N SN

shares various properties with the relative Shannon entropy Ent(.|m). For instance, if m is a probability
measure then S̃N (.|m) ≥ 0 on P2(M, d) and S̃N (ν|m) = 0 if and only if ν = m. If m(M) is finite then
Ent(ν|m) = limN→∞N(1 + SN (ν|m)) for each ν ∈ P2(M, d).

Definition 1 Given two numbers K,N ∈ R with N ≥ 1 we say that a metric measure space (M, d,m)
satisfies the curvature-dimension condition CD(K, N) iff for each pair ν0, ν1 ∈ P2(M, d,m) there exist
an optimal coupling q of ν0, ν1 and a geodesic Γ : [0, 1] → P2(M, d,m) connecting ν0, ν1 with

SN ′(Γ(t)|m)≤−
∫

M×M

[
τ

(1−t)
K,N ′ ( d(x0, x1)) · ρ−1/N ′

0 (x0)τ
(t)
K,N ′( d(x0, x1)) · ρ−1/N ′

1 (x1)
]
dq(x0, x1)

for all t ∈ [0, 1] and all N ′ ≥ N . Here ρi denotes the density of the absolutely continuous part of νi w.r.t.
m (for i = 0, 1) and for each θ ∈ R+

τ
(t)
K,N (θ) :=





∞, if Kθ2 ≥ (N − 1)π2

t1/N

(
sin

(√
K

N − 1
tθ

)/
sin

(√
K

N − 1
θ

))1−1/N

, if 0 < Kθ2 < (N − 1)π2

t, if Kθ2 = 0 or

if Kθ2 < 0 and N = 1

t1/N

(
sinh

(√
−K

N − 1
tθ

)/
sinh

(√
−K

N − 1
θ

))1−1/N

, if Kθ2 < 0 and N > 1.

Theorem 2 Let M be a complete Riemannian manifold with Riemannian distance d and Riemannian
volume m and let numbers K,N ∈ R with N ≥ 1 be given.
(i) The metric measure space (M, d,m) satisfies the curvature-dimension condition CD(K,N) if and

only if the Riemannian manifold M has Ricci curvature ≥ K and dimension ≤ N .
(ii) Moreover, in this case for every measurable function V : M → R the weighted space (M, d, V m)

satisfies the curvature-dimension condition CD(K + K ′, N + N ′) provided

HessV 1/N ′ ≤ −K ′

N ′ · V 1/N ′

for some numbers K ′ ∈ R, N ′ > 0 in the following sense:

V (γt)1/N ′ ≥ σ
(1−t)
K′,N ′( d(γ0, γ1)) V (γ0)1/N ′

+ σ
(t)
K′,N ′( d(γ0, γ1)) V (γ1)1/N ′

for each geodesic γ : [0, 1] → M and each t ∈ [0, 1]. Here σ
(t)
K′,N ′(θ) := t−1/N ′ · τ (t)

K′,N ′+1(θ)
1+1/N ′

.

This essentially follows from estimates for the Jacobian of transport maps in [3] and [5]. The particular
case of the CD(0, N) condition has already been treated in [5] and later independently in [4].

Let us have a closer look on these results if M is a subset of the real line equipped with the usual
distance d and the 1-dimensional Lebesgue measure m.
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Example 1 (i) For each pair of real numbers K > 0, N > 1 the space ([0, L], d, V m) with L :=
√

N−1
K π

and V (x) = sin
(√

K
N−1 x

)N−1

satisfies the curvature-dimension condition CD(K, N).

(ii) For each pair of real numbers K ≤ 0, N > 1 the space (R+, d, V m) with V (x) = sinh
(√

−K
N−1 x

)N−1

,

if K < 0, and V (x) = xN−1, if K = 0, satisfies the curvature-dimension condition CD(K, N).

(iii) For each pair of real numbers K < 0, N > 1 the space (R, d, V m) with V (x) = cosh
(√

−K
N−1 x

)N−1

satisfies the curvature-dimension condition CD(K,N).
Note that for N → ∞ the weight V from example (iii) from above converges to the weight V (x) =

exp
(−K

2 x2
)
. Also note that according to [2], the examples (i)-(iii) equipped with natural weighted Lapla-

cians are also the prototypes for the Bakry-Émery curvature-dimension condition.

Proposition 3 (’Generalized Brunn-Minkowski Inequality’) Assume that the metric measure space
(M, d,m) satisfies the curvature-dimension condition CD(K, N) for some real numbers K,N ∈ R, N ≥ 1.
Then for all measurable sets A0, A1 ⊂ M with m(A0) ·m(A1) > 0, all t ∈ [0, 1] and all N ′ ≥ N

m(At)1/N ′ ≥ τ
(1−t)
K,N ′ (Θ) ·m(A0)1/N ′

+ τ
(t)
K,N ′(Θ) ·m(A1)1/N ′

where At denotes the set of points γt on geodesics with endpoints γ0 ∈ A0 and γ1 ∈ A1 and where
Θ = infx0∈A0,x1∈A1 d(x0, x1) if K ≥ 0 and Θ = supx0∈A0,x1∈A1

d(x0, x1) if K < 0. In particular, if
K ≥ 0 then

m(At)1/N ′ ≥ (1− t) ·m(A0)1/N ′
+ t ·m(A1)1/N ′

.

Now let us fix a point x0 ∈ supp[m] and study the growth of the volume of concentric balls as well as
the growth of the volume of the corresponding spheres:

v(r) := m(Br(x0)), s(r) := lim sup
δ→0

1
δ
·m (

Br+δ(x0) \Br(x0)
)
.

Theorem 4 (’Generalized Bishop-Gromov Volume Growth Inequality’) Assume that the met-
ric measure space (M, d,m) satisfies the curvature-dimension condition CD(K, N) for some K,N ∈ R,
N ≥ 1. Then each bounded set M ′ ⊂ M has finite volume. Moreover, either m is supported by one point
or all points and all spheres have mass 0.

More precisely, if N > 1 then for each fixed x0 ∈ supp[m] and all 0 < r < R ≤
√

N−1
K∨0 · π

s(r)
s(R)

≥

 sin

(√
K

N−1r
)

sin
(√

K
N−1R

)



N−1

and
v(r)
v(R)

≥
∫ r

0
sin

(√
K

N−1 t
)N−1

dt

∫ R

0
sin

(√
K

N−1 t
)N−1

dt

with s(.) and v(.) defined as above and with the usual interpretation of the RHS if K ≤ 0. In particular,
if K = 0

s(r)
s(R)

≥
( r

R

)N−1

and
v(r)
v(R)

≥
( r

R

)N

.

The latter also holds true if N = 1 and K ≤ 0.
For each K and each integer N > 1 the simply connected spaces of dimension N and constant curvature

K/(N − 1) provide examples where these volume growth estimates are sharp. But also for arbitrary real
numbers N > 1 these estimates are sharp as demonstrated by Example 1(i) and (ii) where equality is
attained.
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Corollary 5 (’Doubling’) For each metric measure space (M, d,m) which satisfies the curvature-dimen-
sion condition CD(K,N) for some K,N ∈ R, N ≥ 1, the doubling property holds on each bounded subset
M ′ ⊂ supp[m]. In particular, each bounded closed subset M ′ ⊂ supp[m] is compact.

If K ≥ 0 or N = 1 the doubling constant is ≤ 2N . Otherwise, it can be estimated by 2N ·cosh
(√

−K
N−1 L

)N−1

where L is the diameter of M ′.

Corollary 6 (’Hausdorff Dimension’) Each metric measure space (M, d,m) which satisfies the curva-
ture-dimension condition CD(K,N) for some K,N ∈ R, N ≥ 1, has Hausdorff dimension ≤ N .

Corollary 7 (’Generalized Bonnet-Myers Theorem’) For every metric measure space (M, d,m)
which satisfies the curvature-dimension condition CD(K, N) for some real numbers K > 0 and N ≥ 1
the support of m is compact and has diameter

L ≤
√

N − 1
K

π.

In particular, if K > 0 and N = 1 then supp[m] consists of one point.

Theorem 8 (’Stability under Convergence) Let ((Mn, dn,mn))n∈N be a sequence of normalized met-
ric measure spaces where for each n ∈ N the space (Mn, dn,mn) satisfies the curvature-dimension condi-
tion CD(Kn, Nn) and has diameter ≤ Ln. Assume that for n →∞

(Mn, dn,mn) D−→ (M, d,m)

and (Kn, Nn, Ln) → (K, N, L) for some triple (K, N, L) ∈ R2 satisfying K · L2 < (N − 1)π2. Then the
space (M, d,m) satisfies the curvature-dimension condition CD(K,N) and has diameter ≤ L.

Corollary 9 (’Compactness’) For each triple (K, L, N) ∈ R3 with K · L2 < (N − 1)π2 the family
X1(K, N, L) of isomorphism classes of normalized metric measure spaces which satisfy the curvature-
dimension condition CD(K,N) and which have diameter ≤ L is compact w.r.t. D.
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