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Abstract

We introduce and analyze curvature bounds Curv(M, d, m) ≥ K for metric measure spaces (M, d, m), based on
convexity properties of the relative entropy Ent(.|m). For Riemannian manifolds, Curv(M, d, m) ≥ K if and only
if RicM (ξ, ξ) ≥ K · |ξ|2 for all ξ ∈ TM .

We define a complete separable metric D on the family of all isomorphism classes of normalized metric measure
spaces. It has a natural interpretation in terms of mass transportation. Our lower curvature bounds are stable
under D-convergence. We also prove that the family of normalized metric measure spaces with doubling constant
≤ C is closed under D-convergence. Moreover, the subfamily of spaces with diameter ≤ R is compact. To cite this
article: K. T. Sturm, C. R. Acad. Sci. Paris, Ser. I 336 (2003).

Résumé

Nous introduisons et étudions bornes de la courbure Curv(M, d, m) ≥ K pour des espaces métriques mesurés
(M, d, m), basées sur les propriétés de convexité de l’entropie relative Ent(.|m). Pour les varietés riemanniennes,
Curv(M, d, m) ≥ K si et seulmement si RicM (ξ, ξ) ≥ K · |ξ|2 pour tous ξ ∈ TM .

Nous définissons une métrique D complete separable sur la famille des classes d’isomorphie des espaces métrique
mesurés normalisés. Elle a une naturel interprétation dans le contexte du transport de masse. Nos bornes inférieures
de la courbure sont stables pour la D-convergence. Nous démontrons aussi que pour la D-convergence la famille des
espaces métriques mesurés normalisés avec la constante de doublement ≤ C est fermée et, en plus, la sous-famille
avec les diamètres ≤ R est compacte. Pour citer cet article : K. T. Sturm, C. R. Acad. Sci. Paris, Ser. I 336
(2003).

A metric measure space is a triple (M, d,m) where (M, d) is a complete separable metric space and
m is a measure on M (equipped with its Borel σ-algebra B(M)) which is locally finite in the sense that
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m(Br(x)) <∞ for all x ∈M and all sufficiently small r > 0. A metric measure space (M, d,m) is called
normalized iff m(M) = 1. Two metric measure spaces (M, d,m) and (M ′, d′,m′) are called isomorphic
iff there exists an isometry ψ : M0 → M ′

0 between the supports M0 := supp[m] ⊂ M and M ′
0 :=

supp[m′] ⊂M ′ such thatm′ = ψ∗m. The diameter of a metric measure space is given by diam(M, d,m) :=
sup{d(x, y) : x, y ∈ supp[m]}. Its variance is defined as Var(M, d,m) := inf

∫
M ′ d′

2(z, x)dm′(x) where
the inf is taken over all metric measure spaces (M ′, d′,m′) which are isomorphic to (M, d,m) and over all
z ∈M ′. The family of all isomorphism classes of normalized metric measure spaces with finite variances
will be denoted by X1, cf. [3], chapter 3 1

2 .

Definition 1 The distance D between two metric measure spaces is defined by

D((M, d,m), (M ′, d′,m′)) = inf
d̂,m̂

(∫
MtM ′

d̂
2
(x, y)dm̂(x, y)

)1/2

where the infimum is taken over all couplings d̂ of d, d′ and over all couplings m̂ of m, m′ Here a measure
m̂ on the product space M ×M ′ is called coupling of m and m′ iff m̂(A×M ′) = m(A) and m̂(M ×A′) =
m′(A′) for all measurable sets A ⊂ M , A′ ⊂ M ′; a pseudo metric d̂ on the disjoint union M tM ′ is
called coupling of d and d′ iff d̂(x, y) = d(x, y) and d̂(x′, y′) = d′(x′, y′) for all x, y ∈ supp[m] ⊂M and
all x′, y′ ∈ supp[m′] ⊂M ′.
One easily verifies that

D((M, d,m), (M ′, d′,m′)) = inf d̂W (ψ∗m,ψ′∗m
′)

where the infimum is taken over all metric spaces (M̂, d̂) with isometric embeddings ψ : M0 ↪→ M̂ ,
ψ′ : M ′

0 ↪→ M̂ of the supports M0 and M ′
0 of m and m′, resp., and where d̂W denotes the L2-

Wasserstein distance between probability measures on (M̂, d̂). In particular, if (M, d) = (M ′, d′) then
D((M, d,m), (M, d,m′)) ≤ dW (m,m′). In general, however, there will be no equality.

Theorem 2 (X1,D) is a complete separable length metric space.

We say that a metric measure space (M, d,m) has the restricted doubling property with doubling con-
stant C iff m(B2r(x)) ≤ C ·m(Br(x)) for all x ∈ supp[m] and all r > 0.

Theorem 3 The restricted doubling property is stable under D-convergence. That is, if for all n ∈ N
the normalized metric measure spaces (Mn, dn,mn) have the restricted doubling property with a common
doubling constant C and if (Mn, dn,mn) D→ (M, d,m) as n → ∞ then also (M, d,m) has the restricted
doubling property with the same constant C.

Theorem 4 (’Compactness’)
For each pair (C,R) ∈ R+×R+ the family X1(C,R) of all isomorphism classes of normalized metric mea-
sure spaces with (’restricted’) doubling constant ≤ C and diameter ≤ R is compact under D-convergence.

Given a metric measure space (M, d,m) we denote by P2(M, d) the space of all probability measures ν
on M with

∫
M

d2(o, x)dν(x) <∞ for some (hence all) o ∈M . The L2-Wasserstein distance on P2(M, d)
is defined by dW (µ, ν) = inf(

∫
M×M

d2(x, y)dq(x, y))1/2 with the infimum taken over all couplings q of µ
and ν, see [7]. For ν ∈ P2(M, d) we define the relative entropy w.r.t. m by

Ent(ν|m) := lim
ε↘0

∫
{ρ>ε}

ρ log ρ dm

if ν is absolutely continuous w.r.t. m with density ρ = dν
dm and by Ent(ν|m) := +∞ if ν is singular w.r.t.

m. Finally, we put P∗2 (M, d,m) := {ν ∈ P2(M, d) : Ent(ν|m) < +∞}.
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Lemma 5 If m has finite mass, then Ent(· |m) is lower semicontinuous and 6= −∞ on P2(M, d).

Definition 6 (i) Given any number K ∈ R, we say that a metric measure space (M, d,m) has curvature
≥ K iff for each pair ν0, ν1 ∈ P∗2 (M, d,m) there exists a geodesic Γ : [0, 1] → P∗2 (M, d,m) connecting ν0
and ν1 with

Ent(Γ(t)|m) ≤ (1− t)Ent(Γ(0)|m) + tEnt(Γ(1)|m)− K

2
t(1− t) d2

W (Γ(0),Γ(1))

for all t ∈ [0, 1]. Moreover, we put Curv(M, d,m) := sup{K ∈ R : (M, d,m) has curvature ≥ K.}
(ii) We say that a metric measure space (M, d,m) has curvature ≥ K in the lax sense iff for each ε > 0

and for each pair ν0, ν1 ∈ P∗2 (M, d,m) there exists an η ∈ P∗2 (M, d,m) with dW (η, νi) ≤ 1
2 dW (ν0, ν1)+ ε

for each i = 0, 1 and

Ent(η|m) ≤ 1
2
Ent(ν0|m) +

1
2
Ent(ν1|m)− K

8
d2

W (ν0, ν1) + ε.

We denote the maximal K with this property by Curvlax(M, d,m).
(iii) We say that a metric measure space (M, d,m) has locally curvature ≥ K if each point of M has

a neighborhood M ′ such that (M ′, d,m) has curvature ≥ K. The maximal K with this property will be
denoted by Curvloc(M, d,m).

Let us consider these curvature bounds under some of the Basic Transformations:
Isomorphisms. Curv(M, d,m) = Curv(M ′, d′,m′) for each (M ′, d′,m′) isomorphic to (M, d,m);
Scaling. Curv(M,α d, βm) = α−2 Curv(M, d,m) for all α, β > 0;
Weights. Curv(M, d, e−V m) ≥ Curv(M, d,m) + HessV for each lower bounded, measurable function
V : M → R where HessV := sup{K ∈ R : V is K-convex on supp[m]};

Subsets. Curv(M ′, d,m) ≥ Curv(M, d,m) for each convex M ′ ⊂M ;
Products. Curv(M, d,m) = infi∈{1,...,l} Curv(Mi, di,mi) if (M, d,m) =

⊗l
i=1(Mi, di,mi) and if M

is nonbranching and compact.
Here a metric space (M, d) is called nonbranching iff for each quadruple of points z, x0, x1, x2 with z
being the midpoint of x0 and x1 as well as the midpoint of x0 and x2 it follows that x1 = x2.

Theorem 7 Let M be a complete Riemannian manifold with Riemannian distance d and Riemannian
volume m and put m′ = e−V m with a C2 function V : M → R. Then

Curv(M, d,m′) = inf {RicM (ξ, ξ) + HessV (ξ, ξ) : ξ ∈ TM, |ξ| = 1} .

In particular, (M, d,m) has curvature ≥ K if and only if the Ricci curvature of M is ≥ K.
See [4] for the case V = 0 or [5] for the general case. Note that in the above Riemannian setting for

each pair of points ν0, ν1 in P2(M, d,m) there exists a unique geodesic connecting them [1].

Lemma 8 If M is compact then

Curv(M, d,m) = Curvlax(M, d,m).

Of fundamental importance is that our curvature bounds for metric measure spaces are stable under
convergence and that local curvature bounds imply global curvature bounds. The latter is in the spirit
of the Globalization Theorem of Topogonov for lower curvature bounds (in the sense of Alexandrov) for
metric spaces.

Theorem 9 Let (M, d,m) be a compact, nonbranching metric measure space such that P∗2 (M, d,m) is
a geodesic space. Then

Curv(M, d,m) = Curvloc(M, d,m).
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Theorem 10 Let ((Mn, dn,mn))n∈N be a sequence of normalized metric measure spaces with uniformly
bounded diameter and with (Mn, dn,mn) D−→ (M, d,m). Then

lim sup
n→∞

Curvlax(Mn, dn,mn) ≤ Curvlax(M, d,m).

Example 1 Given any abstract Wiener space (M,H,m) define a pseudo metric on M by d(x, y) :=
‖x− y‖H if x− y ∈ H and d(x, y) := ∞ else and consider the ’pseudo metric measure space’ (M, d,m).
Then

Curvlax(M, d,m) = 1.

Of course, formally this does not fit in our framework. Nevertheless, the definition of the L2-Wasserstein
distance dW derived from this pseudo metric d perfectly makes sense (cf. [2]) and also the relative entropy
is well-defined.

Lower bounds for the curvature will imply upper estimates for the volume growth of concentric balls.
In the Riemannian setting, this is the content of the famous Bishop-Gromov volume comparison theorem.
In the general case (without any dimensional restriction) these estimates, however, have to take into
account that the volume can grow much faster than exponentially. For instance, we already observe
squared exponential volume growth if we equip the one-dimensional Euclidean space with the measure
dm(x) = exp(−Kx2/2) dx for some K < 0.

Theorem 11 Let (M, d,m) be an arbitrary metric measure space with Curv(M, d,m) ≥ K for some
K ≤ 0. For fixed x ∈ supp[m] ⊂ M consider the volume growth vR := m(BR(x)) of closed balls centered
at x. Then for all R ≥ 2ε > 0

vR ≤ v2ε · (v2ε/vε)
R/ε · exp

(
|K| (R+ ε/2)2 /2

)
.

In particular, each ball in M has finite volume.

Theorem 12 If Curv(M, d,m) ≥ K ≥ 0 then for all x ∈ M and for all R ≥ 3ε > 0 the volume of
spherical shells vR,ε := m(BR(x) \BR−ε(x)) can be estimated by

vR,ε ≤ v3ε · (v3ε/vε)
R/2ε · exp

(
−K

[
(R− 3ε)2 − ε2

]
/2

)
.

In particular, K > 0 implies that m has finite mass and finite variance.

undefined
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la Borell, Brascamb and Lieb. Invent. Math., 146, 219-257.
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