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On the Geometry of Metric Measure Spaces

Karl-Theodor Sturm

Abstract

We introduce and analyze lower (’Ricci’) curvature bounds Curv(M, d,m) ≥ K for metric
measure spaces (M, d,m). Our definition is based on convexity properties of the relative en-
tropy Ent(.|m) regarded as a function on the L2-Wasserstein space of probability measures on
the metric space (M, d). Among others, we show that Curv(M, d,m) ≥ K implies estimates
for the volume growth of concentric balls. For Riemannian manifolds, Curv(M, d,m) ≥ K
if and only if RicM (ξ, ξ) ≥ K · |ξ|2 for all ξ ∈ TM .
The crucial point is that our lower curvature bounds are stable under an appropriate notion
of D-convergence of metric measure spaces. We define a complete and separable metric D
on the family of all isomorphism classes of normalized metric measure spaces. The metric D
has a natural interpretation, based on the concept of optimal mass transportation.
We also prove that the family of normalized metric measure spaces with doubling constant
≤ C is closed under D-convergence. Moreover, the family of normalized metric measure
spaces with doubling constant ≤ C and radius ≤ R is compact under D-convergence.

1 Introduction

The notion of a ’metric space’ is one of the basic concepts of mathematics. Metric spaces play a
prominent role in many fields of mathematics. In particular, they constitute natural generaliza-
tions of manifolds admitting all kinds of singularities and still providing rich geometric structures.

A. D. Alexandrov [Al51] introduced the notion of lower curvature bounds for metric spaces in
terms of comparison properties for geodesic triangles. These curvature bounds are equivalent
to lower bounds for the sectional curvature in the case where the metric spaces are Riemannian
manifolds, – and they may be regarded as generalized lower bounds for the ’sectional curvature’
for general metric spaces. A fundamental observation is that these lower bounds are stable under
an appropriate notion of convergence of metric spaces, the so-called Gromov-Hausdorff conver-
gence, introduced by M. Gromov [Gr81a]. The family of manifolds with sectional curvature ≥ K
is, of course, not closed under Gromov-Hausdorff convergence but the family of metric spaces
with curvature ≥ K in the sense of Alexandrov is closed (for each K ∈ R). Even more, the
family of compact metric spaces with curvature ≥ K, Hausdorff dimension ≤ N and diameter
≤ ∆ is compact (for any choice of K,N,∆).

For many fundamental results in geometric analysis, however, the crucial ingredients are not
bounds for the sectional curvature but bounds for the Ricci curvature: estimates for heat ker-
nels and Green functions, Harnack inequalities, eigenvalue estimates, isoperimetric inequalities,
Sobolev inequalities, — they all depend on lower bounds for the Ricci curvature of the under-
lying manifolds as pointed out by S. T. Yau and others, see e.g. [LY86], [Ch93], [Da89], [SC02].
The family of Riemannian manifolds with given lower bound for the Ricci curvature is not closed
under Gromov-Hausdorff convergence (nor it is closed under any other reasonable notion of con-
vergence). One of the great challenges thus is to establish a generalized notion of lower Ricci
curvature bounds for singular spaces. For detailed investigations and a survey of the state of
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the art for this problem, we refer to the contributions by J. Cheeger and T. Colding [CC97/00].
Fascinating new developments have been outlined just recently by G. Perelman [Pe02] in the
context of his work on the Poincaré conjecture.

Generalizations of lower Ricci curvature bounds should be formulated in the framework of metric
measure spaces. These are triples (M, d,m) where (M, d) is a metric space and m is a measure
on the Borel σ-algebra of M . We will always require that the metric space (M, d) is complete
and separable and that the measure m is locally finite. Recall that for generalizations of sec-
tional curvature bounds only the metric structure (M, d) is required whereas for generalizations
of Ricci curvature bounds in addition a reference measure m has to be specified. In a certain
sense, this phenomenon is well-known from the discussion of the curvature-dimension condition
of D. Bakry and M. Emery [BE85] in the framework of Dirichlet forms and symmetric Markov
semigroups. Of course, also the Bakry-Emery condition is a kind of generalized lower bound for
the Ricci curvature (together with an upper bound for the dimension). However, it is not given
in terms of the basic data (M, d,m) but in terms of the Dirichlet form (or heat semigroup)
derived from the original quantities in a highly non-trivial manner.

Metric measure spaces have been studied quite intensively in recent years. Of particular interest
is the study of functional inequalities, like Sobolev and Poincaré inequalities, on metric measure
spaces and the construction and investigation of function spaces of various types [HK95, HK00],
[Ko00], [He01]. To some extent, doubling properties for the volume and scale invariant Poincaré
inequalities on metric balls can be regarded as weak replacements of lower Ricci curvature
bounds. Among others, they allow to construct Dirichlet forms, Laplacians and heat kernels on
given metric measure spaces and to derive (elliptic and parabolic) Harnack inequalities as well
as (upper and lower) Gaussian estimates for heat kernels [St98], [Ch99]. On the other hand,
however, even in simplest cases doubling constant and Poincaré constant do not characterize
spaces with lower bounded Ricci curvature: they always allow at least also metrics which are
equivalent to the given ones.

The main results of this paper are:

• We define a complete and separable metric D on the family of all isomorphism classes of
normalized metric measure spaces, Theorem 3.6. The metric D has a natural interpreta-
tion, based on the concept of optimal mass transportation.

• The family of normalized metric measure spaces with doubling constant ≤ C is closed
under D-convergence, Theorem 3.15. Moreover, the family of normalized metric measure
spaces with doubling constant ≤ C and radius ≤ R is compact under D-convergence (for
any choice of real numbers C,R), Theorem 3.16.

• We introduce a notion of lower curvature bounds Curv(M, d,m) for metric measure spaces
(M, d,m), based on convexity properties of the relative entropy Ent(.|m) w.r.t. the ref-
erence measure m. Here ν 7→ Ent(ν|m) is regarded as a function on the L2-Wasserstein
space of probability measures on the metric space (M, d). For Riemannian manifolds,
Curv(M, d,m) ≥ K if and only if RicM (ξ, ξ) ≥ K · |ξ|2 for all ξ ∈ TM , Theorem 4.9.

• Local lower curvature bounds imply global lower curvature bounds, Theorem 4.17.

• Lower curvature bounds are stable under D-convergence, Theorem 4.20.
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• Lower curvature bounds of the form Curv(M, d,m) ≥ K imply estimates for the volume
growth of concentric balls, for instance, if K ≤ 0

m(Br(x)) ≤ C(x) · exp(−Kr2/2)

for all r ≥ 1, Theorem 4.24.

The concept of optimal mass transportation plays a crucial role in our approach. It originates in
the classical transportation problems of G. Monge [M1781] and L. V. Kantorovich [Ka42]. The
basic quantity for us is the so-called L2-Wasserstein distance between two probability measures
µ and ν on a given complete separable metric space (M, d) defined as

dW (µ, ν) := inf
q

(∫
M×M

d2(x, y) dq(x, y)
)1/2

where the infimum is taken over all couplings q of µ and ν. The latter are probability measures on
the product space M ×M whose marginals (i.e. image measures under the projections) are the
given measures µ and ν. One choice, of course, is q = µ⊗ ν but in most cases this will be a very
bad choice if one aims for minimal transportation costs. The L2-Wasserstein distance can be
interpreted as the minimal transportation costs (measured in L2-sense) for transporting goods
from producers at locations distributed according to µ to consumers at locations distributed
according to ν.

Two results may be regarded as milestones in the recent development of theory and application
of mass transportation concepts; these results have raised an increasing interest in this topic
of people from various fields of mathematics including pde’s, geometry, fluid mechanics, and
probability. See e.g. [Ta95], [Le01], [BG99], [OV00], [DD02], [CMS01], [AT04], [FÜ04a] and in
particular the monograph by C. Villani [Vi03] which gives an excellent survey on the whole field.
The first of these two results is the polar factorization of Y. Brenier [Br91] and its extension to
the Riemannian setting by R. McCann [Mc95, Mc97]. The second one is F. Otto’s [JKO98, Ot01]
formal Riemannian calculus on the space P2(M) of probability measures on M , equipped with
the L2-Wasserstein metric, and his interpretation of the heat equation (and of other nonlinear
dissipative evolution equations) as gradient flow(s) of the relative entropy

Ent(ν|m) =
∫

M

dν

dm
log
(
dν

dm

)
dm

(or related functionals, resp.) on P2(M).

It turned out that convexity properties of the function ν 7→ Ent(ν|m) are intimately related
to curvature properties of the underlying metric measure space (M, d,m). If M is a complete
Riemannian manifold with Riemannian distance d and if m = e−V dx then M.-K. von Renesse
and the author proved (see [RS04] for the case V = 0 and [St04] for the general case) that the
function ν 7→ Ent(ν|m) is K-convex1 on P2(M) if and only if

RicM (ξ, ξ) + HessV (ξ, ξ) ≥ K · |ξ|2

for all ξ ∈ TM . An heuristic argument for the ’if’-implication of this equivalence was presented in
[OV00], based on the formal Riemannian calculus on P2(M). In the particular caseK = 0, V = 0
the ’if’-implication was proven in [CMS01].

1By definition, this means that property (1.1) below holds for each geodesic Γ in P2(M).
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Having in mind these results, it seems quite natural to say that an arbitrary metric measure space
(M, d,m) has curvature ≥ K if and only if for any pair ν0, ν1 ∈ P2(M) with Ent(ν0|m) < ∞,
Ent(ν1|m) <∞ there exists a geodesic Γ : [0, 1] → P2(M) connecting ν0 and ν1 with

Ent(Γ(t)|m) ≤ (1− t)Ent(Γ(0)|m) + tEnt(Γ(1)|m)− K

2
t(1− t) d2

W (Γ(0),Γ(1)) (1.1)

for all t ∈ [0, 1]. In this case, we also briefly write Curv(M, d,m) ≥ K.

A crucial property of this kind of curvature bound is its stability under convergence of metric
measure spaces. Of course, this requires to have an appropriate notion of topology or distance
on the family of all metric measure spaces. We define the distance between two normalized
metric measure spaces by

D((M, d,m), (M ′, d′,m′)) := inf
q,

ˆd

(∫
M×M ′

d̂
2
(x, y) dq(x, y)

)1/2

where the infimum is taken over all couplings q of m and m′ and over all couplings d̂ of d and
d′. The former are probability measures on M ×M ′ with marginals m and m′. The latter are
pseudo metrics on the disjoint union M tM ′ which extend d and d′.
Also the distance D has an interpretation in terms of mass transportation: In order to realize
the distance

D((M, d,m), (M ′, d′,m′))

between two normalized metric measure spaces (M, d,m) and (M ′, d′,m′) one first may use
isometric transformations of (M, d) and (M ′, d′) to bring the images of m and m′ in optimal
position to each other. (In the sense of transportation costs, these transformations are for free).
Then one has to solve the usual mass transportation problem, trying to minimize the trans-
portation costs in the L2-sense.

It turns out that D is a complete separable metric on the family X1 of all isomorphism classes of
normalized metric measure spaces. The family of normalized metric measure spaces with cur-
vature ≥ K is closed under D-convergence. Moreover, the family of normalized metric measure
spaces with doubling constant ≤ C is closed under D-convergence and the family of normal-
ized metric measure spaces with doubling constant ≤ C and radius ≤ R is compact under
D-convergence (for any choice of real numbers K,C,R).
For various other distances on the family X1, see the additional chapter 31

2 in [Gr99]. A com-
pletely different notion of distance between Riemannian manifolds was proposed by A. Kasue
[KK94, Ka04], based on the short time asymptotics of the heat kernel. Yet another convergence
concept was proposed by K. Kuwae and T. Shioya [KS03] extending the concept of Γ-convergence
and Mosco convergence towards a notion of convergence of operators (or Dirichlet forms or heat
semigroups) on varying spaces.

A major advantage of our distance D seems to be that it has a very natural geometric interpreta-
tion, namely, in terms of the above-mentioned mass transportation concept. We also expect that
it is closely related to more analytic properties of metric measure spaces. Following [JKO98],
the heat semigroup on a metric measure space (M, d,m) should be obtained as the gradient flow
on P2(M) for the relative entropy Ent(.|m). Curvature bounds of the form Curv(M, d,m) ≥ K
should e.g. imply K-contractivity of the heat flow

dW (µpt, νpt) ≤ e−Kt dW (µ, ν),
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gradient estimates for harmonic functions, isoperimetric inequalities, and volume growth esti-
mates.
The basic concepts and main results of this paper have been presented in [St04a]. In a forthcom-
ing paper [St05], we will study metric measure spaces satisfying a so-called curvature-dimension
condition (K,N) being more restrictive than the condition Curv(M, d,m) ≥ K. The additional
parameter N plays the role of an upper bound for the dimension. Among others, this will lead
to more precise volume growth estimates in the spirit of the Bishop-Gromov volume comparison
theorem.

Here in this paper, we will proceed as follows:
In Chapter 2 we give a brief survey on the geometry of metric spaces, recalling the concepts of
length and geodesic spaces, the Gromov-Hausdorff distance and the lower curvature bounds in
the sense of Alexandrov. We introduce the L2-Wasserstein space of probability measures on a
given metric space and derive some of the basic properties.
Chapter 3 is devoted to the metric D. The first main result states that it indeed defines a (com-
plete and separable) metric on the family of isomorphism classes of normalized metric measure
spaces. We collect several simple examples of D-convergence with increasing and decreasing
dimensions and we discuss closedness and compactness properties of the families of normalized
metric measure spaces with the doubling property.
In Chapter 4 we study metric measure spaces with curvature bounds. First we introduce and
discuss the relative entropy, then we present the definition of curvature bounds and analyze their
behavior under various transformations (isomorphisms, scaling, weights, subsets, products). The
main results are the Globalization Theorem and the Convergence Theorem. Finally, we deduce
growth estimates for the volume of concentric balls.

2 On the Geometry of Metric Spaces

2.1 Length and Geodesic Spaces

Let us summarize some definitions and basic results on the geometry of metric spaces. For
proofs and further details we refer to [BH99], [Gr99], and [BBI01].
Throughout this paper, a pseudo metric on a set M will be a function d : M×M → [0,∞] which
is symmetric, vanishes on the diagonal and satisfies the triangle inequality. If it does not vanish
outside the diagonal and does not take the value +∞ then it is called metric. From now on, let
(M, d) be a metric space. Open balls in M will be denoted by Br(x) = {y ∈ M : d(x, y) < r},
their closures by B̄r(x) ⊂ {y ∈ M : d(x, y) ≤ r}. A curve connecting two points x, y ∈ M is a
continuous map γ : [a, b] →M with γ(a) = x and γ(b) = y. Obviously, then Length(γ) ≥ d(x, y)
with the length of γ being defined as

Length(γ) = sup
n∑

k=1

d(γ(tk−1), γ(tk))

where the supremum is taken over all partitions a = t0 < t1 < · · · < tn = b. If Length(γ) < ∞
then γ is called rectifiable. In this case we can and will henceforth always assume that (after
suitable reparametrization) γ has constant speed, i.e. Length(γ|[s,t]) = t−s

b−a · Length(γ) for all
a < s < t < b. In general, we will not distinguish between curves and equivalence classes of
curves which are reparametrizations of each other. The curve γ : [a, b] → M is called geodesic
iff Length(γ) = d(γ(a), γ(b)). A geodesic in this sense is always minimizing.
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A metric space (M, d) is called length space (or length metric space) iff for all x, y ∈M

d(x, y) = inf
γ

Length(γ)

where the infimum is taken over all curves γ in M which connect x and y. A metric space (M, d)
is called geodesic space (or geodesic metric space) iff each pair of points x, y ∈ M is connected
by a geodesic. (This geodesic is not required to be unique.)

Lemma 2.1. A complete metric space (M, d) is a length space (or geodesic space) if and only
if for each pair of points x0, x1 ∈M and for each ε > 0 (or for ε = 0, resp.) there exists a point
y ∈M satisfying for each i = 0, 1

d(xi, y) ≤
1
2

d(x0, x1) + ε. (2.1)

Any such point y will be called ε-midpoint of x0 and x1. In the case ε = 0 it will be called
midpoint of x0 and x1.

Remark 2.2. Given x0, x1 ∈M then each ε-midpoint y ∈M satisfies

d2(x0, y) + d2(y, x1) ≤
1
2

d2(x0, x1) + ε′ (2.2)

with ε′ = 2ε d(x0, x1) + 2ε2. Vice versa, each y ∈ M which satisfies (2.2) is an ε-midpoint with
ε =

√
( d(x0, x1)/2)2 − ε′/2− d(x0, x1)/2−

√
ε′/2.

Indeed, if y is an ε-midpoint then

d2(x0, y) + d2(y, x1) ≤ 2
[
1
2

d(x0, x1) + ε

]2

=
1
2

d2(x0, x1) + ε′

with ε′ chosen as above. Conversely, if y satisfies (2.2) then

1
2

d2(x0, x1) + ε′ ≥ d2(x0, y) + d2(y, x1)

=
1
2
[ d(x0, y) + d(y, x1)]2 +

1
2
[ d(x0, y)− d(y, x1)]2

≥ 1
2

d2(x0, x1) +
1
2
[ d(x0, y)− d(y, x1)]2.

Hence, | d(x0, y)− d(y, x1)| ≤
√

2ε′ and

2 d(xi, y)−
√

2ε′ ≤ d(x0, y) + d(y, x1) ≤
√

d2(x0, x1) + 2ε′

for i = 0, 1.

Lemma 2.3. If (M, d) is a complete length space then:

(i) The closure of Br(x) is {y ∈M : d(x, y) ≤ r}.

(ii) M is locally compact if and only if each closed ball in M is compact.

(iii) If M is locally compact then it is a geodesic space.
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Recall that the Hausdorff distance between two subsets A1, A2 of a metric space (M, d) is given
by

dH(A1, A2) = inf{ε > 0 : A1 ⊂ Bε(A2), A2 ⊂ Bε(A1)}

where Bε(A) := {x ∈ M : infy∈A d(x, y) < ε} denotes the ε-neighborhood of A ⊂ M . The
Gromov-Hausdorff distance between two metric spaces (M1, d1) and (M2, d2) is defined by

DGH((M1, d1), (M2, d2)) = inf dH(j1(M1), j2(M2))

where the inf is taken over all metric spaces (M, d) and over all isometric embeddings j1 : M1 ↪→
M , j2 : M2 ↪→M .

Proposition 2.4.

(i) The Gromov-Hausdorff metric DGH is a pseudo metric on the family X of isometry classes
of metric spaces.

(ii) Let Xl (and Xlcl) denote the family of isometry classes of (locally compact)complete length
spaces. Then Xl and Xlcl are closed under DGH-convergence.

(iii) Let Xc (and Xf ) denote the family of isometry classes of compact (or finite, resp.) metric
spaces. Then (Xc,D

GH) is a complete separable metric space. The family Xf is dense in
Xc.

2.2 Alexandrov Spaces

Now let us briefly discuss metric spaces with lower curvature bounds in the sense of A.D.
Alexandrov [Al51]. The latter are generalizations of lower bounds for the sectional curvature for
Riemannian manifolds. The results of this section will not be used in the sequel. The focus in
this paper is on generalizations of lower bounds for the Ricci curvature. Partly, however, there
will be some analogy to Alexandrov’s generalizations of lower bounds for the sectional curvature.
We summarize some of the basic properties of these metric spaces and refer to [BGP92], [GP97],
[Gr99], [BBI01], [Pl02] for further details.

Given any K ∈ R we say that a metric space (M, d) has curvature ≥ K iff for each quadruple
of points z, x1, x2, x3 ∈M

^K(z;x1, x2) + ^K(z;x2, x3) + ^K(z;x3, x1) ≤ 2π. (2.3)

Here for any triple of points z, x, y ∈ M with K · [ d(z, x) + d(x, y) + d(y, z)]2 < (2π)2 we
denote by ^K(z;x, y) the angle at z̄ of a triangle ∆(z̄, x̄, ȳ) with side lengths z̄x̄ = d(z, x), z̄ȳ =
d(z, y), x̄ȳ = d(x, y) in the simply connected two-dimensional space of constant curvature K,
i.e.

^K(z;x, y) = arccos

(
cos(

√
K d(x, y))− cos(

√
K d(z, x)) · cos(

√
K d(z, y))

sin(
√
K d(z, x)) · sin(

√
K d(z, y))

)
(2.4)

(with appropriate interpretations/modifications if K < 0 or K = 0). If K · [ d(z, x) + d(x, y) +
d(y, z)]2 ≥ (2π)2 we put ^K(z;x, y) := −∞. We define

curv(M, d) = sup{K ∈ R : (M, d) has curvature ≥ K}.

Complete length spaces with curvature≥ K and finite Hausdorff dimension are called Alexandrov
spaces with curvature ≥ K. For complete geodesic spaces there are several alternative (but
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equivalent) ways to define this curvature bound: via triangle comparison, angle monotonicity,
convexity properties of the distance. For instance, one can interpret it as a weak formulation of

Hess
1
K

cos(
√
K d(z, ·)) ≥ − cos(

√
K d(z, ·)) (2.5)

for all z ∈ M (with appropriate modification in the case K ≤ 0, e.g. Hess d2(z, ·)/2 ≤ 1 if
K = 0).

Example 2.5. Let M be a complete Riemannian manifold with Riemannian distance d and
dimension n ≥ 2. Then curv(M, d) is the greatest lower bound for the sectional curvature of M .

Example 2.6. If M is an interval ⊂ R or if M is a circle of length L then curv(M, d) = +∞.
This example is regarded as pathological.

Similarly, one can define metric spaces of curvature ≤ K and a number curv(M, d) (which
coincides with the least upper bound for the sectional curvature if M is a Riemannian manifold).
However, in this paper we concentrate on lower curvature bounds.

Proposition 2.7. For each complete length space (M, d) the following properties hold:

(i) Scaling: curv(M,α d) = α−2 curv(M, d) for all α ∈ R+.

(ii) Products: If (M, d) =
⊗n

i=1(Mi, di) with complete length spaces (M1, d1), . . . , (Mn, dn)
consisting of more than one point then

curv(M, d) = inf { curv(M1, d1), . . . , curv(Mn, dn), 0}.

(iii) Local/global: If M =
⋃

i∈I Mi with open subsets Mi ⊂M then

curv(M, d) = inf
i∈I

curv(Mi, di)

(’Topogonov’s globalization theorem’).

(iv) Convergence: If ((Mn, dn))n∈N is a sequence of complete length spaces with Gromov-
Hausdorff distance DGH((Mn, dn), (M, d)) → 0 as n→∞ then

curv(M, d) ≥ lim sup
n→∞

curv(Mn, dn).

In particular, for each K ∈ R the set

Xc(K) = {(M, d) ∈ Xc : curv(M, d) ≥ K}

is a closed subset of (Xc,D
GH).

(v) Compactness: For each K ∈ R, N ∈ N and ∆ ∈ R+ the set Xc(K,N,∆) of all compact
length spaces (M, d) with curvature ≥ K, Hausdorff dimension ≤ N and diameter ≤ ∆ is
compact w.r.t. DGH (’Gromov’s compactness theorem’).

Definition 2.8. A geodesic space (M, d) is called nonbranching iff for each quadruple of points
z, x0, x1, x2 with z being the midpoint of x0 and x1 as well as the midpoint of x0 and x2 it
follows that x1 = x2.

Remark 2.9. If a geodesic space has curvature ≥ K for some K ∈ R then it is nonbranching.
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2.3 The L2-Wasserstein Space

Probability measures on metric spaces will play an important role throughout this paper. We
collect some definitions and the basic facts on the L2-Wasserstein distance. For further reading
we recommend [Du89], [KR57], [RR98], [Vi03] and [Wa69].
For the rest of this chapter, let (M, d) be a complete separable metric space. A measure ν on M
will always mean a measure on (M,B(M)) with B(M) being the Borel σ-algebra of M (generated
by the open balls in M). Recall that supp[ν], the support of ν, is the smallest closed set M0 ⊂M
such that ν(M\M0) = 0. The push forward of ν under a measurable map f : M → M ′ into
another metric space M ′ is the probability measure f∗ν on M ′ given by

(f∗ν)(A) := ν(f−1(A))

for all measurable A ⊂M ′. Given two measures µ, ν on M we say that a measure q on M ×M
is a coupling of µ and ν iff its marginals are µ and ν, that is, iff

q(A×M) = µ(A), q(M ×A) = ν(A)

for all measurable sets A ⊂ M . (This in particular implies that the total masses coincide:
ν(M) = q(M ×M) = µ(M).) If µ and ν are probability measures then for instance one such
coupling is the product measure µ× ν.
The L2-Wasserstein distance between µ and ν is defined as

dW (µ, ν) = inf

{(∫
M×M

d2(x, y)dq(x, y)
)1/2

: q is a coupling of µ and ν

}
. (2.6)

Note that dW (µ, ν) = +∞ whenever µ(M) 6= ν(M). We denote by P2(M, d) or briefly P2(M)
the space of all probability measures ν on M with finite second moments:∫

M
d2(o, x)dν(x) <∞

for some (hence all) o ∈M . The pair (P2(M), dW ) is called L2-Wasserstein space over (M, d).

Proposition 2.10.

(i) (P2(M), dW ) is a complete separable metric space.

The map x 7→ δx defines an isometric and totally geodesic embedding of (M, d) into
(P2(M), dW ).

The set of all normalized configurations µ = 1
n

∑n
i=1 δxi with n ∈ N and x1, . . . , xn ∈M is

dense in P2(M).

(ii) dW -convergence implies weak convergence (in the sense of measures). More precisely. if
(µn)n∈N is a sequence in P2(M) then dW (µn, µ) → 0 if and only if µn → µ weakly and

lim
R→∞

sup
n

∫
M\BR(o)

d2(o, x)dµn(x) = 0 (2.7)

for some (hence each) point o ∈M . Note that obviously (2.7) is always satisfied if (M, d)
is bounded.

(iii) (P2(M), dW ) is a compact space or a length space if and only if (M, d) is so.
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(iv) If M is a length space with more than one point then

curv(P2(M), dW ) = 0 ⇐⇒ curv(M, d) ≥ 0

and
curv(P2(M), dW ) = −∞ ⇐⇒ curv(M, d) < 0.

Proof. (i), (ii): [RR98], [Vi03].
(iii)a The ’only if’ statements follow from the fact that M is isometrically embedded in P2(M).
(iii)b Compactness of M implies compactness of P2(M) according to (ii) and Prohorov’s theo-
rem.
(iii)c Assume that (M, d) is a length space and let ε > 0 and µ, ν ∈ P2(M) be given. We have to
prove that there exists an ε-midpoint η of µ and ν. Choose n ∈ N and x1, . . . , xn, y1, . . . , yn ∈M
such that dW (µ, µ̄) ≤ ε/3, dW (ν, ν̄) ≤ ε/3 and d2

W (µ̄, ν̄) = 1
n

∑n
i=1 d2(xi, yi) where µ̄ :=

1
n

∑n
i=1 δxi , ν̄ := 1

n

∑n
i=1 δyi For each i = 1, . . . , n let zi be an ε/3-midpoint of xi and yi and

put η := 1
n

∑n
i=1 δzi . Then

dW (µ̄, η) ≤

(
1
n

n∑
i=1

d2(xi, zi)

)1/2

≤

(
1
n

n∑
i=1

[
1
2

d(xi, yi) +
ε

3

]2
)1/2

≤ 1
2

(
1
n

n∑
i=1

d2(xi, yi)

)1/2

+
ε

3
≤ 1

2
dW (µ̄, ν̄) +

ε

3

and thus dW (µ, η) ≤ 1
2 dW (µ, ν) + ε. Similarly, dW (ν, η) ≤ 1

2 dW (µ, ν) + ε. This proves the
claim.
(iv)a Assume that (M, d) has curvature ≥ 0. Then for each n ∈ N the space Mn = M ×· · ·×M
has curvature ≥ 0 (Proposition 2.7 (ii)). According to [St99], the latter is equivalent to

l∑
i,j=1

λiλj d2(yi, yj) ≤ 2
l∑

i=1

λi d
2(yi, y0) (2.8)

for all l ∈ N, all λ1, . . . , λl ∈ R+ with
∑l

i=1 λi = 1 and all y0, y1, . . . , yl ∈Mn. In order to prove
that (P2(M), dW ) has curvature ≥ 0, let l ∈ N, λ1, . . . , λl ∈ R+ and ν0, ν1, . . . , νl ∈ P2(M) be
given. For ε > 0 choose n ∈ N and y0 = (y01, . . . , y0n), . . . , yl = (yl1, . . . , yln) ∈ Mn such that
dW (νi, ν̄i) ≤ ε for all i = 0, 1, . . . , l and d2

W (ν̄i, ν̄0) = 1
n

∑n
k=1 d2(yik, y0k) = 1

n d2(yi, y0) for all
i = 1, . . . , l where we put

ν̄i =
1
n

n∑
k=1

δyik
.

Then d2
W (ν̄i, ν̄j) ≤ 1

n

∑n
k=1 d2(yik, yjk) = 1

n d2(yi, yj) for all i, j = 1, . . . , l and thus by (2.8)

l∑
i,j=1

λiλj d2
W (ν̄i, ν̄j) ≤

1
n

l∑
i,j=1

λiλj d2(yi, yj)

≤ 2
n

l∑
i=1

λi d
2(yi, y0) = 2

l∑
i=1

λi d
2
W (ν̄i, ν̄0).

In the limit ε→ 0 this yields

l∑
i,j=1

λiλj d2
W (νi, νj) ≤ 2

l∑
i=1

λi d
2
W (νi, ν0)

10



which (again by [St99]) proves the claim.
(iv)b Since (M, d) is isometrically and totally geodesically embedded into (P2(M), dW ) it is
obvious that curv(P2(M), dW ) ≤ curv(M, d).
(iv)c Assume that curv(M, d) < 0. Choose K < 0 such that curv(M, d) < K. Then there exist
points x0, x1, x2, x3 ∈M with

^K(x0;x1, x2) + ^K(x0;x2, x3) + ^K(x0;x3, x1) > 2π.

Choose a point z ∈ M ’far away’ from the xi, say d(z, xi) ≥ 3 d(xi, xj) for all i, j = 0, 1, 2, 3.
[This is always possible since M is a length space and the xi for i = 1, 2, 3 can be replaced by
points x′i lying arbitrarily close to x0 on approximate geodesics connecting x0 and xi.]
For t ∈ ]0, 1] and i = 0, 1, 2, 3 define µi := tδxi + (1− t)δz. Then

d2
W (µi, µj) = t d2(xi, xj)

for all i, j = 0, 1, 2, 3 and thus according to formula (2.4)

^K(x0;xi, xj) = ^K/t(µ0;µi, µj).

Therefore,

^K/t(µ0;µ1, µ2) + ^K/t(µ0;µ2, µ3) + ^K/t(µ0;µ3, µ1) > 2π

which implies
curv(P(M), dW ) < K/t.

Since the latter holds for the chosen K < 0 and all arbitrarily small t > 0, it proves the claim.
(iv)d Finally, it remains to prove that curv(P2(M), dW ) ≤ 0 if M has more than one point.
Assume that curv(P2(M), dW ) ≥ K for some K > 0 and that x0, x1 ∈M with x0 6= x1. Given
ε > 0 let y be an ε-midpoint of x0 and x1. Put ν0 = δx0 , ν1 = δx1 , µ = δy and η = 1

2δx0 + 1
2δx1 .

Then dW (ν0, ν1) = d(x0, x1), dW (η, µ) ≥ 1
2 d(x0, x1), dW (νi, η) = 1√

2
d(x0, x1) and dW (νi, µ) ≤

1
2 d(x0, x1) + ε for i = 0, 1. In particular, µ is an ε-midpoint of ν0 and ν1.
Our curvature assumption on P2(M) implies (via quadruple comparison for (µ; ν0, ν1, η) or via
triangle comparison for (ν0, ν1, η)) that

2 cos(
√
K

2
dW (ν0, ν1)) · cos(

√
K dW (η, µ))

≤ cos(
√
K dW (η, ν0)) + cos(

√
K dW (η, ν1)) + ε′

with some ε′ → 0 as ε→ 0. Therefore,

2 cos(
√
K

2
d(x0, x1)) · cos(

√
K

2
d(x0, x1))

≤ cos(

√
K

2
d(x0, x1)) + cos(

√
K

2
d(x0, x1)).

Now choosing x0, x1 ∈M with sufficiently small d(x0, x1) leads to a contradiction.

Let us recall that a Markov kernel on M is a map Q : M ×B(M) → [0, 1] (where B(M) denotes
the Borel σ-algebra of M) with the following properties:

• for each x ∈ M the map Q(x, ·) : B(M) → [0, 1] is a probability measure on M , usually
denoted by Q(x, dy);

11



• for each A ∈ B(M) the function Q(·, A) : M → [0, 1] is measurable.

Lemma 2.11.

(i) For each pair µ, ν ∈ P2(M) there exists a coupling q (called ’optimal coupling’) such that

d2
W (µ, ν) =

∫
M×M

d2(x, y) dq(x, y)

and there exist Markov kernels Q,Q′ on M (’optimal transport kernels’) such that

dq(x, y) = Q(x, dy)dµ(x) = Q′(y, dx)dν(x).

(In general, neither q nor Q,Q′ are unique.)

(ii) For each geodesic Γ : [0, 1] → P2(M), each l ∈ N and each partition 0 = t0 < t1 < · · · <
tl = 1 there exists a probability measure q̂ on M l+1 with the following properties:

• the projection on the i-th factor is Γ(ti) (for all i = 0, 1, . . . , l);

• for q̂-almost every x(x0, . . . , xl) ∈M l+1 and every i, j = 0, 1, . . . , l

d(xi, xj) = |ti − tj | · d(x0, xl). (2.9)

In particular, for every pair i, j ∈ {0, 1, . . . , l} the projection on the i-th and j-th factor is
an optimal coupling of Γ(ti) and Γ(tj).
In the case l = 2 and t = 1

2 , (2.9) states that for q̂-a.e. (x0, x1, x2) ∈M3 the point x1 is a
midpoint of x0 and x2.

(iii) If M is a nonbranching geodesic space then in the previous situation for q̂-almost every
(x0, x1, x2) and (y0, y1, y2) ∈M3

x1 = y1 ⇒ (x0, x2) = (y0, y2).

Proof. (i) For the existence of optimal coupling, see [RR98] or [Du89], 11.8.2.
The existence of optimal transport kernels is a straightforward application of disintegration of
measures on Polish spaces (or of the existence of regular conditional probabilities), namely, Q
is the disintegration of q w.r.t µ.

(ii) We assume l = 2 and t = 1
2 . (The general case follows by iterated application and ap-

propriate modifications.)
Let q1 be an optimal coupling of Γ(0) and Γ(1

2) and let q2 be an optimal coupling of Γ(1
2) and

Γ(1). Then there exists a probability measure q̂ on M ×M ×M such that its projection on the
first two factors is q1 and the projection on last two factors is q2 ([Du89], section 11.8). Hence,
for i = 1, 2, 3 the projection of q̂ on the i-th factor is Γ( i−1

2 ) and for i = 1, 2

d2
W (Γ(

i− 1
2

),Γ(
i

2
)) =

∫
M3

d2(xi−1, xi)dq̂(x0, x1, x2).

12



Then

dW (Γ(0),Γ(1)) ≤
[∫

d2(x0, x2)dq̂(x0, x1, x2)
] 1

2

(∗)
≤

[∫
[ d(x0, x1) + d(x1, x2)]

2 dq̂(x0, x1, x2)
] 1

2

(∗∗)
≤

[∫
d2(x0, x1)dq̂(x0, x1, x2)

] 1
2

+
[∫

d2(x1, x2)dq̂(x0, x1, x2)
] 1

2

= dW (Γ(0),Γ(
1
2
)) + dW (Γ(

1
2
),Γ(1)).

Since Γ(1
2) is a midpoint of Γ(0) and Γ(1), the previous inequalities (*) and (**) have to be

equalities. From equality in (*) we conclude that q̂-almost surely the point x1 lies on some
geodesic connecting x0 and x2. Equality in (**) implies that q̂-almost surely the point x1 is a
midpoint of x0 and x2.

(iii) Let η = Γ(1
2) be the distribution of the midpoints and let Q be a disintegration of q̂

w.r.t. η, i.e.
dq̂(x, z, y) = Q(z, d(x, y))dη(z).

We have to prove that for η-a.e. z ∈ M the probability measure Q(z, ·) is a Dirac measure
(sitting on some (x, y) ∈M ×M). Denote the marginals of Q(z, ·) by p1(z, ·) and p2(z, ·). Then∫

d2(x, y)Q(z, d(x, y)) =
∫

[2 d2(x, z) + 2 d2(z, y)]Q(z, d(x, y))

=
∫ ∫

[2 d2(x, z) + 2 d2(z, y)] p1(z, dx) p2(z, dy)

(∗∗∗)
≥

∫ ∫
d2(x, y) p1(z, dx) p2(z, dy).

The optimality of q̂ implies that for η-a.e. z ∈ M the measure Q(z, ·) is an optimal coupling
of p1(z, ·) and p2(z, ·). Hence, there has to be equality in (∗ ∗ ∗) which in turn implies that for
p1(z, .)-a.e. x ∈ M and p2(z, .)-a.e. y ∈ M the point z is a midpoint of x and y. Since M is
nonbranching this implies that both p1(z, .) and p2(z, .) are Dirac measures. Thus Q(z, ·) is also
a Dirac measure. This proves the claim.

Remark 2.12.
(i) Couplings q of µ and ν are also called transportation plans from µ to ν. If µ is the distri-
bution of locations at which a good is produced and ν is the distribution of locations where it
is consumed, then each coupling q of µ and ν gives a plan how to transport the products to the
consumer. More precisely, for each x the kernel Q(x, dy) determines how to distribute goods
produced at the location x to various consumers at location y.

(ii) The interpretation of Lemma 2.11 (ii) is that for each geodesic in P2(M) the mass is
transported along geodesics of the underlying space M . (iii) states that ’the paths of optimal
mass transportation do not cross each other halfway’.

(iii) If M is a complete Riemannian manifold with Riemannian volume m then for each pair
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µ, ν ∈ P2(M) with µ � m there exists an optimal transport map F1 : M → M such that
dq(x, y) = Q(x, dy)dµ(x) with

Q(x, dy) = dδF1(x)(y)

is the unique optimal coupling of µ and ν.
More precisely, there exists a function ϕ : M → R such that for µ-a.e. x ∈M and t ∈ [0, 1]

Ft(x) = expx(−t∇ϕ(x))

exists and the unique geodesic Γ in P2(M) connecting µ = Γ(0) and ν = Γ(1) is given by

Γ(t) := (Ft)∗µ,

the push forward of µ under Ft, [CMS01].

3 Metric Measure Spaces

3.1 The Metric D

Throughout this paper, a metric measure space will always be a triple (M, d,m) where

• (M, d) is a complete separable metric space,

• m is a measure on (M,B(M)) which is locally finite in the sense that m(Br(x)) < ∞ for
all x ∈M and all sufficiently small r > 0.

A metric measure space (M, d,m) is called normalized iff m(M) = 1. It is called compact or
locally compact or geodesic iff the metric space (M, d) is compact or locally compact or geodesic,
resp.
Two metric measure spaces (M, d,m) and (M ′, d′,m′) are called isomorphic iff there exists an
isometry ψ : M0 → M ′

0 between the supports M0 := supp[m] ⊂ M and M ′
0 := supp[m′] ⊂ M ′

such that
ψ∗m = m′.

The variance of a metric measure space (M, d,m) is defined as

Var(M, d,m) = inf
∫

M ′
d′

2(z, x)dm′(x). (3.1)

where the inf is taken over all metric measure spaces (M ′, d′,m′) which are isomorphic to
(M, d,m) and over all z ∈ M ′. Note that a normalized metric measure space (M, d,m) has
finite variance if and only if ∫

M
d2(z, x)dm(x) <∞ (3.2)

for some (hence all) z ∈M . Similarly, the radius of (M, d,m) is defined as

rad(M, d,m) = inf{R > 0 : ∃(M ′, d′,m′) isom. to (M, d,m),
∃z ∈M ′ : supp[m′] ⊂ B′

R(z)}.

The diameter of a metric measure space (M, d,m) is defined as the diameter of the metric space
(supp[m], d):

diam(M, d,m) = sup{d(x, y) : x, y ∈ supp[m]}.
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Example 3.1. Let M = R2 with Euclidean distance d and m = 1
3(δx1 + δx2 + δx3) where

x1, x2, x3 are the vertices of an equilateral triangle of sidelength 1. Then

Var(M, d,m) =
1
4

whereas inf
z∈M

∫
d2(z, x)dm(x) =

1
3
.

(Hint: embed supp[m] isometrically into a graph or into a hyperbolic space with curvature close
to −∞.)

The family of all isomorphism classes of metric measure spaces will be denoted by X. For each
λ ∈ R+, let Xλ denote the family of isomorphism classes of metric measure spaces (M, d,m)
with finite variances and total mass m(M) = λ. Moreover, for ∆ ∈ R+, let Xλ(∆) denote the
family of isomorphism classes of metric measure spaces (M, d,m) with diameter ≤ ∆ and total
mass m(M) = λ. If λ∆ 6= 0, the map

(M, d,m) 7→ (M,∆ d, λm)

defines a bijection between X1 and Xλ and also a bijection between X1(1) and Xλ(∆).
For λ > 0, the family Xλ contains a unique element with Var(M, d,m) = 0, namely, m = λ · δo
for some o ∈ M . Here a priori M is an arbitrary nonempty set. But without restriction it
contains just one point, say M = {o}. The family X0 is pathological: it contains only one
element, the ’empty space’.

Definition 3.2.

(i) Given two metric measure spaces (M, d,m) and (M ′, d′,m′) we say that a measure q on
the product space M ×M ′ is a coupling of m and m′ iff

q(A×M ′) = m(A), q(M ×A′) = m′(A′) (3.3)

for all measurable sets A ⊂ M,A′ ⊂ M ′. We say that a pseudo metric d̂ on the disjoint
union M tM ′ is a coupling of d and d′ iff

d̂(x, y) = d(x, y), d̂(x′, y′) = d′(x′, y′) (3.4)

for all x, y ∈ supp[m] ⊂M and all x′, y′ ∈ supp[m′] ⊂M ′.

(ii) We define the distance D between two metric measure spaces by

D((M, d,m), (M ′, d′,m′)) = inf{
(∫

M×M ′
d̂
2
(x, y)dq(x, y)

)1/2

:

d̂ is a coupling of d and d′,

q is a coupling of m and m′}.

Remark 3.3. (i) Note that the integrals involved in the definition of D are well-defined since
each coupling d̂ is a function on (MtM ′)×(MtM ′) = (M×M)t(M×M ′)t(M ′×M)t(M ′×M ′)
and each coupling q is a measure on M ×M ′.
(ii) In the definition of the distance D we may restrict ourselves to take the infimum over all
complete separable metrics d̂ on M tM ′ which are couplings of d and d′. Indeed, given any
(pseudo metric) coupling d̂ of d and d′ and any ε > 0 we obtain a complete separable metric
d̂ε which is a coupling of d and d′ as follows:

d̂ε =
{

d, on (M ×M) t (M ′ ×M ′)
d + ε, on (M ×M ′) t (M ′ ×M).
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(iii) One easily verifies that

D((M, d,m), (M ′, d′,m′)) = inf d̂W (ψ∗m,ψ′∗m
′) (3.5)

where the inf is taken over all metric spaces (M̂, d̂) with isometric embeddings ψ : M0 ↪→ M̂ ,
ψ′ : M ′

0 ↪→ M̂ of the supports M0 and M ′
0 of m and m′, resp. Here d̂W denotes the L2-

Wasserstein distance for measures on M̂ as introduced in Chapter 2. In other words,

D((M, d,m), (M ′, d′,m′)) = inf
(∫

M×M ′
d̂
2
(ψ(x), ψ′(x′)) dq(x, x′)

)1/2

(3.6)

where the inf now is taken over all metric spaces (M̂, d̂) with isometric embeddings ψ : M0 ↪→ M̂ ,
ψ′ : M ′

0 ↪→ M̂ and over all couplings q of m and m′.
Indeed, the set M̂ can always be chosen as the disjoint union of M0 and M ′

0 (the supports of m
and m′), i.e.

M̂ = M0 tM ′
0

and ψ,ψ′ can be chosen as identities. Hence,

D((M, d,m), (M ′, d′,m′)) = inf
ˆd

d̂W (m,m′)

where the inf ˆd
is taken over all metrics (or, equivalently, over all pseudo metrics) on M0 tM ′

0

the restriction of which coincide on M0 with d and on M ′
0 with d′.

Let us summarize some elementary properties of D.

Lemma 3.4.

(i) If (M, d) = (M ′, d′) then D((M, d,m), (M, d,m′)) ≤ dW (m,m′). In general, there will be
no equality.

(ii) If m(M) 6= m′(M ′) then D((M, d,m), (M ′, d′,m′)) = +∞.

(iii) For all α, β ∈ R+

D((M,α d, βm), (M ′, α d′, βm′)) = α
√
β · D((M, d,m), (M ′, d′,m′))

(iv) If m =
∑

nmn and m′ =
∑

nm
′
n then

D2((M, d,m), (M ′, d′,m′)) ≤
∑

n

D2((M, d,mn), (M ′, d′,m′
n)).

In particular, with Mn = supp[mn],M ′
n = supp[m′

n]

D2((M, d,m), (M ′, d′,m′)) ≤
∑

n

D2((Mn, d|Mn ,mn), (M ′
n, d′|M ′

n
,m′

n)).

Now let us concentrate on normalized metric measure spaces.

Lemma 3.5.

(i) If m(M) = 1 and m′ = δo for some o ∈M ′ then

D2((M, d,m), (M ′, d′,m′)) = Var(M, d,m).
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(ii) The family X1,∗ of isomorhpism classes of (M, d,m) with finite supports M0, say {x1, . . . , xn},
and uniform distribution m = 1

n

∑
δxi (’normalized configurations’) is dense in X1.

(iii) For each (M, d,m) ∈ X1 let X1, X2, . . . be an independent sequence of random variables
Xi : Ω → M (defined on some probability space Ω with values in M) with distribution m
and let

mn(ω, ·) :=
1
n

n∑
i=1

δXi(ω)

be their empirical distributions. Then for m-almost every ω ∈ Ω

(M, d,mn(ω, ·)) → (M, d,m)

in (X1,D) as n→∞.

(iv) If m = 1
n

∑n
i=1 δxi and m′ = 1

n

∑n
i=1 δx′

i
then

D((M, d,m), (M ′, d′,m′)) ≤ sup
i,j
| dij − d′ij |

where dij := d(xi, xj) and d′ij := d′(x′i, x
′
j).

Proof. (i) is obvious.
(ii) Given (M, d,m) ∈ X1 we have m ∈ P2(M, d) by (3.2). Then by Proposition 2.10(i)

∀ε > 0 : ∃n ∈ N, x1, . . . , xn ∈M : dW (m, m̄) ≤ ε

where m̄ := 1
n

∑n
i=1 δxi . Hence, (M, d, m̄) ∈ X1,∗ and D((M, d,m), (M, d, m̄)) ≤ dW (m, m̄) ≤ ε.

(iii) follows from the Empirical Law of Large Numbers or Varadarajan’s Theorem, e.g. [Du89],
Theorem 11.4.1.
(iv) Assume (without restriction) that M = {x1, . . . , xn}, M ′ = {x′1, . . . , x′n}, and | dij− d′ij | ≤ ε

for all i, j (with dij , d′ij as above). Define d̂ on M ×M ′ by

d̂(xi, x
′
j) := inf

k=1,...,n

[
d(xi, xk) + d′(x′k, x

′
j)
]
+ ε

and analogously on M ′ × M . As usual, put d̂ := d on M × M and d̂ := d′ on M ′ × M ′.
Moreover, put

m =
1
n

n∑
i=1

δ(xi,x′
i)
.

Then d̂ is a coupling of d and d′ and q is a coupling of m and m′. Thus

D2((M, d,m), (M ′, d′,m′)) ≤
∫

M×M ′
d̂
2
(x, y)dq(x, y) = ε2.

Theorem 3.6. (X1,D) is a complete separable metric space.

Proof.

(i) Obviously, D is well-defined and symmetric on X1 × X1 with values in R+.

(ii) The density of X1,∗ in X1 follows from Lemma 3.5 (ii).
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(iii) According to (ii), separability of X1 will follow from separability of X1,∗. The latter is the
disjoint union ∪̇n∈NK̃(n) where K̃(n) := {(M, d,m) ∈ X1,∗ : supp[m] has n points}. But
K̃(n) can be identified with

K(n) = {D = (Dij)i,j ∈ Rn×n
+ : ∀i, j, k ∈ {1, . . . , n} :

Dij = Dji, Dij +Djk ≥ Dik and Dij = 0 ⇔ i = j}.

Now each of the K(n) is separable (as a subset of Rn×n), hence, K̃(n) is separable (Lemma
3.5(iv)) and thus finally X1,∗ is separable.

(iv) In order to prove the triangle inequality let three metric measure spaces (Mi, di,mi) ∈
X1, i = 1, 2, 3, be given. Without restriction, we may assume Mi = supp[mi] for i = 1, 2, 3.
Then for each ε > 0 there exist a complete separable metric d12 on M1tM2 and a complete
separable metric d23 on M2 tM3 such that

D((M1, d1,m1), (M2, d2,m2)) ≥ dW
12(m1,m2)− ε,

D((M2, d2,m2), (M3, d3,m3)) ≥ dW
23(m2,m3)− ε,

and dij restricted to Mi coincides with di, restricted to Mj coincides with dj for (i, j) =
(1, 2) or (2, 3). (Here for typographical reasons, we use not a lower but an upper index to
indicate the Wasserstein metric derived from a given metric.) Now define d on M ×M
with M := M1 tM2 tM3 by

d(x, y) =


d12(x, y), if x, y ∈M1 tM2

d23(x, y), if x, y ∈M2 tM3

infz∈M2 [ d12(x, z) + d23(z, y)], if x ∈M1, y ∈M3

infz∈M2 [ d23(x, z) + d12(z, y)], if x ∈M3, y ∈M1.

Obviously, d is a complete separable metric on M and, restricted to Mi it coincides with
di (for each i = 1, 2, 3).
Then by the triangle inequality for dW (Proposition 2.10 (i))

D((M1, d1,m1), (M3, d3,m3))
≤ dW (m1,m3)
≤ dW (m1,m2) + dW (m2,m3)
= dW

12(m1,m2) + dW
23(m2,m3)

≤ D((M1, d1,m1), (M2, d2,m2))
+D((M2, d2,m2), (M3, d3,m3)) + 2ε.

This proves the claim.

(v) In order to prove completeness let ((Mn, dn,mn))n∈N be a Cauchy sequence in (X1,D).
Let us choose a subsequence such that

D((Mnk
, dnk

,mnk
), (Mnk+1

, dnk+1
,mnk+1

)) ≤ 2−k−1

for all k ∈ N. Then there exist a coupling d̂k+1 of dnk
, dnk+1

and a coupling q̂k+1 of mnk
,

mnk+1
such that (∫

d̂
2

k+1(x, y) dq̂k+1(x, y)
)1/2

≤ 2−k.
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Without restriction d̂k+1 is a complete separable metric. Let us define recursively a se-
quence of complete separable metric spaces (M ′

k, d′k) as follows: (M ′
1, d′1) := (Mn1 , dn1)

and M ′
k+1 = M ′

k tMnk+1
/ ∼ with x ∼ y iff d′k+1(x, y) = 0 where

d′k+1(x, y) =


d′k(x, y), if x, y ∈M ′

k

d̂k+1(x, y) if x, y ∈Mnk
tMnk+1

infz∈Mnk
[ d′k(x, z) + d̂k+1(z, y)], if x ∈M ′

k, y ∈Mnk
tMnk+1

.

This way, (M ′
k, d′k) is a sequence of complete separable metric spaces with Mnk

⊂ M ′
k

and M ′
k ⊂ M ′

k+l for all k, l. Hence, M ′ = ∪∞k=1M
′
k is naturally equipped with a metric

d′ = lim d′k.
Let (M, d) be the completion of (M ′, d′). Then (Mnk

, dnk
) is isometrically embedded in

(M, d) for each k ∈ N and the measure mnk
on Mnk

defines a push forward measure m̄nk

on M . By construction

dW (m̄nk
, m̄nk+1

) ≤
(∫

d̂
2

k+1(x, y) dq̂k+1(x, y)
)1/2

≤ 2−k

for all k ∈ N. Hence, (m̄nk
)k∈N is a Cauchy sequence in (P2(M), dW ). According to

Proposition 2.10 the latter is complete. That is, there exists a probability measure m on
(M, d) such that

D((Mnk
, dnk

,mnk
), (M, d,m)) ≤ dW (m̄nk

,m) → 0

as k →∞. This in turn implies

D((Mn, dn,mn), (M, d,m)) → 0

as n→∞ which proves the claim.

(vi) Nondegeneracy of D will follow from the corresponding property of Gromov’s metric �1

together with the following Lemma.

Lemma 3.7. The metric D can be estimated from below in terms of Gromov’s metric �1 ([Gr99],
31

2 .12) as follows:
1
2
�1 ≤ D2/3.

Proof. In order to prove this estimate, let normalized metric measure spaces (M, d,m) and
(M ′, d′,m′) be given with D((M, d,m), (M ′, d′,m′)) < ε3/2 for some ε > 0. Then for some
metric d̂ on M tM ′ extending d and d′ and for some coupling q of m and m′∫

d̂
2
(x, x′) dq(x, x′) < ε3.

Hence, q({(x, x′) ∈ M ×M ′ : d̂(x, x′) ≥ ε}) < ε. Therefore there exists a measurable map
Φ : [0, 1[→ M × M ′ such that Φ∗λ = q where λ denotes the Lebesgue measure on [0, 1[
(’parametrization of q’) and there exists a measurable set Xε ⊂ [0, 1[ with λ(Xε) < ε such
that for all x ∈ [0, 1[\Xε:

d̂(Φ(x)) < ε. (3.7)
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If we write Φ(x) = (ϕ(x), ϕ′(x)) with ϕ : [0, 1[→ M , ϕ′ : [0, 1[→ M ′ then ϕ∗λ = m and
ϕ′∗λ = m′. Moreover, for all x, y ∈ [0, 1[\Xε

| d(ϕ(x), ϕ(y))− d′(ϕ′(x), ϕ′(y))|
≤ d̂(ϕ(x), ϕ′(x)) + d̂(ϕ(y), ϕ′(y))
= d̂(Φ(x)) + d̂(Φ(y)) < 2ε

according to (3.7). This proves

�1((M, d,m), (M ′, d′,m′)) < 2ε.

3.2 Examples for D-Convergence

Let us demonstrate the notion of D-convergence with various examples.

Example 3.8. (’Products’)
Let (Mn, dn,mn) ∈ X1 for n ∈ N. Then

(⊗l
n=1(Mn, dn,mn)

)
l∈N

is a D-Cauchy sequence in X1

if (and only if)
∞∑

n=1

Var(Mn, dn,mn) <∞.

In this case, as l→∞
l⊗

n=1

(Mn, dn,mn) D−→
∞⊗

n=1

(Mn, dn,mn).

Proof. Obviously, for all k and l

D2

(
l⊗

n=1

(Mn, dn,mn),
l+k⊗
n=1

(Mn, dn,mn)

)

≤ D2

(
({o}, 0, δo),

l+k⊗
n=l+1

(Mn, dn,mn)

)

≤
l+k∑

n=l+1

D2 (({o}, 0, δo), (Mn, dn,mn)) =
l+k∑

n=l+1

Var(Mn, dn,mn).

(Actually, all these inequalities are equalities.) This proves the claim(s).

Example 3.9. (’Dimension Increasing to Infinity’)
Let Mn = R with Euclidean distance,

dmn(x) =
1√

2πσn

exp
(
− x2

2σ2
n

)
and M (l) = Rl with Euclidean distance,

dm(l)(x) =
1

(2π)l/2
∏l

n=1 σn

exp

(
−1

2

l∑
n=1

(
xn

σn

)2
)
dx

Then
(M (l), d(l),m(l)) D−→ (M (∞), d(∞),m(∞))

if and only if
∑∞

n=1 σ
2
n <∞.
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Example 3.10. (’Increasing Finite Dimension’)

(i) Let Mn = ( 1
nZ∩ [0, 1])k be the rescaled k-dimensional lattice, d be the Euclidean distance

in Rk and mn be the renormalized counting measure on Mn. Then as n→∞

(Mn, d,mn) D−→ ([0, 1]k, d,m)

with m being the k-dimensional Lebesgue measure in [0, 1]k.

(ii) Similarly, if M̃n denotes the graph obtained from Mn with edges between next neighbors
and m̃n being the 1-dimensional Lebesgue measure on the edges:

(M̃n, d, m̃n) D−→ ([0, 1]k, d,m)

as n→∞.

Example 3.11. (’Increasing to Fractal Dimension’)
Let (Mn)n∈N be the usual approximation of the Sierpinski gasket M ⊂ R2 by graphs Mn with
3n edges of sidelength 21−n, n ∈ N. To be more specific, M1 is the equilateral triangle with

sidelength 1 and for each n ∈ N, the graph Mn is obtained from Mn−1 by gluing together 3
copies and rescaling the whole by the factor 1

2 . Let dn be the distance from the ambient two-
dimensional Euclidean space (or alternatively the induced length distance on Mn) and let mn

be normalized one-dimensional Lebesgue measure on Mn. Then

(Mn, dn,mn) D−→ (M, d,m)
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where M is the Sierpinski gasket, d is the two-dimensional Euclidean distance restricted to M
(or the induced length distance on M , resp.) and m is the normalized log 3/ log 2-dimensional
Hausdorff measure on M .

Similarly, we can approximate the two-dimensional Sierpinski carpet M̃ (equipped with Eu-
clidean distance d̃ – or alternatively with the induced length distance – and with normalized
log 8/ log 3-Hausdorff measure m̃) by graphs M̃n with sidelength 3−n. Here M̃1 is the square
with sidelength 1 and M̃n is obtained by gluing together 8 copies of M̃n−1 and rescaling the
whole by the factor 1

3 . Then

(M̃n d̃n, m̃n) D−→ (M̃, d̃, m̃).

See for instance [Ki01].

Example 3.12. (’Decreasing Dimension, Collapse’)

(i) For each metric measure space (M, d,m) and each sequence (Mn, dn,mn), n ∈ N, with
limn→∞ Var(Mn, dn,mn) = 0 one has

(M ×Mn, d⊗ dn,m⊗mn) D−→ (M, d,m)

as n→∞.

(ii) Let M be a finite graph, embedded in R3, let d be the graph distance and m be the
1-dimensional Lebesgue measure on M normalized to 1. Let

Mn :=
{
x ∈ R3 : dEuclid(x,M) ≤ 1

n

}
and

M̃n :=
{
x ∈ R3 : dEuclid(x,M) =

1
n

}
be the full (and surface, resp.) tubular neighborhood of M , let dn (and d̃n) be the geodesic
distance on Mn (or M̃n, resp.) induced by the Euclidean distance dEuclid on the ambient
space R3, and let mn (and m̃n) be the 3- (or 2-, resp.) dimensional Lebesgue measure on
M (or M̃ , resp.), normalized to 1. Then

(Mn, dn,mn) D−→ (M, d,m)

and
(M̃n d̃n, m̃n) D−→ (M, d,m)

as n→∞.
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Being a length space is not preserved under isomorphisms of metric measure spaces. But the
support supp[m] being a length space is preserved under isomorphisms. However, also this
property is not preserved under D-convergence.

Example 3.13. Let M = R with Euclidean distance d, dmn(x) = ϕn(x)dx with

ϕn(x) =


1/(2n), x ∈ ]− 1, 1[,
1/2, x ∈ [−2 + 1

n ,−1] ∪ [1, 2− 1
n ],

0, else

and
dm(x) =

1
2
(
1[−2,−1](x) + 1[1,2](x)

)
dx.

Then (M, d,mn) D−→ (M, d,m) as n → ∞ as well as (supp[mn], d,mn) D−→ (supp[m], d,m).
However, (supp[mn], d) as n → ∞ does not converge w.r.t. DGH towards (supp[m], d). It
converges towards ([−2, 2], d). On the other hand, Example 3.10 (i) demonstrates the opposite
phenomenon: nonlength spaces converging to a length space.

3.3 Doubling Property under D-Convergence

Definition 3.14. Given a number C ∈ R+, we say that a metric measure space (M, d,m) has
the restricted doubling property with doubling constant C iff for all x ∈ supp[m] and all r ∈ R+

m(B2r(x)) ≤ C ·m(Br(x)).

A metric measure space (M, d,m) has the restricted doubling property if and only if for all
x ∈ supp[m] and all r,R ∈ R+

m(BR(x)) ≤ C
b log R/r

log 2
+1c ·m(Br(x))

where bac denotes the greatest integer ≤ a. It implies that for all x and r the sets Br(x)∩supp[m]
are compact.
Note that our definition differs from the usual definition of the doubling property: we only
impose a condition on balls with center in the support of the measure. Some modification of
this kind is necessary in order to obtain a property which is preserved under isomorphisms
of metric measure spaces. The usual doubling property without this restriction implies that
supp[m] = M whenever m(M) 6= 0.
For instance, let (M, d) be the two-dimensional Euclidean plane and letm be the one-dimensional
Lebesgue measure on the x1-axis. Then (M, d,m) has the restricted doubling property but not
the doubling property in the usual sense.
There is a huge literature on metric measure spaces which have the doubling property, see e.g.
[He01] and references cited therein.
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Theorem 3.15. The restricted doubling property is stable under D-convergence.
That is, if for all n ∈ N the normalized metric measure spaces (Mn, dn,mn) have the restricted
doubling property with a common doubling constant C and if (Mn, dn,mn) D→ (M, d,m) as
n→∞ then also (M, d,m) has the restricted doubling property with the same constant C.

Proof. Assume that the normalized metric measure spaces (Mn, dn,mn), n ∈ N, have the re-
stricted doubling property with a common doubling constant C and that

δn := D((Mn, dn,mn), (M, d,m)) → 0

as n → ∞. Then for each n ∈ N the spaces (supp[m], d) and (supp[mn], dn) can isometrically
be embedded into some space (M̂, d̂) such that

d̂W (m̂, m̂n) ≤ 2δn

where m̂ and m̂n denote the push forwards of the measures m and mn, resp., under the embed-
ding maps ψ and ψn, resp.
Let x ∈ supp[m], r > 0, ε > 0 and α < 1 be given (with 2rα2 − 6ε > 0 for simplicity). Our first
observation is that

m̂n(B̂2ε(ψ(x))) ≥ m̂(B̂ε(ψ(x)))− 1
ε2

d̂
2

W (m̂, m̂n) (3.8)

since the mass which has to be transported from the interior of the small ball to the exterior of
the large ball has to be moved by a distance of at least ε. Moreover, we know that m̂(B̂ε(ψ(x))) =
m(Bε(x)) > 0 since by assumption x ∈ supp[m]. Hence, for n large enough we conclude that
m̂n(B̂2ε(ψ(x))) > 0. Therefore, there exists a point x̂n ∈ supp[m̂n] ⊂ M̂ with d̂(x̂n, ψ(x)) ≤ 2ε.
In particular, we may apply the restricted doubling property for balls centered at xn. This yields

m(B2α2r−6ε(x)) = m̂(B̂2α2r−6ε(ψ(x))) ≤ m̂(B̂2α2r−4ε(x̂n))

≤ m̂n(B̂2αr−4ε(x̂n)) +
1

(2rα− 2rα2)2
d̂
2

W (m̂, m̂n)

≤ C · m̂n(B̂αr−2ε(x̂n)) +
1

(2rα− 2rα2)2
d̂
2

W (m̂, m̂n)

≤ C · m̂n(B̂αr(ψ(x))) +
1

(2rα− 2rα2)2
d̂
2

W (m̂, m̂n)

≤ C · m̂(B̂r(ψ(x))) +
[

1
(2rα− 2rα2)2

+
C

(2r − 2rα)2

]
d̂
2

W (m̂, m̂n)

≤ C ·m(Br(x)) +
1 + Cα2

[rα(1− α)]2
· δ2n.

In the limit n→∞ we obtain

m(B2α2r−6ε(x)) ≤ C ·m(Br(x)).

Since this holds for any α < 1 and any ε > 0 we conclude

m(B2r(x)) ≤ C ·m(Br(x)).

We close this chapter with an important result on compactness under D-convergence.
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Theorem 3.16. (’Compactness’)
For each pair (C,R) ∈ R+ × R+ the family X1(C,R) of all isomorphism classes of normalized
metric measure spaces with (’restricted’) doubling constant ≤ C and radius ≤ R is compact
under D-convergence.

Proof. Let C and R be given and consider a space (M, d,m) ∈ X1(C,R). Without restriction,
we may assume that supp[m] = M . Then each ball Bε(x) ⊂M has volume

m(Bε(x)) ≥
( ε

2R

)N

with ’doubling dimension’ N := logC/ log 2. Hence, each family of disjoint balls of radius ε in
M contains at most (2R/ε)N elements which in turn implies that M can be covered by (2R/ε)N

balls of radius 2ε. Firstly, this implies that M is compact. Secondly, since this covering property
holds true uniformly in (M, d,m) ∈ X1(C,R), according to Gromov’s compactness theorem
([Gr81a] or [BH99], Theorem 5.41) it implies compactness of the family X1(C,R) under Gromov-
Hausdorff convergence. Due to the following Lemma 3.17 this in turn implies compactness under
D-convergence.

Lemma 3.17. Let {(Mi, di,mi), i ∈ I} be an arbitrary family of normalized compact metric
measure spaces which is closed under D-convergence. If the family X′ = {(Mi, di) : i ∈ I}
(of isometry classes) is compact w.r.t. Gromov-Hausdorff distance DGH then the family X′ =
{(Mi, di,mi) : i ∈ I} (of isomorphism classes) is compact w.r.t. D.

Proof. Let a sequence ((Mn, dn,mn))n∈N in X′ be given. Then (by the assumption of the com-
pactness of X′) there exists a subsequence ((Mnk

, dnk
,mnk

))k∈N and a compact metric space
(M, d) such that (Mnk

, dnk
) → (M, d) in DGH. Moreover, for an appropriately chosen subse-

quence one can achieve that M as well as all Mnk
, k ∈ N, are isometrically embedded in some

other compact metric space (M̂, d̂). Let us denote the embedded spaces and the associated push
forward measures again by (Mnk

, dnk
) and mnk

(or (M, d) and m, resp.). Then by compactness
of M̂ there exists a subsequence, again denoted by (mnk

)k∈N, converging to some m ∈ P2(M̂).
But then

D((Mnk
, dnk

,mnk
), (M, d,m)) ≤ d̂W (mnk

,m) → 0

as k →∞. This proves the compactness of X′.

4 Curvature Bounds for Metric Measure Spaces

4.1 The Relative Entropy

Recall that a metric measure space always means a triple (M, d,m) where (M, d) is a complete
separable metric space and m is a locally finite measure on M equipped with its Borel σ-algebra.
To avoid pathologies, in the sequel we always exclude the case m(M) = 0.
Given a metric measure space (M, d,m) we denote by P2(M, d,m) the subspace of all ν ∈
P2(M, d) which are absolutely continuous w.r.t. m, that is, which can be written as ν = ρ ·m
with Radon-Nikodym density ρ. In other words, P2(M, d,m) can be identified with the set
of all m-equivalence classes of nonnegative Borel-measurable functions ρ : M → R satisfying∫
ρ(x)dm(x) = 1 and

∫
x2ρ(x)dm(x) <∞.

For ν = ρ ·m ∈ P2(M, d,m) we define the relative entropy of ν w.r.t. m by

Ent(ν|m) := lim
ε↘0

∫
{ρ>ε}

ρ log ρ dm. (4.1)
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This coincides with ∫
{ρ>0}

ρ log ρ dm

provided
∫

{ρ>1}
ρ log ρdm < ∞. Otherwise Ent(ν|m) := +∞. For ν ∈ P2(M, d) \ P2(M, d,m)

we also define Ent(ν|m) := +∞. Finally, we put

P∗2 (M, d,m) := {ν ∈ P2(M, d) : Ent(ν|m) <∞} .

Lemma 4.1. If m has finite mass, then the relative entropy Ent(· |m) is lower semicontinuous
and 6= −∞ on P2(M, d). More precisely, for all ν ∈ P2(M, d)

Ent(ν|m) ≥ − logm(M). (4.2)

Proof. The lower estimate for the relative entropy is a simple application of Jensen’s inequality.
The lower semicontinuity is more subtle. ForN > 1 define UN (r) = −Nr1−1/N . Then r → UN (r)
is convex on R+, hence,

UN (r) ≥ UN (r0)− (N − 1)r−1/N
0 (r − r0) (4.3)

for all r, r0. Moreover,

lim
N→∞

[Nr + UN (r)] = sup
N

[Nr + UN (r)] = r log r.

Now consider SN : P2(M, d) → R with

SN (ν) :=
∫
UN (ρ)dm+N

for ν = ν0 + ν∗ ∈ P2(M, d) with ν∗ ⊥ m and ν0 = ρm. Note that

N −Nν0(M)1−1/Nm(M)1/N ≤ SN (ν) ≤ N

for all ν. Therefore, for all ν ∈ P2(M, d)

Ent(ν|m) = lim
N→∞

SN (ν) = sup
N
SN (ν) (4.4)

Hence, lower semicontinuity of Ent(·|m) will follow from lower semicontinuity of SN . In order
to verify the latter, let νn = ρnm + ν∗n be any sequence in P2(M, d) which converges to some
ν = ρm+ν∗ ∈ P2(M, d). It implies that νn → ν weakly in the sense of measures. Since ρ is a sub-
probability density it lies in L1−1/N (M,m) and it can be approximated in the metric D1−1/N by
nonnegative bounded, continuous ρ(i) ∈ L1−1/N (M,m). Here D1−1/N (u, v) :=

∫
|u−v|1−1/Ndm.

Put ρ(i)
n := |ρn − ρ + ρ(i)|. Then |SN (ρ(i)m) − SN (ρm)| ≤ N · D1−1/N (ρ(i), ρ) → 0 as well as

|SN (ρ(i)
n m) − SN (ρnm)| ≤ N ·D1−1/N (ρ(i), ρ) → 0 for i → ∞, uniformly in n. Moreover, since

ρ(i) is continuous and bounded it follows from (4.3) that

SN

(
ρ(i)

n m
)
− SN

(
ρ(i)m

)
≥ −(N − 1)

∫ [
ρ(i)
]1−1/N (

ρ(i)
n − ρ(i)

)
dm→ 0

for n→∞. Summing up, we obtain

lim inf
n→∞

SN (ρnm) ≥ SN (ρm)
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and thus finally as N →∞

lim inf
n→∞

Ent(ρnm|m) ≥ Ent(ρm|m).

Remark 4.2. The relative entropy can in the same manner also be defined for finite, non-
normalized measures ν (and m) on M . Then for all α, β > 0

Ent(αν|βm) = αEnt(ν|m) + (logα− log β)αν(M). (4.5)

Moreover, for all finite or countable sets I and all finite measures νi, i ∈ I,

Ent(
∑
i∈I

νi|m) ≥
∑
i∈I

Ent(νi|m) (4.6)

with equality if and only if the νi, i ∈ I, are mutually singular, and

Ent(
∑
i∈I

νi|m) ≤
∑
i∈I

Ent(νi|m)−
∑
i∈I

νi(M) log νi(M). (4.7)

For convex combinations of probability measures νi inequalities (4.6) and (4.7) read as follows∑
αiEnt(νi|m) +

∑
αi logαi ≤ Ent(

∑
αiνi|m) ≤

∑
αiEnt(νi|m). (4.8)

Proof. Indeed,

Ent(
∑
i∈I

νi|m) =
∑
i∈I

∫
ρi log

(∑
k∈I

ρk

)
dm

(∗)
≥

∑
i∈I

∫
ρi log ρidm =

∑
i

Ent(νi|m)

with equality in (*) if and only if ρkρi = 0 m-a.e. on M for all k 6= i. On the other hand,
according to Jensen’s inequality (applied with the convex function ϕ(r) = r log r):

Ent(
∑

νi|m) =
∫ (∑

αiρi

)
log
(∑

αiρi

)
dm

≤
∫ ∑

αiρi log ρidm

=
∑∫

ρi log ρidm−
∑

αi logαi

with αi = νi(M), ρi = 1
αi
ρi and ρi = dνi

dm .

Remark 4.3. (i) If m has infinite mass then Ent(.|m) may exhibit strange behavior. In par-
ticular, it can attain the value −∞ and also lower semicontinuity may fail. See the example
below.
(ii) If m is finite on all balls and if Ent(ν|m) <∞ then

Ent(ν|m) = lim
R→∞

∫
BR(o)

ρ log ρ dm (4.9)
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for each ν = ρm (with any o ∈M). Indeed, due to the finiteness of m on BR(o) the integral on
the RHS exists for all R and as R→∞ by monotone convergence∫

BR(o)∩{ρ>1}
ρ log ρdm→

∫
{ρ>1}

ρ log ρdm <∞

whereas ∫
BR(o)∩{ρ<1}

ρ log ρdm→
∫
{ρ<1}

ρ log ρdm ≤ ∞.

Example 4.4. Let M = R with Euclidean distance d and dm(x) = exp(exp(x2))dx, dµα(x) =
1
2α exp(−|x|α )dx.
(i) Then for all α > 0, µα ∈ P2(M) with dW (µα, δ0) =

√
2α and

Ent(µα|m) = −∞.

(ii) For each η ∈ P2(M,d) with Ent(η|m) > −∞ the relative entropy Ent(·|m) is not lower
semicontinuous at η since

ηα := (1− α)η + αµα → η in (P2(M), dW ).

as α→ 0 and
−∞ = lim

α→0
Ent(ηα|m) < Ent(η|m)

(iii) Moreover, given any ν0, ν1 ∈ P2(M, d) there exists a midpoint η of them. If Ent(η|m) <∞
then for each ε > 0 there exists an α > 0 such that ηα (defined as before) is an ε-midpoint of ν0

and ν1 and

−∞ = Ent(ηα|m) ≤ 1
2
Ent(ν0|m) +

1
2
Ent(ν1|m)− K

8
d2

W (ν0, ν1)

for each K ∈ R.

4.2 Curvature Bounds

Definition 4.5.
(i) We say that a metric measure space (M, d,m) has curvature ≥ K for some number K ∈ R
iff the relative entropy Ent(·|m) is weakly K-convex on P∗2 (M, d,m) in the following sense: for
each pair ν0, ν1 ∈ P∗2 (M, d,m) there exists a geodesic Γ : [0, 1] → P∗2 (M, d,m) connecting ν0

and ν1 with

Ent(Γ(t)|m) ≤ (1− t)Ent(Γ(0)|m) + tEnt(Γ(1)|m)− K

2
t(1− t) d2

W (Γ(0),Γ(1)) (4.10)

for all t ∈ [0, 1]. To be more specific, we say that in the previous case the metric measure space
(M, d,m) has globally curvature ≥ K. Moreover, we put

Curv(M, d,m) := sup{K ∈ R : (M, d,m) has curvature ≥ K}

(with sup ∅ := −∞ as usual). Note that then (M, d,m) has curvature ≥ Curv(M, d,m). Occa-
sionally, we use slightly modified concepts:

(ii) We say that a metric measure space (M, d,m) has (globally) curvature ≥ K in the lax
sense iff for each ε > 0 and for each pair ν0, ν1 ∈ P∗2 (M, d,m) there exists an ε-midpoint
η ∈ P∗2 (M, d,m) of ν0 and ν1 with

Ent(η|m) ≤ 1
2
Ent(ν0|m) +

1
2
Ent(ν1|m)− K

8
d2

W (ν0, ν1) + ε. (4.11)
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We denote the maximal K with this property by Curvlax(M, d,m).

(iii) We say that a metric measure space (M, d,m) has locally curvature ≥ K if each point
of M has a neighborhood M ′ such that (M ′, d,m) — with d and m also denoting the restric-
tions of d and m onto M ′ — has globally curvature ≥ K. The maximal K with this property
will be denoted by Curvloc(M, d,m).

Remark 4.6. Let (M, d,m) be a metric measure space of finite mass.

(i) Then Curv(M, d,m) ≥ K if and only if for each pair ν0, ν1 ∈ P∗2 (M, d,m) there exists a
midpoint η ∈ P∗2 (M, d,m) of ν0 and ν1 with

Ent(η|m) ≤ 1
2
Ent(ν0|m) +

1
2
Ent(ν1|m)− K

8
d2

W (ν0, ν1). (4.12)

(ii) Similarly, Curvlax(M, d,m) ≥ K if and only if for all ε > 0 and all ν0, ν1 ∈ P∗2 (M, d,m)
there exists a curve Γ : [0, 1] → P∗2 (M, d,m) connecting ν0 and ν1 with

Length(Γ) ≤ dW (ν0, ν1) + ε (4.13)

and

Ent(Γ(t)|m) ≤ (1− t)Ent(ν0|m) + tEnt(ν1|m)− K

2
t(1− t) d2

W (ν0, ν1) + ε (4.14)

for all t ∈ [0, 1].

(iii) Curvlax(M, d,m) > −∞ implies that P∗2 (M, d,m) is a length space (with metric dW )
and that M0 = supp[m] ⊂M is a length space (with metric d).

Proof. (i), (ii) We have to prove that the existence of (approximate) midpoints with property
(4.12) (or (4.11)) implies the existence of (approximate) geodesics with property (4.10) (or (4.14),
resp.).
Given ε = 0 (or ε > 0, resp.) define Γ(1

2) as ε-midpoint of Γ(0) := ν0 and Γ(1) := ν1 satisfying
(4.11). Then define Γ(1

4) as ε/2-midpoint of Γ(0) and Γ(1
2) satisfying (4.11) with ε/2 and define

Γ(3
4) as ε/2-midpoint of Γ(1

2) and Γ(1) satisfying (4.11) with ε/2. By iteration we obtain Γ(t)
for all dyadic t ∈ [0, 1]. The continuous extension yields the required curve. [See for instance
[St03], proof of Proposition 2.3, for a similar argument.] Lower semicontinuity of the relative
entropy then proves the claim for all t ∈ [0, 1].

(iii) According to part (ii), it only remains to prove that M0 is a length space. Given x0, x1 ∈M0

let νi for i = 0, 1 be the normalized volume in Bε(xi), i.e. νi = 1
m(Bε(xi))

1Bε(xi)m, with ε > 0 to
be chosen later. (Note that m(Bε(xi)) > 0 for all ε > 0 since xi ∈ M0 and m(Bε(xi)) < ∞ for
all sufficiently small ε > 0 since m is locally finite.) Then νi ∈ P∗2 (M, d,m). Hence, there exists
η ∈ P∗2 (M, d,m) with

dW (νi, η) ≤
1
2

dW (ν0, ν1) + ε

for i = 0, 1. Therefore∫ [
d2(x0, y) + d2(x1, y)

]
dη(y) = d2

W (δx0 , η) + d2
W (δx1 , η)

≤ [ dW (ν0, η) + ε]2 + [ dW (ν1, η) + ε]2 ≤ 2
[
1
2

dW (ν0, ν1) + 2ε
]2

≤ 2
[
1
2

d(x0, x1) + 3ε
]2

=
1
2

d2(x0, x1) + ε′
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for arbitrarily small ε′ > 0. It implies that there exists a point y ∈ supp[η] with d2(x0, y) +
d2(x1, y) ≤ 1

2 d2(x0, x1) + ε′. In other words, y is an approximate midpoint and thus M0 is a
length space.

Lemma 4.7. If M is compact then curvature bounds in the usual sense and in the lax sense
coincide:

Curv(M, d,m) = Curvlax(M, d,m).

Proof. Given ν0, ν1 ∈ P∗2 (M, d,m) let η(i) be a family of ε-midpoints of ν0 and ν1 satisfying
(4.11) with ε = 1/i. Let us consider the family of probability measures Q := {η(i) : i ∈ N}. This
family is tight. Indeed, we may assume without restriction that M is a compact length space
[otherwise, replace M by M0 = supp[m], see Remark 4.6(iii)]. Hence, there exists a suitable
subsequence (η(ij))j∈N which converges to some η ∈ P2(M, d). Continuity of the distance dW

and lower semicontinuity of the relative entropy Ent(·|m) imply that η is a midpoint of ν0 and
ν1 and (4.11) holds with ε = 0. Iterating this procedure yields a geodesic connecting ν0 and ν1

and satisfying (4.10).

The usual definition of K-convexity for the relative entropy would require that (4.10) holds for
each geodesic connecting ν0 and ν1. This leads to the following definition which, however, will
be not used in this paper.
We say that a metric measure space (M, d,m) has (globally) curvature ≥ K in the restricted
sense iff P∗2 (M, d,m) is a geodesic space and iff each geodesic Γ in P∗2 (M, d,m) satisfies (4.10).

Remark 4.8. Assume that M is a compact nonbranching geodesic space where each pair of
points in M is connected by a unique geodesic which depends continuously on the endpoints.
Then curvature bounds in the restricted sense and curvature bounds in the usual sense coincide.

Proof. The (uniformly) continuous dependence of the geodesics on the endpoints implies (and
actually is equivalent to the fact) that for each ε > 0 there exists δ > 0 such that the midpoint
z′ of x′ ∈ Bδ(x) and y′ ∈ Bδ(y) lies in Bε(z) whenever z is the midpoint of x and y. Now let the
probability measures q on M ×M and η on M be given which are an optimal coupling and a
midpoint, resp., of some ν0 and ν1. Decompose q into a sum q =

∑
i∈N qi of mutually singular

qi, i ∈ N, with supp[qi] ⊂ Bδ(xi)×Bδ(yi) for suitable xi, yi ∈M , i ∈ N. Let ν0,i and ν1,i denote
the marginals of qi. Assuming that (M, d,m) has curvature ≥ K in the usual sense then implies
that for each i ∈ N there exists a midpoint η̃i of ν0,i and ν1,i satisfying

Ent(η̃i|m) ≤ 1
2
Ent(ν0,i|m) +

1
2
Ent(ν1,i|m)− K

8
d2

W (ν0,i, ν1,i).

The η̃i for i ∈ N are mutually singular since M is nonbranching and since the qi are mutually
singular (Lemma 2.11 (iii)). Hence, η̃ =

∑
η̃i satisfies

Ent(η̃|m) ≤ 1
2
Ent(ν0|m) +

1
2
Ent(ν1|m)− K

8
d2

W (ν0, ν1).

Moreover, dW (η, η̃) ≤ 2ε since for each i ∈ N, supp[ηi] ⊂ Bε(zi) as well as supp[η̃i] ⊂ Bε(zi)
with zi being the midpoint of xi and yi. By lower semicontinuity of Ent(·|m) this implies

Ent(η|m) ≤ 1
2
Ent(ν0|m) +

1
2
Ent(ν1|m)− K

8
d2

W (ν0, ν1).

30



Theorem 4.9. (’Riemannian Spaces’)
Let M be a complete Riemannian manifold with Riemannian distance d and Riemannian volume
m and put m′ = exp(−V ) ·m with a C2 function V : M → R. Then

Curv(M, d,m′) = inf {RicM (ξ, ξ) + HessV (ξ, ξ) : ξ ∈ TM, |ξ| = 1} . (4.15)

In particular, (M, d,m) has curvature ≥ K if and only if the Ricci curvature of M is ≥ K.

Note that in the above Riemannian setting for each pair of points ν0, ν1 in P2(M, d,m) there
exists a unique geodesic connecting them. Hence, curvature bounds in the usual sense coincide
with curvature bounds in the restricted sense. Moreover, note that in this setting, local curvature
bounds always coincide with global curvature bounds.

Proof. Let us briefly sketch the main ideas of the proof, ignoring smoothness and regularity
questions. For details, see [RS04] for the case V = 0 or [St04] for the general case.
Let ν0 = ρ0m and ν1 = ρ1m be given. According to Remark 2.12 (iii) there exists a function
ϕ : M → R such that

νt = (Ft)∗ν0

with
Ft(x) = expx(−t∇ϕ(x))

defines the unique geodesic t 7→ νt in P2(M, d) connecting ν0 and ν1. Change of variable formula
then gives

Ent(νt|e−Vm) =
∫
ρ0 log ρ0dm−

∫
ytρ0dm+

∫
V (Ft)ρ0dm (4.16)

with yt = log det dFt being the logarithm of the determinant of the Jacobian of Ft (in some weak
sense). Now for ν0-a.e. x ∈M the function t 7→ yt(x) satisfies the differential inequality

ÿt(x) ≤ − 1
n

(ẏt)2(x)− Ric(Ḟt(x), Ḟt(x)). (4.17)

Together with (4.16) this yields

∂2

∂t2
Ent(νt|e−Vm) ≥

∫ [
Ric(Ḟt, Ḟt) + HessV (Ḟt, Ḟt)

]
ρ0dx

≥ K · d2
W (ν0, ν1)

provided Ric(ξ, ξ) + HessV (ξ, ξ) ≥ K|ξ|2 for all ξ ∈ TM . This ’proves’ the K-convexity of
Ent(·|e−Vm).

Some of the most simple examples are

Example 4.10. (i) If M is a n-dimensional Riemannian manifold of constant sectional curva-
ture κ then

Curv(M, d,m) = (n− 1)κ.

(ii) If M is the Euclidean space Rn with the weighted measure dm(x) = exp(−K||x||2/2)dx then

Curv(M, d,m) = K.

(iii) If supp[m] consists of one point then Curv(M, d,m) = +∞.

Remark 4.11. If m is finite on all balls then it suffices to verify (4.11) for all νi = ρim with
bounded density ρi and with bounded support supp[νi], i = 0, 1.
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Proof. Let ν0, ν1 ∈ P∗2 (M, d,m) be given, say ν0 = ρ0m and ν1 = ρ1m. Fix o ∈ M and define
for i = 0, 1

ρi,R =
1
αi,R

1BR(o)[ρi ∧R] with αi,R =
∫

BR(o)
(ρi ∧R)dm.

Then according to Remark 4.3, αi,R → 1 and Ent(ρi,Rm|m) → Ent(νi|m) as R→∞. Moreover,
dW (ρi,Rm, νi) → 0 and thus for sufficiently large R, each ε

2 -midpoint of ρ0,Rm and ρ1,Rm will
be an ε-midpoint of ν0 and ν1.

4.3 Basic Transformations

Proposition 4.12. (’Isomorphism’)
If (M, d,m) and (M ′, d′,m′) are isomorphic metric measure spaces then

Curv(M, d,m) = Curv(M ′, d′,m′).

Thus Curv(·) extends to a function on X, the family of isomorphism classes of metric measure
spaces.

Analogous statements hold true for Curvlax(·) and Curvloc(·).

Proof. Let Ψ : M0 →M ′
0 be an isometry between M0 := supp[m] and M ′

0 := supp[m′] such that
Ψ∗m = m′. Then for all ν = ρm ∈ P2(M, d,m) the push forward measure Ψ∗ν is absolutely
continuous w.r.t. m′ with density ρ(Ψ−1). Indeed, for all bounded measurable f : M → R:∫

fd(Ψ∗ν) =
∫
f(Ψ)ρdm =

∫ [
f · ρ(Ψ−1)

]
◦Ψdm =

∫
f · ρ(Ψ−1)dm′

and for all ν0, ν1 ∈ P2(M, d):

d′W (Ψ∗ν0,Ψ∗ν1) = dW (ν0, ν1).

This is, Ψ induces an isometry ν 7→ Ψ∗ν between P2(M, d) and P2(M ′, d′) which maps P2(M, d,m)
onto P2(M ′, d′,m′). Moreover,

Ent(Ψ∗ν|m′) = Ent(ν|m)

since

Ent(Ψ∗ν|m′) =
∫
ρ(Ψ−1) log(ρ(Ψ−1))dm′

∫
ρ log ρdm = Ent(ν|m).

This proves the claim.

Proposition 4.13. (’Scaled spaces’)
For each metric measure space (M, d,m) and all α, β > 0:

Curv(M,α d, βm) = α−2 Curv(M, d,m).

Analogous statements hold true for Curvlax(·) and Curvloc(·).

Proof. Obviously, Ent(ν|βm) = Ent(ν|m)− log β and (α · d)W (ν0, ν1) = α · dW (ν0, ν1).
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Proposition 4.14. (’Weighted Spaces’)
For each metric measure space (M, d,m) and each lower bounded, measurable function V : M →
R

Curv(M, d, e−Vm) ≥ Curv(M, d,m) + HessV

where HessV := sup{K ∈ R : V is K-convex on supp[m]}. If V is locally bounded from below
then an analogous statement holds for Curvloc(·).

Recall that a function V : M → ]−∞,+∞], defined on a geodesic space M , is called K-convex
for some K ∈ R iff for each geodesic γ : [0, 1] →M and for each t ∈ [0, 1]

V (γ(t)) ≤ (1− t)V (γ(0)) + tV (γ(1))− K

2
t(1− t) d2(γ(0), γ(1)). (4.18)

Proof. A simple calculation yields

Ent(ν|e−Vm) = Ent(ν|m) +
∫
V dν.

Moreover, P∗2 (M, d, e−Vm) ⊂ P∗2 (M, d,m) according to lower boundedness of V . Now put
K0 := Curv(M, d,m) andK1 := HessV . Given any geodesic Γ in P∗2 (M, d,m) and any t ∈ [0, 1],
choose an optimal coupling q̂ on M3 with marginals Γ(0),Γ(t),Γ(1) in the sense of Lemma
2.11(ii). Then

Ent(Γ(t)|e−Vm)− (1− t)Ent(Γ(0)|e−Vm)− tEnt(Γ(1)|e−Vm)
= Ent(Γ(t)|m)− (1− t)Ent(Γ(0)|m)− tEnt(Γ(1)|m)

+
∫

M
V dΓ(t)− (1− t)

∫
M
V dΓ(0)− t

∫
M
V dΓ(1)

= Ent(Γ(t)|m)− (1− t)Ent(Γ(0)|m)− tEnt(Γ(1)|m)

+
∫

M3

[V (xt)− (1− t)V (x0)− tV (x1)] dq̂(x0, xt, x1)

(∗)
≤ −K0

2
t(1− t) d2

W (Γ(0),Γ(1))−
∫

M3

K1

2
t(1− t) d2(x0, x1)dq̂(x0, xt, x1)

= −K0 +K1

2
t(1− t) d2

W (Γ(0),Γ(1)).

The inequality (*) follows from K1-convexity of V since for q̂-almost every (x0, xt, x1) the point
xt lies on a geodesic connecting x0 and x1 (Lemma 2.11(ii)).

Proposition 4.15. (’Subsets’)
Let (M, d,m) be a metric measure space and let M ′ be a convex subset of M . Then

Curv(M ′, d,m) ≥ Curv(M, d,m).

Proof. Let ν0, ν1 be probability measures in P∗2 (M ′, d,m). Regard them as probability measures
on M . Let Γ be a geodesic in P∗2 (M, d,m) connecting them and satisfying (4.10). It remains to
prove that of each t ∈ [0, 1] the measures Γ(t) is supported by M ′, i.e.

Γ(t)(M \M ′) = 0.

According to Lemma 2.11(ii), there exists an optimal coupling q̂ of Γ(0) = ν0, Γ(t), and Γ(1) = ν1

such that for q̂-a.e. (x, z, y) ∈M3 the point z lies on some geodesic connecting the points x and
y. But then q̂-almost surely z has to lie in M ′ since x and y lie in M ′ and the latter is assumed to
be convex. This proves that Γ(t)(M \M ′) = 0 and thus yields the claim for Curv(M ′, d,m).
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Proposition 4.16. (’Products’)
Let (Mi, di,mi) for i = 1, . . . , l be metric measure spaces and

(M, d,m) =
l⊗

i=1

(Mi, di,mi).

Assume that M is nonbranching and compact. Then

Curv(M, d,m) = inf
i∈{1,...,l}

Curv(Mi, di,mi). (4.19)

Proof. (i) Let us first prove the inequality

Curv(M, d,m) ≤ inf
i∈{1,...,l}

Curv(Mi, di,mi).

Assume that this is not true. Then for some K ∈ R and i ∈ {1, . . . , l}

Curv(M, d,m) ≥ K > Curv(Mi, di,mi). (4.20)

Without restriction, we may assume i = 1. Then the last inequality implies that there exist
ν

(1)
0 , ν

(1)
1 ∈ P∗2 (M1, d1,m1) such that for each midpoint η(1) in P∗2 (M1, d1,m1) between ν(1)

0 , ν
(1)
1

the inequality (4.12) is violated, i.e.

Ent(η(1)|m1) >
1
2
Ent(ν(1)

0 |m1) +
1
2
Ent(ν(1)

1 |m1)−
K

8
d2

W (ν(1)
0 , ν

(1)
1 ). (4.21)

Now for j = 0, 1 put νj := ν
(1)
j ⊗m2 ⊗ . . . ⊗ml with normalized measures mi = 1

mi(Mi)
mi for

i = 2, . . . , l. Then obviously

Ent(νj |m) = Ent(ν(1)
j )−

l∑
i=2

logmi(Mi). (4.22)

and νj ∈ P∗2 (M, d,m). Moreover

dW (ν0, ν1) = dW
1 (ν(1)

0 , ν
(1)
1 )

(where for typographical reasons, we replace the lower index ’W’ by an upper index, again
denoting the L2-Wasserstein distances derived from d or d1, resp.).
Now the first inequality in (4.20) implies that there exists a midpoint η of ν0 and ν1 satisfying
(4.12). According to Remark 2.2 it implies

dW (ν0, η)2 + dW (η, ν1)2 ≤
1
2

dW (ν0, ν1)2

which in turn implies

dW
1 (ν(1)

0 , η(1))2 + dW
1 (η(1), ν

(1)
1 )2 ≤ 1

2
dW
1 (ν(1)

0 , ν
(1)
1 )2.

Again according to Remark 2.2 this yields that η(1) is a midpoint of ν(1)
0 and ν

(1)
1 . But

(4.21) and (4.22) imply that (4.12) is violated, – contradicting our previous assertion. Thus
Curv(M, d,m) < K which proves our first claim.
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(ii) To prove the reverse implication, we first treat the particular case ν0 = ν
(1)
0 ⊗ . . .⊗ ν

(l)
0 and

ν1 = ν
(1)
1 ⊗ . . .⊗ ν

(l)
1 . Assume that Curv(Mi, di,mi) ≥ K for each i = 1, . . . , l. Then for each i

there exists a midpoint η(i) of ν(i)
0 and ν(i)

1 with

Ent(η(i)|mi) ≤
1
2
Ent(ν(i)

0 |m) +
1
2
Ent(ν(i)

1 |m)− K

8
· dW

i (ν(i)
0 , ν

(i)
1 )2.

Put η := η(1) ⊗ . . .⊗ η(l). Then η is a midpoint of ν0 and ν1 since

dW (η, ν0)2 =
l∑

i=1

dW
i (η(i), ν

(i)
0 )2 ≤

l∑
i=1

[
1
2

dW
i (ν(i)

0 , ν
(i)
1 )
]2

=
[
1
2

dW (ν0, ν1)
]2

.

Moreover,

Ent(ν0|m) =
l∑

i=1

Ent(ν(i)
0 ,mi), Ent(ν1|m) =

l∑
i=1

Ent(ν(i)
1 ,mi)

and

Ent(η|m) =
l∑

i=1

Ent(η(i),mi).

Hence,

Ent(η|m) ≤
l∑

i=1

[
1
2
Ent(ν(i)

0 |m) +
1
2
Ent(ν(i)

1 |m)− K

8
· dW

i (ν(i)
0 , ν

(i)
1 )2

]
≤ 1

2
Ent(ν0|m) +

1
2
Ent(ν1|m)− K

8
dW (ν0, ν1)2.

This proves the claim in the particular case.

(iii) Now let arbitrary ν0, ν1 ∈ P∗2 (M, d,m) and ε > 0 be given. Then there exist

ν̃0 =
1
n

n∑
j=1

ν0,j

with mutually singular product measures ν0,j , j = 1, . . . , n and

ν̃1 =
1
n

n∑
j=1

ν1,j

with mutually singular product measures ν1,j , j = 1, . . . , n such that

Ent(ν̃0|m) ≤ Ent(ν0|m) + ε, Ent(ν̃1|m) ≤ Ent(ν1|m) + ε,

dW (ν0, ν̃0) ≤ ε, dW (ν1, ν̃1) ≤ ε

and

dW (ν̃0, ν̃1) ≥

 1
n

n∑
j=1

dW (ν0,j , ν1,j)2

1/2

− ε.

Furthermore, since ν0 is the sum of mutually singular ν0,j

Ent(ν̃0|m) =
1
n

n∑
j=1

Ent(ν0,j |m)− log n
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and similarly,

Ent(ν̃1|m) =
1
n

n∑
j=1

Ent(ν1,j |m)− log n.

According to part (ii) for each j = 1, . . . , n there exists a midpoint ηj of ν0,j and ν1,j satisfying

Ent(ηj |m) ≤ 1
2
Ent(ν0,j |m) +

1
2
Ent(ν1,j |m)− K

8
· dW (ν0,j , ν1,j)2.

According to Lemma 2.11(iii), since M is nonbranching and since the ν0,j for j = 1, . . . , n are
mutually singular, also the ηj for j = 1, . . . , n must be mutually singular. Hence,

η :=
1
n

n∑
j=1

ηj

satisfies

Ent(η|m) =
1
n

n∑
j=1

Ent(ηj |m)− log n

and thus

Ent(η|m) ≤ 1
2
Ent(ν̃0|m) +

1
2
Ent(ν̃1|m)− K

8
1
n

n∑
j=1

dW (ν0,j , ν1,j)2

≤ 1
2
Ent(ν0|m) +

1
2
Ent(ν1|m)− K

8
[ dW (ν0, ν1)∓ 3ε]2 + ε

(with ∓ to be chosen according to the sign of K). Moreover, η is an approximate midpoint of
ν0 and ν1:

2 dW (ν0, η) ≤ 2

 1
n

∑
j

dW (ν0,j , ηj)2

1/2

≤

 1
n

∑
j

dW (ν0,j , ν1,j)2

1/2

≤ dW (ν̃0, ν̃1) + ε ≤ dW (ν0, ν1) + 3ε

and similarly for dW (ν1, η). This proves that Curvlax(M, d,m) ≥ K. Together with compact-
ness of M this finally yields the claim.

4.4 From Local to Global

A crucial implication of our definition of lower curvature bounds for metric measure spaces
is the following Globalization Theorem which states that local curvature bounds imply global
curvature bounds. This is in the spirit of the Globalization Theorem of Topogonov for lower
curvature bounds (in the sense of Alexandrov) for metric spaces.

Theorem 4.17. (’Globalization’)
Let (M, d,m) be a compact, nonbranching metric measure space and assume that P∗2 (M, d,m)
is a geodesic space. Then

Curv(M, d,m) = Curvloc(M, d,m). (4.23)

Proof. Put K = Curvloc(M, d,m) and consider for each number k ∈ N ∪ {0} the following
property:
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C(k): For each geodesic Γ : [0, 1] → P∗2 (M, d,m) and for each pair s, t ∈ [0, 1] with 0 ≤ t− s ≤
2−k there exists a midpoint η(s, t) of Γ(s) and Γ(t) such that

Ent(η(s, t)|m) ≤ 1
2
Ent(Γ(s)|m) +

1
2
Ent(Γ(t)|m)− K

8
d2

W (Γ(s),Γ(t)). (4.24)

Our first claim is that

• For each k ∈ N: C(k) implies C(k-1).

In order to prove this claim, let k ∈ N be given with property C(k). Moreover, let a geodesic Γ
and numbers s, t ∈ [0, 1] be given with 0 ≤ t− s ≤ 21−k. Define iteratively a sequence (Γ(i))i∈N
of geodesics in P∗2 (M, d,m) which coincide with Γ on [0, s] ∪ [t, 1] as follows:
start with Γ(0) := Γ; assuming that Γ(2i) is already given, let Γ(2i+1) : [0, 1] → P∗2 (M, d,m) be
any geodesic which coincides with Γ on [0, s]∪ [t, 1] and for which Γ(2i+1)(s+ t−s

4 ) is a midpoint
of Γ(s) = Γ(2i)(s) and Γ(2i)(s+ t−s

2 ) and for which Γ(2i+1)(s+3 t−s
4 ) is a midpoint of Γ(2i)(s+ t−s

2 )
and Γ(t) = Γ(2i)(t) satisfying

Ent(Γ(2i+1)(s+
t− s

4
)|m) ≤ 1

2
Ent(Γ(s)|m)

+
1
2
Ent(Γ(2i)(s+

t− s

2
)|m)− K

32
d2

W (Γ(s),Γ(t)) (4.25)

and

Ent(Γ(2i+1)(s+ 3
t− s

4
)|m) ≤ 1

2
Ent(Γ(t)|m)

+
1
2
Ent(Γ(2i)(s+

t− s

2
)|m)− K

32
d2

W (Γ(s),Γ(t)). (4.26)

Such midpoints exist according to assumption C(k).
Then let Γ(2i+2) : [0, 1] → P∗2 (M, d,m) be any geodesic which coincides with Γ on [0, s] ∪ [t, 1]
and for which Γ(2i+2))(s+ t−s

2 ) is a midpoint of Γ(2i+1)(s+ t−s
4 ) and Γ(2i+1)(s+ 3 t−s

4 ) satisfying

Ent(Γ(2i+2)(s+
t− s

2
)|m) ≤ 1

2
Ent(Γ(2i+1))(s+

t− s

4
)|m)

+
1
2
Ent(Γ(2i+1)(s+ 3

t− s

4
)|m)− K

32
d2

W (Γ(s),Γ(t)). (4.27)

Again, such a midpoint exists according to assumption C(k). This yields a sequence of geodesics
Γ(i), i ∈ N.
Combining (4.25) – (4.27) gives

Ent(Γ(2i+2)(s+
t− s

2
)|m) ≤ 1

2
Ent(Γ(2i))(s+

t− s

2
)|m)

+
1
4
Ent(Γ(s)|m) +

1
4
Ent(Γ(t)|m)− K

16
d2

W (Γ(s),Γ(t)).

By iteration, it yields

Ent(Γ(2i)(s+
t− s

2
)|m) ≤ 2−iEnt(Γ(s+

t− s

2
)|m)

+ (1− 2−i)
[
1
2
Ent(Γ(s)|m) +

1
2
Ent(Γ(t)|m)− K

8
d2

W (Γ(s),Γ(t))
]
.

Compactness of P2(M, d) now implies that there exists a subsequence of
(
Γ(2i)(s+ t−s

2 )
)
i∈N

converging to some η ∈ P2(M, d). Continuity of the distance implies that η is a midpoint of
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Γ(s) and Γ(t) (since each of the Γ(2i)(s + t−s
2 ) is a midpoint) and lower semicontinuity of the

relative entropy implies

Ent(η|m) ≤ 1
2
Ent(ν0|m) +

1
2
Ent(ν1|m)− K

8
d2(ν0, ν1).

This proves property C(k-1).

Now according to our curvature assumption, each point x ∈M has a neighborhood M(x) such
that (M(x), d,m) has globally curvature ≥ K in the usual sense. By compactness of M , there
exist λ > 0, finitely many disjoint sets L1, . . . , Ln which cover M , and closed sets Mj ⊃ Bλ(Lj)
for j = 1, . . . , n such that (Mj , d,m) has globally curvature ≥ K in the usual sense. Choose
k′ ∈ N such that

2−k′ · diam(M, d,m) ≤ λ. (4.28)

Our next claim is that

• Property C(k’) is satisfied.

In order to prove this claim, fix Γ as well as s, t and let q̂ be a coupling of Γ(0),Γ(s),Γ(t),Γ(1)
on M4. Then according to Lemma 2.11, for q̂-almost every (x0, xs, xt, x1) ∈M4 the points xs, xt

lie on some geodesic connecting x0 and x1 with

d(xs, xt) = |t− s| · d(x0, x1) ≤ 2−k′ · diam(M, d,m) ≤ λ (4.29)

according to (4.28). Define probability measures Γj(s) and Γj(t) for j = 1, . . . , n by

Γj(s)(A) :=
1
αj

Γ(s)(A ∩ Lj) =
1
αj
q̂(M × (A ∩ Lj)×M ×M)

and
Γj(t)(A) :=

1
αj
q̂(M × Lj ×A×M)

provided αj := Γs(Lj) 6= 0. [Otherwise, define Γj(s) and Γj(t) arbitrarily.] Then supp[Γj(s)] ⊂
Lj which together with (4.29) implies

supp[Γj(s)] ∪ supp[Γj(t)] ⊂ Bλ(Lj) ⊂Mj . (4.30)

Therefore, for each j ∈ {1, . . . , n} the assumption Curv(Mj , d,m) ≥ K can be applied to the
probability measures Γj(s) and Γj(t) ∈ P∗2 (Mj , d,m). It yields the existence of a midpoint
ηj(s, t) of them with the property

Ent(ηj(s, t)|m) ≤ 1
2
Ent(Γj(s)|m) +

1
2
Ent(Γj(t)|m)− K

8
d2

W (Γj(s),Γj(t)). (4.31)

Define

η(s, t) :=
n∑

j=1

αjηj(s, t).

Then η(s, t) is a midpoint of Γ(s) =
∑n

j=1 αjΓj(s) and Γ(t) =
∑n

j=1 αjΓj(t). Moreover, since
the Γj(s) for j = 1, . . . , n are mutually singular and since M is nonbranching, also the ηj(s, t)
for j = 1, . . . , n are mutually singular, Lemma 2.11(iii). Hence, by (4.6)

Ent(η(s, t)|m) =
∑

j

αjEnt(ηj(s, t)|m) +
∑

j

αj logαj (4.32)
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and
Ent(Γ(s)|m) =

∑
j

αjEnt(Γj(s)|m) +
∑

j

αj logαj (4.33)

whereas
Ent(Γ(t)|m) ≥

∑
j

αjEnt(Γj(t)|m) +
∑

j

αj logαj (4.34)

since the Γj(t) for j = 1, . . . , n are not necessarily mutually singular. Summing up (4.31) for
j = 1, . . . , n and using (4.32) – (4.34) yields (4.24). This proves property C(k’).

In order to finish the proof of the Theorem, let two probability measures ν0, ν1 ∈ P∗2 (M, d,m)
be given. By assumption, there exists a geodesic Γ in P∗2 (M, d,m) connecting them. According
to our second claim, property C(k’) is satisfied and according to our first claim, this implies
property C(k) for all k = k′ − 1, k′ − 2, . . . , 0. Property C(0) finally states that there exists a
midpoint η of Γ(0) and Γ(1) with

Ent(η|m) ≤ 1
2
Ent(Γ(0)|m) +

1
2
Ent(Γ(1)|m)− K

8
d2

W (Γ(0),Γ(1)). (4.35)

This proves the Theorem.

Remark 4.18. Let M be a compact space.

(i) The condition on P∗2 (M, d,m) to be a geodesic space is always satisfied if Curv(M, d,m) >
−∞ (Remark 4.6(iii)).

(ii) If P∗2 (M, d,m) is a geodesic space then supp[m] is a geodesic space. The converse is not
true in general. Conjecture: it is true under the additional assumption Curvloc(M, d,m) > −∞.

(iii) If M0 := supp[m] is a geodesic space then P2(M0, d) is a geodesic space . Moreover, the
space P∗2 (M0, d,m) is dense in P2(M0, d). Indeed, given any µ ∈ P2(M0, d) and any ε > 0 there
exist n ∈ N and x1, . . . , xn ∈ M0 such that dW (µ, µ′) ≤ ε where µ′ := 1

n

∑n
i=1 δxi . Moreover,

dW (µ′, µ′′) ≤ ε where µ′′ := 1
n

∑n
i=1

1
m(Bε(xi))

· 1Bε(xi)m and

Ent(µ′′|m) ≤ sup
x∈M0

log

[
1
n

n∑
i=1

1
m(Bε(xi))

· 1Bε(xi)(x)

]
≤ − inf

i=1,...,n
log m(Bε(xi)) <∞.

That is, µ′′ ∈ P∗2 (M0, d,m) and dW (µ, µ′′) ≤ 2ε which proves the density.

4.5 Stability under Convergence

One of the most important results in this paper is that our curvature bounds for metric measure
spaces are stable under convergence. The key to this result is the fact that we are able to
construct a transformation Q′ from the L2-Wasserstein space over one metric measure space
(M, d,m) to the L2-Wasserstein space over any other metric measure space (M ′, d′,m′) which
reduces the relative entropy and which is almost an isometry between these spaces, provided the
underlying spaces are close in the metric D.
Actually, this is quite easy in the particular case where m is the push forward of m′ under a
map ψ′ : M ′ → M . In this case we can define (similarly to the construction in the proof of
Proposition 4.12)

Q′ : P2(M, d,m) → P2(M ′, d′,m′), ρ ·m 7→ (ρ ◦ ψ′) ·m′.
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The general case is more subtle since we may not restrict ourselves to transformations derived
from push forward maps. For instance, if m′ is the Riemannian measure of a collapsed space then
the Riemannian measure m of the initial space cannot be represented as a push forward measure.

Given two normalized metric measure spaces (M, d,m) and (M ′, d′,m′) we will define a canon-
ical map

Q′ : P2(M, d,m) → P2(M ′, d′,m′)

as follows: Let q be a coupling of m and m′ and d̂ be a coupling of d and d′ such that∫
d̂
2
(x, x′) dq(x, x′) ≤ 2D2((M, d,m), (M ′, d′,m′)).

Let Q′ and Q be the disintegrations of q w.r.t. m′ and m, resp., that is,

dq(x, x′) = Q′(x′, dx)dm′(x′) = Q(x, dx′)dm(x)

and let ∆̂ denote the m-essential supremum of the map

x 7→
[∫

M ′
d̂
2
(x, x′)Q(x, dx′)

]1/2

.

In general, of course, ∆̂ may attain the value ∞. However, if both metric measure spaces have
finite diameter we have

∆̂ ≤ diam(M, d,m) + diam(M ′, d′,m′) <∞.

For ν = ρm ∈ P2(M, d,m) define Q′(ν) ∈ P2(M ′, d′,m′) by Q′(ν) := ρ′m′ where

ρ′(x′) :=
∫

M
ρ(x)Q′(x′, dx). (4.36)

In other words, for all measurable A ⊂M ′

Q′(ν)(A) =
∫

M ′
1A(x′)ρ′(x′)dm′(x′)

=
∫

M ′

∫
M

1A(x′)ρ(x)Q′(x′, dx)dm′(x′)

=
∫

M×M ′
1A(x′)ρ(x)dq(x, x′).

Lemma 4.19. The map Q′ defined as above satisfies Q′(m) = m′ and for all ν = ρm:

Ent(Q′(ν)|m′) ≤ Ent(ν|m) (4.37)

and

d2
W (ν,Q′(ν)) ≤ 2 + ∆̂2 · Ent(ν|m)

− log D((M, d,m), (M ′, d′,m′))
. (4.38)

provided D((M, d,m), (M ′, d′,m′)) < 1.
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Proof. Inequality (4.37) is a consequence of Jensen’s inequality, applied to the convex function
r 7→ r log r, as follows

Ent(Q′(ν)|m′) =
∫
ρ′ log ρ′dm′

=
∫ [∫

ρ(x)Q′(x′, dx)
]
· log

[∫
ρ(x)Q′(x′, dx)

]
dm′(x′)

≤
∫ ∫

ρ(x) log ρ(x)Q′(x′, dx)dm′(x′)

=
∫
ρ(x) log ρ(x)dm(x)

= Ent(ν|m).

Inequality (4.38) follows from the fact that the measure ρ(x)dq(x, x′) = ρ(x)Q(x, dx′)dm(x) is
a coupling of ρ(x)dm(x) and ρ′(x′)dm′(x′) =

∫
M ρ(x)Q′(x′, dx)dm′(x′) =

∫
M ρ(x)dq(x, x′) and

thus
d2

W (ρm, ρ′m′) ≤
∫ ∫

d̂
2
(x, x′)Q(x, dx′)ρ(x)dm(x) =: Φ(ρ).

Now again with Jensen’s inequality applied to the convex function ψ(r) := r log r,

ψ

(
Φ(ρ)
Φ(1)

)
≤ 1

Φ(1)

∫ ∫
d̂
2
(x, x′)Q(x, dx′)ψ(ρ(x)) dm(x) ≤ ∆̂2

Φ(1)
Ent(ν|m).

Hence, since by assumption Φ(1) ≤ 2D((M, d,m), (M ′, d′,m′)) < 2

d2
W (ρm, ρ′m′) ≤ Φ(ρ) ≤ Φ(1) · ψ−1

(
∆̂2Ent(ν|m)/Φ(1)

)
≤ Φ(1) · ψ−1

(
[2 + ∆̂2Ent(ν|m)]/Φ(1)

)
=

2 + ∆̂2Ent(ν|m)

logψ−1
(
[2 + ∆̂2Ent(ν|m)]/Φ(1)

)
≤ 2

2 + ∆̂2Ent(ν|m)

log
(
[2 + ∆̂2Ent(ν|m)]/Φ(1)

)
≤ 2

2 + ∆̂2Ent(ν|m)

log
(
[2 + ∆̂2Ent(ν|m)]/2D2

)
≤ 2 + ∆̂2Ent(ν|m)

− log D

where we have used the abbreviation D := D((M, d,m), (M ′, d′,m′)).

Theorem 4.20. (’Convergence’)
Let ((Mn, dn,mn))n∈N be a sequence of normalized metric measure spaces with uniformly bounded
diameter. If

(Mn, dn,mn) D−→ (M, d,m)

as n→∞ then
lim sup

n→∞
Curvlax(Mn, dn,mn) ≤ Curvlax(M, d,m).

In particular, for each K ∈ R and ∆ ∈ R+ the family X1(K,∆) of isomorphism classes of
normalized metric measure spaces with curvature ≥ K and diameter ≤ ∆ is closed w.r.t D.
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Proof. Let ((Mn, dn,mn))n∈N be a sequence in (X1,D) with (Mn, dn,mn) → (M, d,m) and
assume that diam(M, d,m) ≤ ∆ and Curvlax(Mn, dn,mn) ≥ K for some ∆,K ∈ R and all
sufficiently large n ∈ N. Now let ε > 0 and ν0 = ρ0m, ν1 = ρ1m ∈ P∗2 (M, d,m) be given.
Choose R with

sup
i=0,1

Ent(νi|m) +
|K|
8

[ dW (ν0, ν1) + 2ε]2 + ε ≤ R. (4.39)

We have to deduce the existence of an ε-midpoint η which satisfies inequality (4.11). Choose
n ∈ N with

D((Mn, dn,mn), (M, d,m)) ≤ exp
(
−2 + (∆ + ∆′)2K

ε2

)
. (4.40)

Define the map Q′
n : P2(M, d,m) → P2(Mn, dn,mn) as in the previous lemma, now with mn in

the place of m′, and analogously the map Qn : P2(Mn, dn,mn) → P2(M, d,m). Put

νi,n := Q′
n(νi) = ρi,nmn

with ρi,n(y) =
∫
ρi(x)Q′

n(y, dx) for i = 0, 1 and let ηn be an ε-midpoint of ν0,n and ν1,n with

Ent(ηn|mn) ≤ 1
2
Ent(ν0,n|mn) +

1
2
Ent(ν1,n|mn)− K

8
d2

W (ν0,n, ν1,n) + ε. (4.41)

From (4.38) – (4.40) we conclude

d2
W (ν0, ν0,n) ≤ 2 + ∆̂2 · Ent(ν0|m)

−2 log D((M, d,m), (Mn, dn,mn))

≤ 2 + (∆ + ∆′)2 ·R
−2 log D((M, d,m), (Mn, dn,mn))

≤ ε2

and analogously d2
W (ν1, ν1,n) ≤ ε2. Moreover, (4.37) and (4.41) imply

Ent(ηn|mn) ≤ 1
2
Ent(ν0,n|mn) +

1
2
Ent(ν1,n|mn)− K

8
d2

W (ν0,n, ν1,n) + ε

≤ 1
2
Ent(ν0|m) +

1
2
Ent(ν1|m)− K

8
d2

W (ν0, ν1) + ε′

with ε′ = [1 + |K|
2 ( dW (ν0, ν1) + ε)] · ε. Finally, put

η = Qn(ηn).

Then again by (4.38) – (4.40) and by the previous estimate for Ent(ηn|m)

d2
W (ηn, η) ≤ 2 + ∆̂2 · Ent(ηn|m)

−2 log D((M, d,m), (Mn, dn,mn))

≤ 2 + (∆ + ∆′)2 ·R
−2 log D((M, d,m), (Mn, dn,mn))

≤ ε2.

Hence,

sup
i=0,1

dW (η, νi) ≤
1
2

dW (ν0, ν1) + 4ε,

i.e. η is a (4ε)-midpoint of ν0 and ν1. Furthermore, by (4.37)

Ent(η|m) ≤ Ent(ηn|mn)

≤ 1
2
Ent(ν0|m) +

1
2
Ent(ν1|m)− K

8
d2

W (ν0, ν1) + ε′

with ε′ as above. This proves that Curvlax(M, d,m) ≥ K.

42



As an immediate consequence of the previous theorem together with Proposition 4.16 we obtain:

Corollary 4.21. (’Infinite Products’)
Let (M, d,m) =

⊗
n∈N(Mn, dn,mn) where (Mn, dn,mn) for n ∈ N are normalized metric mea-

sure spaces with compact nonbranching Mn. Assume
∑

n∈N Var(Mn, dn,mn) <∞. Then

Curv(M, d,m) = inf
n∈N

Curv(Mn, dn,mn).

Important infinite dimensional examples are given by abstract Wiener spaces. Let (M,H,m) be
an abstract Wiener space, that is, M is a separable Banach space, m is a Gaussian measure on
M , and H is a separable Hilbert space that is continuously and densely embedded in M such
that ∫

M
exp(i〈x, y〉)dm(x) = exp

(
−1

2
‖y‖2

H

)
for any y ∈ M∗ ⊂ H (where we identify H with its dual). For the classical Wiener space,
M = C(R+,R) is the path space of one-dimensional Brownian motion,

H =
{
u ∈M : u is abs. cont. with

∫
R+

|u̇(t)|2dt <∞
}

is the Cameron-Martin space, and m is the Wiener measure.
Given any abstract Wiener space (M,H,m) define a pseudo metric on M by

d(x, y) := ‖x− y‖H

if x − y ∈ H and d(x, y) := ∞ else and consider the ’pseudo metric measure space’ (M, d,m).
Of course, formally this does not fit in our framework. Nevertheless, the definition of the L2-
Wasserstein distance dW derived from this pseudo metric d perfectly makes sense. It is a pseudo
metric on the space of probability measures on M and a metric on the subspace of all those
probability measures which have finite dW -distance from m. Also the relative entropy Ent(.|m)
and the curvature bound Curv(M, d,m) are well-defined. Particular attention, however, has to
be paid to the fact that dW is not continuous w.r.t. the weak topology of measures on M ; it
behaves very singular. For a detailed analysis, we refer to [FÜ04a, FÜ04b]. Here we restrict
ourselves to the following result.

Proposition 4.22. (’Wiener Space’)

Curvlax(M, d,m) ≥ 1.

Proof. Let ν0, ν1 ∈ P∗2 (M, d,m) and ε > 0 be given. Choose a increasing (’total’) sequence
(Mn)n of regular finite dimensional subspaces with

⋃
nMn being dense in W and H. Let mn,

ν0,n and ν1,n be the images measures of m, ν0 and ν1, resp., under the projections πn : M →Mn.
Then

dW (ν0,n, ν0) → 0, dW (ν1,n, ν1) → 0

and
Ent(ν0,n|mn) → Ent(ν0|m), Ent(ν1,n|mn) → Ent(ν1|m)

as n → ∞. The space (Mn,Mn,mn) is a finite dimensional abstract Wiener space. Therefore,
it is isomorphic to

(RN ,RN , exp(−‖x‖2/2) dx)

for some N = N(n) ∈ N (where dx denotes the Lebesgue measure in RN ). Hence, according to
Theorem 4.9

Curv(Mn, d,mn) = 1.
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Thus for each n ∈ N there exists a midpoint ηn of ν0,n and ν1,n with

Ent(ηn|m) = Ent(ηn|mn)

≤ 1
2
Ent(ν0,n|mn) +

1
2
Ent(ν1,n|mn)− K

8
d2

W (ν0,n, ν1,n)

≤ 1
2
Ent(ν0|m) +

1
2
Ent(ν1|m)− K

8
d2

W (ν0, ν1) + ε

for n large enough. This proves the claim since ηn is an ε-midpoint of ν0 and ν1 (again, for large
enough n).

4.6 Volume Growth Estimates

In the Riemannian setting, it is well-known that lower bounds for the Ricci curvature of the
underlying space imply upper bounds for the growth

R 7→ m(BR(x))

of the volume of concentric balls. In particular, this growth is at most exponentially in R. This
is the content of the famous Bishop-Gromov volume comparison theorem.
Also for general metric measure spaces, lower bounds for the curvature will imply upper estimates
for the volume growth of concentric balls. These estimates, however, have to take into account
that in the general case (without any dimensional restriction) the volume can grow much faster
than exponentially. For instance, already in the following standard example we observe squared
exponential volume growth.

Example 4.23. Let (M, d) be the one-dimensional Euclidean space equipped with the measure
dm(x) = exp(−K

2 x
2) dx for some K ∈ R. Then Curv(M, d,m) = K and, if K < 0

m(BR(x)) ≥ exp

(
|K|
2

(
R− 1

2

)2
)

for each x ∈M and R ≥ 1
2 .

Theorem 4.24. Let (M, d,m) be an arbitrary metric measure space with Curv(M, d,m) ≥ K
for some K ≤ 0. For fixed x ∈ supp[m] ⊂M consider the volume growth

vR := m(BR(x))

of closed balls centered at x. Then for all R ≥ 2ε > 0

vR ≤ v2ε ·
(
v2ε

vε

)R/ε

· exp
(
|K|
2

(
R+

ε

2

)2
)
. (4.42)

In particular, each ball in M has finite volume.

Proof. Apply the following Lemma with r = ε.

Lemma 4.25. Let (M, d,m), K and x as in the above theorem. Then for all ε, R > 0 and all
t ∈ ]0, 1]

log vR ≤ 1
t

log vε+t(R+ε) + (1− 1
t
) log vε +

|K|
2

(1− t)(R+ ε)2. (4.43)

In other words, for all ε, r > 0 and all R > ε+ r

vR ≤ vε ·
(
vε+r

vε

)R+ε
r

· exp
(
|K|
2

(R+ ε− r)(R+ ε)
)
. (4.44)
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Proof. Fix x ∈ supp[m] and ε, R > 0. Let ν0 and ν1 denote the uniform distributions in Bε(x)
and BR(x), resp. That is,

dν0(x) =
1
vε
· 1Bε(x) dm(x), dν1(x) =

1
vR

· 1BR(x) dm(x).

Then obviously ν0, ν1 ∈ P∗2 (M, d,m) with

Ent(ν0|m) = − log vε, Ent(ν1|m) = − log vR.

Let νt, t ∈ [0, 1], be a geodesic in P∗2 (M, d,m) connecting ν0, ν1 such that

Ent(νt|m) ≤ (1− t)Ent(ν0|m) + tEnt(ν1|m)− K

2
t(1− t) d2

W (ν0, ν1).

Such a geodesic exists according to our curvature assumption. Since dW (ν0, δx) ≤ ε and
dW (ν1, δx) ≤ R it follows

dW (ν0, ν1) ≤ R+ ε. (4.45)

Moreover, if q̂ is an optimal coupling of ν0, νt, ν1 then for q̂-almost every (y0, yt, y1) the point yt

lies on a geodesic connecting y0, y1 with d(y0, yt) = t · d(y0, y1). Together with (4.45), the latter
implies

supp[νt] ⊂ Bε+t(R+ε)(x). (4.46)

Now according to Jensen’s inequality, for all νt satisfying (4.46)

Ent(νt|m) ≥ Ent(mt|m)

where mt := 1
vε+t(R+ε)

1Bε+t(R+ε)(x)m denotes uniform distribution in the closed ball Bε+t(R+ε)(x).
Hence,

− log vε+t(R+ε) = Ent(mt|m) ≤ Ent(νt|m)

≤ (1− t)Ent(ν0|m) + tEnt(ν1|m)− K

2
t(1− t) d2

W (ν0, ν1)

≤ −(1− t) log vε − t log vR +
|K|
2
t(1− t)(R+ ε)2.

This proves the first claim. For the second claim, choose t = r
R+ε and apply the first claim.

Slightly modifying the previous arguments also yields estimates for the volume of spherical shells

vR,δ := m(BR(x) \BR−δ(x)).

Let ν1 denote uniform distribution in the shell BR(x)\BR−δ(x) and let ν0 (as before) be uniform
distribution in Bε(x)). Then we now obtain

R− ε− δ ≤ dW (ν0, ν1) ≤ R+ ε

and
supp[νt] ⊂ Bε+t(R+ε)(x) \BR−δ−(1−t)(R+ε) (4.47)

for the probability measures on the geodesic connecting ν0 and ν1. Hence, arguing similarly as
before, we deduce
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Theorem 4.26. Let (M, d,m) be an arbitrary metric measure space with Curv(M, d,m) ≥ K
for some K ∈ R. For fixed x ∈ supp[m] consider vR,δ := m(BR(x) \ BR−δ(x)). Then for all
ε, δ, r > 0 and all R > r > 2ε+ δ

vR,δ ≤ vε ·
(
vε+r,2ε+δ

vε

)R+ε
r

· exp

(
−K

2

(
1− r

R+ ε

)
·
(
R− δ

2
± 2ε+ δ

2

)2
)

(4.48)

where ± has to be chosen as + if K ≤ 0 and as - if K > 0.
Choosing ε = δ = r/2 this yields in the case K ≥ 0 for all R ≥ 3ε > 0

vR,ε ≤ v3ε ·
(
v3ε

vε

)R/2ε

· exp
(
−K

2
[
(R− 3ε)2 − ε2

])
. (4.49)

In particular, K > 0 implies that m has finite mass and finite variance.

In general, estimating the volume of concentric balls in terms of squared exponential growing
functions is best possible, as demonstrated in the previous Example. In a forthcoming paper
[St05], we discuss metric measure spaces satisfying a so-called curvature-dimension condition
(K,N) (replacing the condition that the curvature is ≥ K) with some additional number N ∈
R+, playing the role of a dimension. We will prove that under this condition the volume of balls
grows at most exponentially.
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