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1. Introduction

The notion of a ‘metric space’ is one of the basic concepts of mathematics. Metric spaces
play a prominent role in many fields of mathematics. In particular, they constitute
natural generalizations of manifolds admitting all kinds of singularities and still providing
rich geometric structures.

A. D. Alexandrov [1] introduced the notion of lower curvature bounds for metric
spaces in terms of comparison properties for geodesic triangles. These curvature bounds
are equivalent to lower bounds for the sectional curvature in the case where the metric
spaces are Riemannian manifolds—and they may be regarded as generalized lower bounds
for the ‘sectional curvature’ for general metric spaces. A fundamental observation (cf.
K. Grove and P. Petersen [23]) is that these lower bounds are stable under an appropriate
notion of convergence of metric spaces, the so-called Gromov–Hausdorff convergence,
introduced by M. Gromov [20]. The family of manifolds with sectional curvature �K

is, of course, not closed under Gromov–Hausdorff convergence but the family of metric
spaces with curvature �K in the sense of Alexandrov is closed (for each K∈R). Even
more, the family of compact metric spaces with curvature �K, Hausdorff dimension �N

and diameter �L is compact (for any choice of K, N , and L), see Y. Burago, M. Gromov
and G. Perelman [9].

For many fundamental results in geometric analysis, however, the crucial ingredients
are not bounds for the sectional curvature but bounds for the Ricci curvature: estimates
for heat kernels and Green functions, Harnack inequalities, eigenvalue estimates, isoperi-
metric inequalities, Sobolev inequalities—they all depend on lower bounds for the Ricci
curvature of the underlying manifolds as pointed out by S. T. Yau and others, see e.g.
[36], [10], [14] and [47]. The family of Riemannian manifolds with given lower bound for
the Ricci curvature is not closed under Gromov–Hausdorff convergence (nor it is closed
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under any other reasonable notion of convergence). One of the great challenges thus is
to establish a generalized notion of lower Ricci curvature bounds for singular spaces. For
detailed investigations and a survey of the state of the art for this problem, we refer
to the contributions by J. Cheeger and T. Colding [12]. Fascinating new developments
have been outlined just recently by G. Perelman [43] in the context of his work on the
geometrization conjecture for 3-manifolds.

Generalizations of lower Ricci curvature bounds should be formulated in the frame-
work of metric measure spaces. These are triples (M, d, m) where (M, d) is a metric space
and m is a measure on the Borel σ-algebra of M . We will always require that the metric
space (M, d) is complete and separable and that the measure m is locally finite. Recall
that for generalizations of sectional curvature bounds only the metric structure (M, d)
is required whereas for generalizations of Ricci curvature bounds in addition a reference
measure m has to be specified. In a certain sense, this phenomenon is well-known from
the discussion of the curvature-dimension condition of D. Bakry and M. Émery [4] in
the framework of Dirichlet forms and symmetric Markov semigroups. Of course, also
the Bakry–Émery condition is a kind of generalized lower bound for the Ricci curvature
(together with an upper bound for the dimension). However, it is not given in terms of
the basic data (M, d, m) but in terms of the Dirichlet form (or heat semigroup) derived
from the original quantities in a highly non-trivial manner.

Metric measure spaces have been studied quite intensively in recent years. Of partic-
ular interest is the study of functional inequalities, like Sobolev and Poincaré inequalities,
on metric measure spaces and the construction and investigation of function spaces of
various types [24], [25], [33], [26]. To some extent, doubling properties for the volume
and scale invariant Poincaré inequalities on metric balls can be regarded as weak re-
placements of lower Ricci curvature bounds. Among others, they allow one to construct
Dirichlet forms, Laplacians and heat kernels on given metric measure spaces and to de-
rive (elliptic and parabolic) Harnack inequalities as well as (upper and lower) Gaussian
estimates for heat kernels [48], [11]. On the other hand, however, even in simplest cases
doubling constant and Poincaré constant do not characterize spaces with lower bounded
Ricci curvature: they always allow at least also metrics which are equivalent to the given
ones.

This is the first of two papers on the geometry of metric measure spaces. In the
first one, we present a dimension-independent concept of lower Ricci curvature bounds
(which in particular also applies to infinite-dimensional examples). The main results of
this paper are:

We define a complete and separable metric D on the family of all isomorphism
classes of normalized metric measure spaces (Theorem 3.6). The metric D has a natural
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interpretation, based on the concept of optimal mass transportation. It is a length metric.
D-convergence is weaker than measured Gromov–Hausdorff convergence. Both

are equivalent on each family of compact metric measure spaces with full supports and
uniform bounds for the doubling constant and the diameter. Each of these families is
D-compact (Theorem 3.16).

We introduce a notion of lower curvature bounds Curv(M, d, m) for metric mea-
sure spaces (M, d, m), based on convexity properties of the relative entropy Ent( · |m)
with respect to the reference measure m. Here ν �!Ent(ν |m) is regarded as a function
on the L2-Wasserstein space of probability measures on the metric space (M, d). For
Riemannian manifolds, Curv(M, d, m)�K if and only if RicM (ξ, ξ)�K|ξ|2 for all ξ∈TM

(Theorem 4.9).
Local lower curvature bounds imply global lower curvature bounds (Theorem 4.17).
Lower curvature bounds are stable under D-convergence (Theorem 4.20). In par-

ticular, lower curvature bounds are stable under measured Gromov–Hausdorff conver-
gence.

Lower curvature bounds of the form Curv(M, d, m)�K imply estimates for the
volume growth of concentric balls, for instance, if K�0 then

m(Br(x)) � C(x) exp
(
−Kr2

2

)
for all r�1 (Theorem 4.24).

In our second paper on the geometry of metric measure spaces [53], we will treat the
finite-dimensional case. More precisely, we will study metric measure spaces satisfying a
so-called curvature-dimension condition CD(K, N) being more restrictive than the previ-
ous condition Curv(M, d, m)�K (which will be obtained as the borderline case N=∞).
The additional parameter N plays the role of an upper bound for the dimension. In
some sense, the condition CD(K, N) will be the geometric counterpart to the analytic
curvature-dimension condition of Bakry and Émery [4]. Our main results in the second
paper will be:

For Riemannian manifolds, CD(K, N) is equivalent to the conditions RicM (ξ, ξ)�
K|ξ|2 and dim(M)�N .

The curvature-dimension condition CD(K, N) is stable under D-convergence.
For any triple of real numbers K, N and L the family of normalized metric measure

spaces with condition CD(K, N) and diameter �L is D-compact.
Condition CD(K, N) implies a generalized version of the Brunn–Minkowski

inequality, e.g. if K=0 then

m(At)1/N � (1−t)m(A0)1/N +tm(A1)1/N
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for any pair of sets A0, A1⊂M , where At denotes the set of all possible points γt on
geodesics in M with endpoints γ0∈A0 and γ1∈A1.

Condition CD(K, N) implies the Bishop–Gromov volume comparison theorem:

m(Br(x))
m(BR(x))

�
∫ r

0
sin
(
t
√

K/(N−1)
)N−1

dt∫ R

0
sin
(
t
√

K/(N−1)
)N−1

dt

with the usual interpretation of the right-hand side if K�0, e.g. as (r/R)N if K=0.
Condition CD(K, N) for some positive K provides a sharp upper bound on the

diameter (Bonnet–Myers theorem):

L� π

√
N−1

K
.

Condition CD(K, N) implies the doubling property and local, scale-invariant
Poincaré inequalities on balls. In particular, it allows one to construct canonical Dirichlet
forms with Gaussian upper and lower bounds for the corresponding heat kernels.

The concept of optimal mass transportation plays a crucial role in our approach. It
originates in the classical transportation problems of G. Monge [40] and L. V. Kantorovich
[28]. The basic quantity for us is the so-called L2-Wasserstein distance between two
probability measures µ and ν on a given complete separable metric space (M, d) defined as

dW (µ, ν) := inf
q

(∫
M×M

d2(x, y) dq(x, y)
)1/2

,

where the infimum is taken over all couplings q of µ and ν. The latter are probability
measures on the product space M×M whose marginals (i.e. image measures under the
projections) are the given measures µ and ν. One choice, of course, is q=µ⊗ν but in most
cases this will be a very bad choice if one aims for minimal transportation costs. The L2-
Wasserstein distance can be interpreted as the minimal transportation costs (measured
in L2-sense) for transporting goods from producers at locations distributed according to
µ to consumers at locations distributed according to ν.

Two results may be regarded as milestones in the recent development of theory and
application of mass transportation concepts; these results have raised an increasing inter-
est in this topic of people from various fields of mathematics including partial differential
equations, geometry, fluid mechanics, and probability. See, e.g., [54], [35], [5], [42], [15],
[13], [3], [17] and in particular the monograph by C. Villani [55] which gives an excellent
survey on the whole field.

The first of these two results is the polar factorization of Y. Brenier [6] and its
extension to the Riemannian setting by R. McCann [38], [39]. The second one is F. Otto’s
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[27], [41] formal Riemannian calculus on the space P2(M) of probability measures on
M , equipped with the L2-Wasserstein metric, and his interpretation of the heat equation
(and of other non-linear dissipative evolution equations) as gradient flow(s) of the relative
entropy

Ent(ν |m) =
∫

M

dν

dm
log
(

dν

dm

)
dm

(or related functionals, respectively) on P2(M).
It turned out that convexity properties of the function ν �!Ent(ν |m) are intimately

related to curvature properties of the underlying metric measure space (M, d, m). If M

is a complete Riemannian manifold with Riemannian distance d and if m=e−V dx then
M.-K. von Renesse and the author proved (see [46] for the case V =0 and [51] for the
general case) that the function ν �!Ent(ν |m) is K-convex(1) on P2(M) if and only if

RicM (ξ, ξ)+Hess V (ξ, ξ) � K|ξ|2

for all ξ∈TM . A heuristic argument for the ‘if’ implication of this equivalence was
presented in [42], based on the formal Riemannian calculus on P2(M). In the particular
case K=0 and V =0, the ‘if’ implication was proven in [13].

Having in mind these results, it seems quite natural to say that an arbitrary metric
measure space (M, d, m) has curvature �K if and only if for any pair ν0, ν1∈P2(M) with
Ent(ν0 |m)<∞ and Ent(ν1 |m)<∞ there exists a geodesic Γ: [0, 1]!P2(M) connecting
ν0 and ν1 with

Ent(Γ(t) |m) � (1−t)Ent(Γ(0) |m)+tEnt(Γ(1) |m)−K

2
t(1−t) d2

W (Γ(0), Γ(1)) (1.1)

for all t∈[0, 1]. In this case, we also briefly write Curv(M, d, m)�K.
A crucial property of this kind of curvature bound is its stability under convergence

of metric measure spaces. Of course, this requires an appropriate notion of topology or
distance on the family of all metric measure spaces. We define the L2-transportation
distance between two normalized metric measure spaces by

D((M, d, m), (M ′, d′, m′)) := inf
q,d̂

(∫
M×M ′

d̂
2
(x, y) dq(x, y)

)1/2

,

where the infimum is taken over all couplings q of m and m′ and over all couplings d̂ of d

and d′. The former are probability measures on M×M ′ with marginals m and m′. The
latter are pseudo-metrics on the disjoint union M�M ′ which extend d and d′.

(1) By definition, this means that property (1.1) below holds for each geodesic Γ in P2(M).
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Also, the distance D has an interpretation in terms of mass transportation: In order
to realize the distance

D((M, d, m), (M ′, d′, m′))

between two normalized metric measure spaces (M, d, m) and (M ′, d′, m′) one first may
use isometric transformations of (M, d) and (M ′, d′) to bring the images of m and m′ in
optimal position to each other. (In the sense of transportation costs, these transforma-
tions are for free.) Then one has to solve the usual mass transportation problem, trying
to minimize the transportation costs in the L2-sense.

It turns out that D is a complete separable length metric on the family X1 of
all isomorphism classes of normalized metric measure spaces. For any choice of real
numbers K, C and L, the family of normalized metric measure spaces with curvature
�K, as well as the family of normalized metric measure spaces with doubling constant
�C, are closed under D-convergence. Moreover, the family X1(C, L) of normalized
metric measure spaces with doubling constant �C and diameter �L is compact under
D-convergence.

The D-topology is weaker than the topology of measured Gromov–Hausdorff con-
vergence, introduced by K. Fukaya [19]. Both topologies are equivalent on each family
X̃1(C, L) of compact metric measure spaces with full supports and uniform bounds for
the doubling constant and the diameter. As we will see in [53], this in particular applies
to each family of compact metric measure spaces with full supports, with diameter �L

and satisfying a curvature-dimension condition CD(K, N).
For various other distances on the family X1, see [22, Chapter 3 1

2 ]. A completely
different notion of distance between Riemannian manifolds was proposed by A. Kasue
[31, 30], based on the short time asymptotics of the heat kernel. Yet another convergence
concept was proposed by K. Kuwae and T. Shioya [34] extending the concept of Γ-
convergence and Mosco convergence towards a notion of convergence of operators (or
Dirichlet forms or heat semigroups) on varying spaces.

A major advantage of our distance D seems to be that it has a very natural geometric
interpretation, namely, in terms of the above-mentioned mass transportation concept.
We also expect that it is closely related to more analytic properties of metric measure
spaces. Following [27], the heat semigroup on a metric measure space (M, d, m) should
be obtained as the gradient flow on P2(M) for the relative entropy Ent( · |m). Curvature
bounds of the form Curv(M, d, m)�K should e.g. imply K-contractivity of the heat flow

dW (µpt, νpt) � e−KtdW (µ, ν),

gradient estimates for harmonic functions, isoperimetric inequalities, and volume growth
estimates.
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Here in the present paper, we will proceed as follows:

In Section 2 we give a brief survey on the geometry of metric spaces, recalling the
concepts of length and geodesic spaces, the Gromov–Hausdorff distance and the lower
curvature bounds in the sense of Alexandrov. We introduce the L2-Wasserstein space of
probability measures on a given metric space and derive some of the basic properties.

Section 3 is devoted to the metric D. The first main result states that it indeed
defines a (complete and separable) length metric on the family of isomorphism classes of
normalized metric measure spaces. We collect several simple examples of D-convergence
with increasing and decreasing dimensions and we discuss closedness and compactness
properties of the families of normalized metric measure spaces with the doubling property.
We also present a detailed discussion of the relation between D-convergence and the
classical measured Gromov–Hausdorff convergence.

In Section 4 we study metric measure spaces with curvature bounds. First we
introduce and discuss the relative entropy, then we present the definition of curvature
bounds and analyze their behavior under various transformations (isomorphisms, scaling,
weights, subsets and products). The main results are the globalization theorem and the
convergence theorem. Finally, we deduce growth estimates for the volume of concentric
balls.

After submitting this paper, the author got knowledge of related work by J. Lott
and C. Villani. Their paper [37], which was finished soon after that, presents various
related concepts and results. However, both papers are completely independent.

The basic concepts and main results of the present paper have also been announced
in [52].

2. On the geometry of metric spaces

2.1. Length and geodesic spaces

Let us summarize some definitions and basic results on the geometry of metric spaces.
For proofs and further details we refer to [7], [22], and [8].

Throughout this paper, a pseudo-metric on a set M will be a function d: M×M!
[0,∞] which is symmetric, vanishes on the diagonal and satisfies the triangle inequality.
If it does not vanish outside the diagonal and does not take the value +∞ then it
is called metric. From now on, let (M, d) be a metric space. Open balls in M will
be denoted by Br(x)={y∈M : d(x, y)<r}, their closures by Br(x)⊂{y∈M : d(x, y)�r}.
A curve connecting two points x, y∈M is a continuous map γ: [a, b]!M , with γ(a)=x
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and γ(b)=y. Then, obviously, Length(γ)�d(x, y), with the length of γ being defined as

Length(γ) = sup
n∑

k=1

d(γ(tk−1), γ(tk)),

where the supremum is taken over all partitions a=t0<t1<...<tn=b. If Length(γ)<∞
then γ is called rectifiable. In this case we can and will henceforth always assume that
(after suitable reparametrization) γ has constant speed, i.e.

Length(γ|[s,t]) =
t−s

b−a
Length(γ)

for all a<s<t<b. In general, we will not distinguish between curves and equivalence
classes of curves which are reparametrizations of each other. The curve γ: [a, b]!M is
called geodesic if and only if Length(γ)=d(γ(a), γ(b)). A geodesic in this sense is always
minimizing.

A metric space (M, d) is called length space, or length metric space, if and only if for
all x, y∈M ,

d(x, y) = inf
γ

Length(γ),

where the infimum is taken over all curves γ in M which connect x and y. A metric
space (M, d) is called geodesic space, or geodesic metric space, if and only if each pair of
points x, y∈M is connected by a geodesic. (This geodesic is not required to be unique.)

Lemma 2.1. A complete metric space (M, d) is a length space (or geodesic space) if
and only if for each pair of points x0, x1∈M and for each ε>0 (or for ε=0, respectively)
there exists a point y∈M satisfying for each i=0, 1,

d(xi, y) � 1
2d(x0, x1)+ε. (2.1)

Any such point y will be called ε-midpoint of x0 and x1. In the case ε=0 it will be called
midpoint of x0 and x1.

Remark 2.2. Given x0, x1∈M then each ε-midpoint y∈M satisfies

d2(x0, y)+d2(y, x1) � 1
2d2(x0, x1)+ε′ (2.2)

with ε′=2ε d(x0, x1)+2ε2. Vice versa, each y∈M which satisfies (2.2) is an ε-midpoint
with ε=

√
(d(x0, x1)/2)2−ε′/2−d(x0, x1)/2−√ε′/2.

Indeed, if y is an ε-midpoint then

d2(x0, y)+d2(y, x1) � 2
[
1
2d(x0, x1)+ε

]2 = 1
2d2(x0, x1)+ε′
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with ε′ chosen as above. Conversely, if y satisfies (2.2) then
1
2d2(x0, x1)+ε′ � d2(x0, y)+d2(y, x1)

= 1
2 [d(x0, y)+d(y, x1)]2+ 1

2 [d(x0, y)−d(y, x1)]2

� 1
2d2(x0, x1)+ 1

2 [d(x0, y)−d(y, x1)]2.

Hence, |d(x0, y)−d(y, x1)|�
√

2ε′ and

2d(xi, y)−
√

2ε′ � d(x0, y)+d(y, x1) �
√

d2(x0, x1)+2ε′

for i=0, 1.

Lemma 2.3. If (M, d) is a complete length space then:
(i) The closure of Br(x) is {y∈M : d(x, y)�r};
(ii) M is locally compact if and only if each closed ball in M is compact ;
(iii) if M is locally compact then it is a geodesic space.

Recall that the Hausdorff distance between two subsets A1 and A2 of a metric space
(M, d) is given by

dH(A1, A2) = inf{ε > 0 : A1 ⊂Bε(A2) and A2 ⊂Bε(A1)},
where Bε(A):= {x∈M : infy∈A d(x, y)<ε} denotes the ε-neighborhood of A⊂M . The
Gromov–Hausdorff distance between two metric spaces (M1, d1) and (M2, d2) is defined
by

DGH((M1, d1), (M2, d2)) = inf dH(j1(M1), j2(M2)),

where the inf is taken over all metric spaces (M, d) and over all isometric embeddings
j1: M1 ↪!M , j2: M2 ↪!M .

A related but slightly different quantity is defined as

D̃GH((M1, d1), (M2, d2)) = inf {ε > 0 : there is an ε-isometry from (M1, d1) to (M2, d2)}.
Recall that a map ψ: M1!M2 is an ε-isometry from (M1, d1) to (M2, d2) if and only if
Bε(ψ(M1))=M2 and |d2(ψ(x), ψ(y))−d1(x, y)|�ε for all x, y∈M1.

Proposition 2.4. (i) The Gromov–Hausdorff metric DGH is a pseudo-metric on the
family X of isometry classes of metric spaces. Moreover, DGH and D̃GH are equivalent :
1
2 D̃GH�DGH�2D̃GH.

(ii) If a complete metric space (M, d) is the GH-limit of a sequence of length spaces
then (M, d) is a length space.

(iii) Let Xc denote the family of isometry classes of compact metric spaces. Then
(Xc, D

GH) is a complete separable metric space. The family Xf of isometry classes of
metric spaces with finitely many points is GH-dense in Xc.
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2.2. Alexandrov spaces

Now let us briefly discuss metric spaces with lower curvature bounds in the sense of
A. D. Alexandrov [1]. The latter are generalizations of lower bounds for the sectional
curvature for Riemannian manifolds. The results of this section will not be used in
the sequel. The focus in this paper is on generalizations of lower bounds for the Ricci
curvature. Partly, however, there will be some analogy to Alexandrov’s generalizations
of lower bounds for the sectional curvature. We summarize some of the basic properties
of these metric spaces and refer to [9], [22], [8] and [44] for further details.

Given any K∈R we say that a complete length space (M, d) locally has curvature
�K if and only if each point p∈M has a neighborhood Mp⊂M such that for each
quadruple of points z, x1, x2, x3∈Mp,

�K(z; x1, x2)+�K(z; x2, x3)+�K(z; x3, x1) � 2π. (2.3)

We say that a complete length space (M, d) globally has curvature �K if and only if
the previous is true with Mp := M . Here for any triple of points z, x, y∈M we denote by
�K(z; x, y) the angle at z̄ of a triangle ∆(z̄, x̄, ȳ) with side lengths z̄x̄=d(z, x), z̄ȳ=d(z, y)
and x̄ȳ=d(x, y) in the simply connected 2-dimensional space of constant curvature K,
i.e.

�K(z; x, y) = arccos
(

cos
(
d(x, y)

√
K
)−cos

(
d(z, x)

√
K
)
cos
(
d(z, y)

√
K
)

sin
(
d(z, x)

√
K
)
sin
(
d(z, y)

√
K
) )

(2.4)

(with appropriate interpretations/modifications if K�0). This makes perfectly sense if
K[d(z, x)+d(x, y)+d(y, z)]2<(2π)2. Otherwise, we put �K(z; x, y):= −∞. There is an
exceptional definition for spaces which are isometric to 1-dimensional manifolds (intervals
or circles): we say that (M, d) (locally/globally) has curvature �K if and only if K�
(π/L)2, where L�∞ denotes the diameter. Generally, we put

curv(M, d) = sup{K ∈R : (M, d) globally has curvature � K}.

Complete length spaces with curvature �K and finite Hausdorff dimension are called
Alexandrov spaces with curvature �K. For complete geodesic spaces there are several
alternative (but equivalent) ways to define this curvature bound: via triangle comparison,
angle monotonicity and convexity properties of the distance. For instance, one can
interpret it as a weak formulation of

Hess
1
K

cos
(
d(z, · )

√
K
)
�− cos

(
d(z, · )

√
K
)

(2.5)

for all z∈M (with appropriate modification in the case K�0, e.g. Hess d2(z, · )/2�1 if
K=0).
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Example 2.5. Let M be a complete Riemannian manifold with Riemannian distance
d and dimension n�2. Then curv(M, d) is the greatest lower bound for the sectional
curvature of M .

Remark 2.6. (i) Lower curvature bounds can also be defined on spaces which are
not length spaces; see [49]. In this context, for instance, for each metric space (M, d) the
metric space

(
M,

√
d
)

would have curvature �0.
(ii) Similarly, one can define metric spaces of curvature �K and a number curv(M, d)

(which coincides with the least upper bound for the sectional curvature if M is a Rie-
mannian manifold). However, in this paper we concentrate on lower curvature bounds.

Proposition 2.7. For each complete length space (M, d) the following properties
hold:

(i) Scaling: curv(M, αd)=α−2 curv(M, d) for all α∈R+.
(ii) Products: If (M, d)=

⊗n
i=1(Mi, di) for some n�2, with complete length spaces

(M1, d1), ..., (Mn, dn) consisting of more than one point, then

curv(M, d) = inf { curv(M1, d1), ..., curv(Mn, dn), 0}.

(iii) Local/global: If a complete length space locally has curvature �K then it also
globally has curvature �K (Toponogov’s globalization theorem).

(iv) Convergence: Let ((Mn, dn))n∈N be a sequence of complete length spaces GH-
converging to a complete length space (M, d). Then

curv(M, d) � lim sup
n!∞

curv(Mn, dn).

In particular, for each K∈R the set Xc(K) of all compact length spaces (M, d) with
curvature �K is a closed subset of (Xc, D

GH).
(v) Compactness: For each K∈R, N∈N and L∈R+ the set Xc(K, N, L) of all

compact length spaces (M, d) with curvature �K, Hausdorff dimension �N and diameter
�L is GH-compact.

Definition 2.8. A geodesic space (M, d) is called non-branching if and only if for
each quadruple of points z, x0, x1, x2, with z being the midpoint of x0 and x1 as well as
the midpoint of x0 and x2, it follows that x1=x2.

Remark 2.9. If a geodesic space has curvature �K for some K∈R then it is non-
branching.
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2.3. The L2-Wasserstein space

Probability measures on metric spaces will play an important role throughout this paper.
We collect some definitions and the basic facts on the L2-Wasserstein distance. For
further reading we recommend [16], [29], [45], [55] and [56].

For the rest of this section, let (M, d) be a complete separable metric space. A
measure ν on M will always mean a measure on (M,B(M)) with B(M) being the Borel
σ-algebra of M (generated by the open balls in M). Recall that supp[ν], the support of ν,
is the smallest closed set M0⊂M such that ν(M\M0)=0. The push-forward of ν under
a measurable map f : M!M ′ into another metric space M ′ is the probability measure
f∗ν on M ′ given by

(f∗ν)(A) := ν(f−1(A))

for all measurable A⊂M ′. Given two measures µ and ν on M we say that a measure q

on M×M is a coupling of µ and ν if and only if its marginals are µ and ν, that is, if and
only if

q(A×M) =µ(A) and q(M×A) = ν(A)

for all measurable sets A⊂M . (This in particular implies that the total masses coincide:
ν(M)=q(M×M)=µ(M).) If µ and ν are probability measures then for instance one
such coupling is the product measure µ⊗ν.

The L2-Wasserstein distance between µ and ν is defined as

dW (µ, ν) = inf
{(∫

M×M

d2(x, y) dq(x, y)
)1/2

: q is a coupling of µ and ν

}
. (2.6)

Note that dW (µ, ν)=+∞ whenever µ(M) �=ν(M). We denote by P2(M, d) or briefly
P2(M) the space of all probability measures ν on M with finite second moments:∫

M

d2(o, x) dν(x) <∞

for some (hence all) o∈M . The pair (P2(M), dW ) is called L2-Wasserstein space over
(M, d).

Proposition 2.10. (i) (P2(M), dW ) is a complete separable metric space.
The map x �!δx defines an isometric and totally geodesic embedding of (M, d) into

(P2(M), dW ).
The set of all normalized configurations

µ =
1
n

n∑
i=1

δxi
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with n∈N and x1, ..., xn∈M is dense in P2(M).
(ii) dW -convergence implies weak convergence (in the sense of measures). More

precisely, if (µn)n∈N is a sequence in P2(M) then dW (µn, µ)!0 if and only if µn!µ

weakly and

lim
R!∞

sup
n

∫
M\BR(o)

d2(o, x) dµn(x) = 0 (2.7)

for some (hence each) point o∈M . Note that obviously (2.7) is always satisfied if (M, d)
is bounded.

(iii) (P2(M), dW ) is a compact space or a length space if and only if (M, d) is so.
(iv) If M is a length space with more than one point then

curv(P2(M), dW ) = 0 ⇐⇒ curv(M, d) � 0

and
curv(P2(M), dW ) =−∞ ⇐⇒ curv(M, d) < 0.

Proof. (i), (ii) See [45], [55].
(iiia) The ‘only if’ statements follow from the fact that M is isometrically embedded

in P2(M).
(iiib) Compactness of M implies compactness of P2(M) according to (ii) and Pro-

horov’s theorem.
(iiic) Assume that (M, d) is a length space and let ε>0 and µ, ν∈P2(M) be given.

We have to prove that there exists an ε-midpoint η of µ and ν. Choose n∈N and
x1, ..., xn, y1, ..., yn∈M such that dW (µ, µ̄)�ε/3, dW (ν, ν̄)�ε/3 and

d2
W (µ̄, ν̄) =

1
n

n∑
i=1

d2(xi, yi),

where µ̄:= (1/n)
∑n

i=1 δxi and ν̄ := (1/n)
∑n

i=1 δyi For each i=1, ..., n let zi be an ε/3-
midpoint of xi and yi and put η := (1/n)

∑n
i=1 δzi

. Then

dW (µ̄, η) �
(

1
n

n∑
i=1

d2(xi, zi)
)1/2

�
(

1
n

n∑
i=1

[
1
2
d(xi, yi)+

ε

3

]2)1/2

� 1
2

(
1
n

n∑
i=1

d2(xi, yi)
)1/2

+
ε

3

� 1
2
dW (µ̄, ν̄)+

ε

3
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and thus dW (µ, η)� 1
2dW (µ, ν)+ε. Similarly, dW (ν, η)� 1

2dW (µ, ν)+ε. This proves the
claim.

(iva) Assume that (M, d) has curvature �0. Then for each n∈N the space Mn=
M×...×M has curvature �0 (see Proposition 2.7 (ii)). According to [49], the latter is
equivalent to

l∑
i,j=1

λiλjd
2(yi, yj) � 2

l∑
i=1

λid
2(yi, y0) (2.8)

for all l∈N, all λ1, ..., λl∈R+ with
∑l

i=1 λi=1 and all y0, y1, ..., yl∈Mn. In order to prove
that (P2(M), dW ) has curvature �0, let l∈N, λ1, ..., λl∈R+ and ν0, ν1, ..., νl∈P2(M) be
given. For ε>0 choose n∈N and y0=(y01, ..., y0n), ..., yl=(yl1, ..., yln)∈Mn such that
dW (νi, ν̄i)�ε for all i=0, 1, ..., l and d2

W (ν̄i, ν̄0)=(1/n)
∑n

k=1 d2(yik, y0k)=(1/n)d2(yi, y0)
for all i=1, ..., l, where we put

ν̄i =
1
n

n∑
k=1

δyik
.

Then d2
W (ν̄i, ν̄j)�(1/n)

∑n
k=1 d2(yik, yjk)=(1/n)d2(yi, yj) for all i, j=1, ..., l and thus by

(2.8)

l∑
i,j=1

λiλjd
2
W (ν̄i, ν̄j) � 1

n

l∑
i,j=1

λiλjd
2(yi, yj) � 2

n

l∑
i=1

λid
2(yi, y0) = 2

l∑
i=1

λid
2
W (ν̄i, ν̄0).

In the limit ε!0 this yields

l∑
i,j=1

λiλjd
2
W (νi, νj) � 2

l∑
i=1

λid
2
W (νi, ν0)

which (again by [49]) proves the claim.
(ivb) It is obvious that curv(P2(M), dW )� curv(M, d), since (M, d) is isometrically

and totally geodesically embedded into (P2(M), dW ).
(ivc) Assume that curv(M, d)<0. Choose K<0 such that curv(M, d)<K. Then

there exist points x0, x1, x2, x3∈M with

�K(x0; x1, x2)+�K(x0; x2, x3)+�K(x0; x3, x1) > 2π.

Choose a point z∈M ‘far away’ from the xi, say d(z, xi)�3d(xi, xj) for all i, j=0, 1, 2, 3.
(This is always possible, since M is a length space and the xi for i=1, 2, 3 can be
replaced by points x′

i lying arbitrarily close to x0 on approximate geodesics connecting
x0 and xi.)
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For t∈ ]0, 1] and i=0, 1, 2, 3 define µi := tδxi
+(1−t)δz. Then

d2
W (µi, µj) = td2(xi, xj)

for all i, j=0, 1, 2, 3 and thus, according to formula (2.4),

�K(x0; xi, xj) =�K/t(µ0; µi, µj).

Therefore,

�K/t(µ0; µ1, µ2)+�K/t(µ0; µ2, µ3)+�K/t(µ0; µ3, µ1) > 2π

which implies

curv(P2(M), dW ) <
K

t
.

Since the latter holds for the chosen K<0 and all arbitrarily small t>0, it proves the
claim.

(ivd) Finally, it remains to prove that curv(P2(M), dW )�0 if M has more than
one point. Assume that curv(P2(M), dW )�K for some K>0 and that x0, x1∈M with
x0 �=x1. Given ε>0 let y be an ε-midpoint of x0 and x1. Put ν0=δx0 , ν1=δx1 , µ=
δy and η= 1

2δx0 + 1
2δx1 . Then dW (ν0, ν1)=d(x0, x1), dW (η, µ)� 1

2d(x0, x1), dW (νi, η)=
1√
2
d(x0, x1) and dW (νi, µ)� 1

2d(x0, x1)+ε for i=0, 1. In particular, µ is an ε-midpoint of
ν0 and ν1.

Our curvature assumption on P2(M) then implies (via quadruple comparison for
(µ; ν0, ν1, η) or via triangle comparison for (ν0, ν1, η)) that

2 cos
(

dW (ν0, ν1)
√

K

2

)
cos
(
dW (η, µ)

√
K
)
� cos

(
dW (η, ν0)

√
K
)
+cos

(
dW (η, ν1)

√
K
)
+ε′

with some ε′!0 as ε!0. Therefore,

2 cos
(

d(x0, x1)
√

K

2

)
cos
(

d(x0, x1)
√

K

2

)
� cos

(
d(x0, x1)

√
K

2

)
+cos

(
d(x0, x1)

√
K

2

)
.

Now choosing x0, x1∈M with sufficiently small d(x0, x1) leads to a contradiction.

Let us recall that a Markov kernel on M is a map Q: M×B(M)![0, 1] (where B(M)
denotes the Borel σ-algebra of M) with the following properties:

(i) for each x∈M the map Q(x, · ):B(M)![0, 1] is a probability measure on M ,
usually denoted by Q(x, dy);

(ii) for each A∈B(M) the function Q( · , A): M![0, 1] is measurable.
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Lemma 2.11. (i) For each pair µ, ν∈P2(M) there exists a coupling q (called optimal
coupling) such that

d2
W (µ, ν) =

∫
M×M

d2(x, y) dq(x, y)

and there exist Markov kernels Q and Q′ on M (optimal transport kernels) such that

dq(x, y) =Q(x, dy) dµ(x) =Q′(y, dx) dν(x).

(In general, neither q nor Q and Q′ are unique.)
(ii) For each geodesic Γ: [0, 1]!P2(M), each l∈N and each partition

0 = t0 < t1 < ... < tl = 1

there exists a probability measure q̂ on M l+1 with the following properties:
the projection on the i-th factor is Γ(ti) (for all i=0, 1, ..., l);
for q̂-a.e. (x0, ..., xl)∈M l+1 and every i, j=0, 1, ..., l,

d(xi, xj) = |ti−tj |d(x0, xl). (2.9)

In particular, for every pair i, j∈{0, 1, ..., l} the projection on the i-th and j-th factor
is an optimal coupling of Γ(ti) and Γ(tj).

In the case l=2 and t= 1
2 , equation (2.9) states that for q̂-a.e. (x0, x1, x2)∈M3 the

point x1 is a midpoint of x0 and x2.
(iii) For each geodesic Γ: [0, 1]!P2(M) there exists a probability measure p on G(M),

the set of geodesics γ: [0, 1]!M , such that∫
M

u(x) dΓt(x) =
∫
G(M)

u(γt) dp(γ)

for all t∈[0, 1] and all measurable u: M!R. For each pair (s, t) the joint distribution
of (γs, γt) under p is an optimal coupling of Γs and Γt.

(iv) If M is a non-branching geodesic space then in the situation of (ii) for q̂-a.e.
(x0, x1, x2) and (y0, y1, y2)∈M3,

x1 = y1 =⇒ (x0, x2) = (y0, y2).

Proof. (i) For the existence of an optimal coupling, see [45] or [16, 11.8.2].
The existence of optimal transport kernels is a straightforward application of disin-

tegration of measures on Polish spaces (or of the existence of regular conditional proba-
bilities), namely, Q is the disintegration of q with respect to µ.
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(ii) We assume l=2 and t= 1
2 . (The general case follows by iterated application and

appropriate modifications.)
Let q1 be an optimal coupling of Γ(0) and Γ

(
1
2

)
and let q2 be an optimal coupling

of Γ
(

1
2

)
and Γ(1). Then there exists a probability measure q̂ on M×M×M such that

its projection on the first two factors is q1 and the projection on last two factors is q2

[16, Section 11.8]. Hence, for i=1, 2, 3 the projection of q̂ on the ith factor is Γ((i−1)/2)
and for i=1, 2,

d2
W

(
Γ
(

i−1
2

)
, Γ
(

i

2

))
=
∫

M3
d2(xi−1, xi) dq̂(x0, x1, x2).

Then

dW (Γ(0), Γ(1))�
[∫

d2(x0, x2) dq̂(x0, x1, x2)
]1/2

(∗)
�
[∫

[d(x0, x1)+d(x1, x2)]2 dq̂(x0, x1, x2)
]1/2

(∗∗)
�
[∫

d2(x0, x1) dq̂(x0, x1, x2)
]1/2

+
[∫

d2(x1, x2) dq̂(x0, x1, x2)
]1/2

= dW

(
Γ(0), Γ

(
1
2

))
+dW

(
Γ
(

1
2

)
, Γ(1)

)
.

Since Γ
(

1
2

)
is a midpoint of Γ(0) and Γ(1), the previous inequalities (∗) and (∗∗) have to

be equalities. From equality in (∗) we conclude that q̂-almost surely the point x1 lies on
some geodesic connecting x0 and x2. Equality in (∗∗) implies that q̂-almost surely the
point x1 is a midpoint of x0 and x2.

(iii) For each Γ, this is an immediate corollary to (ii) which yields the claim for each
finite dimensional distribution (i.e. evaluation at finitely many fixed times) of Γ.

(iv) Let η=Γ
(

1
2

)
be the distribution of the midpoints and let Q be a disintegration

of q̂ with respect to η, i.e.

dq̂(x, z, y) =Q(z, d(x, y)) dη(z).

We have to prove that for η-a.e. z∈M the probability measure Q(z, · ) is a Dirac measure
(sitting on some (x, y)∈M×M). Denote the marginals of Q(z, · ) by p1(z, · ) and p2(z, · ).
Then ∫

d2(x, y) Q(z, d(x, y)) =
∫

[2d2(x, z)+2d2(z, y)] Q(z, d(x, y))

=
∫∫

[2d2(x, z)+2d2(z, y)] p1(z, dx) p2(z, dy)

(∗∗∗)
�
∫∫

d2(x, y) p1(z, dx) p2(z, dy).
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The optimality of q̂ implies that for η-a.e. z∈M the measure Q(z, · ) is an optimal coupling
of p1(z, · ) and p2(z, · ). Hence, there has to be equality in (∗∗∗) which in turn implies
that for p1(z, · )-a.e. x∈M and p2(z, · )-a.e. y∈M the point z is a midpoint of x and y.
Since M is non-branching this implies that both p1(z, · ) and p2(z, · ) are Dirac measures.
Thus Q(z, · ) is also a Dirac measure. This proves the claim.

Remark 2.12. (i) Couplings q of µ and ν are also called transportation plans from
µ to ν. If µ is the distribution of locations at which a product is produced and ν is the
distribution of locations where it is consumed, then each coupling q of µ and ν gives
a plan how to transport the products to the consumer. More precisely, for each x the
kernel Q(x, dy) determines how to distribute goods produced at the location x to various
consumers at location y.

(ii) The interpretation of Lemma 2.11 (ii), (iii) is that for each geodesic in P2(M)
the mass is transported along geodesics of the underlying space M . Lemma 2.11 (iv)
states that the paths of optimal mass transportation do not cross each other halfway.

(iii) If M is a complete Riemannian manifold with Riemannian volume m then for
each pair µ, ν∈P2(M) with µ�m there exists an optimal transport map F1: M!M such
that dq(x, y)=Q(x, dy) dµ(x), with

Q(x, dy) = dδF1(x)(y),

is the unique optimal coupling of µ and ν.

More precisely, there exists a function ϕ: M!R such that for µ-a.e. x∈M and
t∈[0, 1],

Ft(x) = expx(−t∇ϕ(x))

exists and the unique geodesic Γ in P2(M) connecting µ=Γ(0) and ν=Γ(1) is given by

Γ(t) := (Ft)∗µ,

the push-forward of µ under Ft; see [13].
(iv) Besides the L2-Wasserstein distance one can consider more generally the Lp-

Wasserstein distance for any p∈[1,∞[ ; see e.g. [55]. Many of the previous properties
also hold in this more general case. However, all ‘curvature’ concepts like in Proposi-
tion 2.10 (iv) require p=2.
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3. Metric measure spaces

3.1. The metric D

Throughout this paper, a metric measure space will always be a triple (M, d, m), where
(M, d) is a complete separable metric space,
m is a measure on (M,B(M)) which is locally finite in the sense that m(Br(x))<∞

for all x∈M and all sufficiently small r>0.

A metric measure space (M, d, m) is called normalized if and only if m(M)=1. It
is called compact or locally compact or geodesic if and only if the metric space (M, d) is
compact or locally compact or geodesic, respectively.

Two metric measure spaces (M, d, m) and (M ′, d′, m′) are called isomorphic if and
only if there exists an isometry ψ: M0!M ′

0 between the supports M0 := supp[m]⊂M and
M ′

0 := supp[m′]⊂M ′ such that

ψ∗m = m′.

The variance of a metric measure space (M, d, m) is defined as

Var(M, d, m) = inf
∫

M ′
d′2(z, x) dm′(x), (3.1)

where the infimum is taken over all metric measure spaces (M ′, d′, m′) which are iso-
morphic to (M, d, m) and over all z∈M ′. Note that a normalized metric measure space
(M, d, m) has finite variance if and only if∫

M

d2(z, x) dm(x) <∞ (3.2)

for some (hence all) z∈M . The diameter of a metric measure space (M, d, m) is defined
as the diameter of the metric space (supp[m], d):

diam(M, d, m) = sup{d(x, y) : x, y ∈ supp[m]}.

Example 3.1. Let M=R2 with Euclidean distance d and m= 1
3 (δx1 +δx2 +δx3), where

x1, x2 and x3 are the vertices of an equilateral triangle of sidelength 1. Then

Var(M, d, m) =
1
4

whereas inf
z∈M

∫
d2(z, x) dm(x) =

1
3
.

(Hint : embed supp[m] isometrically into a graph or into a hyperbolic space with curvature
close to −∞.)
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The family of all isomorphism classes of metric measure spaces will be denoted by X.
For each λ∈R+, let Xλ denote the family of isomorphism classes of metric measure
spaces (M, d, m) with finite variances and total mass m(M)=λ. Moreover, for L∈R+,
let Xλ(L) denote the family of isomorphism classes of metric measure spaces (M, d, m)
with diameter �L and total mass m(M)=λ. If λL �=0, then the map

(M, d, m) �−! (M, Ld, λm)

defines a bijection between X1 and Xλ and also a bijection between X1(1) and Xλ(L).
For λ>0, the family Xλ contains a unique element with Var(M, d, m)=0, namely,

m=λδo for some o∈M . Here a priori M is an arbitrary non-empty set. But without
restriction it contains just one point, say M={o}. The family X0 is pathological: it
contains only one element, the ‘empty space’.

Definition 3.2. (i) Given two metric measure spaces (M, d, m) and (M ′, d′, m′), we
say that a measure q on the product space M×M ′ is a coupling of m and m′ if and only
if

q(A×M ′) =m(A) and q(M×A′) =m′(A′) (3.3)

for all measurable sets A⊂M and A′⊂M ′. We say that a pseudo-metric d̂ on the disjoint
union M�M ′ is a coupling of d and d′ if and only if

d̂(x, y) = d(x, y) and d̂(x′, y′) = d′(x′, y′) (3.4)

for all x, y∈supp[m]⊂M and all x′, y′∈supp[m′]⊂M ′.
(ii) We define the L2-transportation distance D between two metric measure spaces

by

D((M, d, m), (M ′, d′, m′))

= inf
{(∫

M×M ′
d̂
2
(x, y) dq(x, y)

)1/2

:
d̂ is a coupling of d and d′,
q is a coupling of m and m′

}
.

Note that the integrals involved in the definition of D are well-defined, since each
coupling d̂ is a function on

(M�M ′)×(M�M ′) = (M×M)�(M×M ′)�(M ′×M)�(M ′×M ′)

and each coupling q is a measure on M×M ′.
In a similar way, we can also define the Lp-transportation distance on the space

of metric measure spaces for any p∈[1,∞[. Many of the following properties will also
hold in this more general case. However, for our purpose, the L2-transportation distance
seems to be most convenient. For simplicity, we therefore restrict the discussion to the
case p=2.
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Lemma 3.3. (i) For each pair of normalized metric measure spaces (M, d, m) and
(M ′, d′, m′) there exists a coupling q∗ of m and m′ and a coupling d̂∗ of d and d′ such
that

D((M, d, m), (M ′, d′, m′)) =
(∫

M×M ′
d̂
2

∗(x, y) dq∗(x, y)
)1/2

.

That is, q∗ and d̂∗ are optimal couplings.
(ii) In the definition of the distance D we may restrict ourselves to take the infimum

over all complete separable metrics d̂ on M�M ′ which are couplings of d and d′.
In general, however, the optimal coupling d̂∗ from part (i) will only be a pseudo-

metric. For instance, if (M, d, m) and (M ′, d′, m′) are isomorphic then d̂∗(x, ψ(x))=0
for m-a.e. x∈M .

(iii) Moreover,

D((M, d, m), (M ′, d′, m′)) = inf d̂W (ψ∗m, ψ′
∗m

′), (3.5)

where the infimum is taken over all metric spaces (M̂, d̂) with isometric embeddings
ψ: M0 ↪!M̂ and ψ′: M ′

0 ↪!M̂ of the supports M0 and M ′
0 of m and m′, respectively. Here

d̂W denotes the L2-Wasserstein distance for measures on M̂ as introduced in Section 2.
In other words,

D((M, d, m), (M ′, d′, m′)) = inf
(∫

M×M ′
d̂
2
(ψ(x), ψ′(x′)) dq(x, x′)

)1/2

, (3.6)

where the infimum now is taken over all metric spaces (M̂, d̂) with isometric embeddings
ψ: M0 ↪!M̂ and ψ′: M ′

0 ↪!M̂ and over all couplings q of m and m′.

Proof. (i) Let normalized metric measure spaces (M, d, m) and (M ′, d′, m′) be given,
as well as sequences (d̂n)n∈N and (qn)n∈N of couplings with∫

M×M ′
d̂
2

n(x, x′) dqn(x, x′) �D2((M, d, m), (M ′, d′, m′))+
1
n

. (3.7)

Assume for simplicity that m and m′ have full support. The qn, n∈N, are probability
measures on the complete separable metric space M̃ := M×M ′. For each ε>0 there exist
compact subsets K⊂M and K ′⊂M ′ such that m(M \K)�ε and m′(M ′\K ′)�ε. Put
K̃ := K×K ′. Then for all n∈N,

qn(M̃ \K̃) � 2ε.

That is, the family (qn)n∈N is tight and by Prohorov’s theorem there exists a subsequence
converging to some probability measure q∗ on M̃ . Of course, q∗ is again a coupling of m

and m′.
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Now consider the family of functions d̂n, n∈N, on M̃ . By the triangle inequality∣∣d̂n(x, x′)−d̂n(y, y′)
∣∣� d(x, y)+d′(x′, y′) =: d̃((x, x′), (y, y′))

for all x, y∈M and x′, y′∈M ′. That is, the family (d̂n)n∈N is uniformly equicontinuous
on M̃ (equipped e.g. with the metric d̃ or with the usual product metric).

In order to apply Ascoli’s theorem we have to prove that for some point (o, o′)∈M̃

the sequence (d̂n(o, o′))n∈N is bounded. Choose a point (o, o′) in the support of the
measure q∗. Then for some constants C, δ, ε>0 and all sufficiently large n,

C �
∫

M×M ′
d̂n(x, x′) dqn(x, x′)

�
∫

Bε(o)×Bε(o′)
[d̂n(o, o′)−2ε] dqn(x, x′)

� [d̂n(o, o′)−2ε] · [q∗(Bε(o)×Bε(o′))−δ]

� 1
C

[
d̂n(o, o′)−2ε

]
.

Hence, the sequence (d̂n)n∈N has a subsequence uniformly converging to some function
d̂∗ on M̃ . Obviously, d̂∗ is again a coupling of the metrics d and d′.

Finally, uniform convergence of (an appropriate subsequence of) the (d̂n)n∈N, conti-
nuity of d̂∗ and weak convergence of (an appropriate subsequence of) the (qn)n∈N allows
one to pass to the limit in (3.7). That is,∫

M×M ′
d̂
2

∗(x, x′) dq∗(x, x′) �D2((M, d, m), (M ′, d′, m′)).

(ii) Given any (pseudo-metric) coupling d̂ of d and d′ and any ε>0 we obtain a
complete separable metric d̂ε which is a coupling of d and d′ as follows:

d̂ε =
{

d, on (M×M)�(M ′×M ′),
d+ε, on (M×M ′)�(M ′×M).

(iii) The set M̂ can always be chosen as the disjoint union of M0 and M ′
0 (the

supports of m and m′), i.e.
M̂ = M0�M ′

0

and ψ and ψ′ can be chosen as identities. Hence,

D((M, d, m), (M ′, d′, m′)) = inf
d̂

d̂W (m, m′),

where the infimum is taken over all metrics (or, equivalently, over all pseudo-metrics) on
M0�M ′

0 whose restrictions coincide with d on M0 and with d′ on M ′
0.
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Let us summarize some elementary properties of D.

Lemma 3.4. (i) If (M, d)=(M ′, d′) then D((M, d, m), (M, d, m′))�dW (m, m′). In
general, there will be no equality.

(ii) If m(M) �=m′(M ′) then D((M, d, m), (M ′, d′, m′))=+∞.
(iii) For all α, β∈R+

D((M, αd, βm), (M ′, αd′, βm′)) = α
√

β · D((M, d, m), (M ′, d′, m′)).

Now let us concentrate on normalized metric measure spaces.

Lemma 3.5. (i) If m(M)=1 and m′=δo for some o∈M ′ then

D2((M, d, m), (M ′, d′, m′)) = Var(M, d, m).

(ii) The family X1,∗ of isomorphism classes of (M, d, m) with finite supports M0,
say {x1, ..., xn}, and uniform distribution m=(1/n)

∑n
i=1 δxi

(normalized configurations)
is dense in X1.

(iii) For each (M, d, m)∈X1 with finite diameter, let X1, X2, ... be an independent
sequence of random variables Xi: Ω!M (defined on some probability space Ω with values
in M) with distribution m and let

mn(ω, · ) :=
1
n

n∑
i=1

δXi(ω)

be their empirical distributions. Then for m-a.e. ω∈Ω,

(M, d, mn(ω, · ))! (M, d, m)

in (X1,D) as n!∞.
(iv) If m=(1/n)

∑n
i=1 δxi

and m′=(1/n)
∑n

i=1 δx′
i

then

D((M, d, m), (M ′, d′, m′)) � sup
i,j

|dij−d′ij |,

where dij := d(xi, xj) and d′ij := d′(x′
i, x

′
j).

Proof. (i) This is obvious.
(ii) Given (M, d, m)∈X1, we have m∈P2(M, d) by inequality (3.2). Then, by Propo-

sition 2.10 (i), for all ε>0 there exist n∈N and x1, ..., xn∈M such that dW (m, m)�ε,
where m:= (1/n)

∑n
i=1 δxi

. Hence, (M, d, m)∈X1,∗ and

D((M, d, m), (M, d, m)) � dW (m, m) � ε.
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(iii) This follows from the empirical law of large numbers or Varadarajan’s theorem,
e.g. [16, Theorem 11.4.1].

(iv) Assume (without restriction) that M={x1, ..., xn}, M ′={x′
1, ..., x

′
n}, and

|dij−d′ij |�ε for all i, j (with dij and d′ij as above). Define d̂ on M×M ′ by

d̂(xi, x
′
j) := inf

k∈{1,...,n}
[d(xi, xk)+d′(x′

k, x′
j)]+ε

and analogously on M ′×M . As usual, put d̂:= d on M×M and d̂:= d′ on M ′×M ′.
Moreover, put

m =
1
n

n∑
i=1

δ(xi,x′
i)

.

Then d̂ is a coupling of d and d′, and q is a coupling of m and m′. Thus

D2((M, d, m), (M ′, d′, m′)) �
∫

M×M ′
d̂
2
(x, y) dq(x, y) = ε2.

Theorem 3.6. (X1,D) is a complete separable length metric space.

Proof. (i) Clearly, D is well-defined and symmetric on X1×X1 with values in R+.
(ii) Separability and completeness will follow from Lemma 3.7 below, at least under

uniform bounds for the diameter. For sake of completeness, we give a direct proof.
(iii) According to Lemma 3.5 (ii), separability of X1 will follow from separability

of X1,∗. The latter is the disjoint union
⊔

n∈N K̃(n), where

K̃(n) := {(M, d, m)∈X1,∗ : supp[m] has n points}.

But K̃(n) can be identified with the set K(n) of all D=(Dij)i,j∈Rn×n
+ satisfying

Dij = Dji, Dij +Djk � Dik and Dij = 0 ⇐⇒ i = j

for all i, j, k∈{1, ..., n}. Now each of the K(n) is separable (as a subset of Rn×n), hence,
K̃(n) is separable (Lemma 3.5 (iv)) and thus finally X1,∗ is separable.

(iv) In order to prove the triangle inequality consider three metric measure spaces
(Mi, di, mi)∈X1, i=1, 2, 3. Without restriction, we may assume Mi=supp[mi] for i=
1, 2, 3. Then for each ε>0 there exist a complete separable metric d12 on M1�M2 and a
complete separable metric d23 on M2�M3 such that

D((M1, d1, m1), (M2, d2, m2)) � dW
12(m1, m2)−ε,

D((M2, d2, m2), (M3, d3, m3)) � dW
23(m2, m3)−ε
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and dij restricted to Mi coincides with di, restricted to Mj coincides with dj for (i, j)=
(1, 2) or (2, 3). (Here, for typographical reasons, we use not a lower but an upper index
to indicate the Wasserstein metric derived from a given metric.) Now define d on M×M

with M := M1�M2�M3 by

d(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d12(x, y), if x, y ∈M1�M2,
d23(x, y), if x, y ∈M2�M3,
infz∈M2 [d12(x, z)+d23(z, y)], if x∈M1 and y ∈M3,
infz∈M2 [d23(x, z)+d12(z, y)], if x∈M3 and y ∈M1.

Obviously, d is a complete separable metric on M and, restricted to Mi, it coincides
with di (for each i=1, 2, 3). Then by the triangle inequality for dW (Proposition 2.10 (i))

D((M1, d1, m1), (M3, d3, m3)) � dW(m1, m3)

� dW(m1, m2)+dW(m2, m3)

= dW
12(m1, m2)+dW

23(m2, m3)

�D((M1, d1, m1), (M2, d2, m2))

+D((M2, d2, m2), (M3, d3, m3))+2ε.

This proves the claim.
(v) In order to prove completeness let ((Mn, dn, mn))n∈N be a Cauchy sequence in

(X1,D). Let us choose a subsequence such that

D((Mnk
, dnk

, mnk
), (Mnk+1 , dnk+1 , mnk+1)) � 2−k−1

for all k∈N. Then there exist a coupling d̂k+1 of dnk
and dnk+1 , and a coupling q̂k+1 of

mnk
and mnk+1 such that

(∫
d̂
2

k+1(x, y) dq̂k+1(x, y)
)1/2

� 2−k.

Without restriction d̂k+1 is a complete separable metric. Let us define recursively a
sequence of complete separable metric spaces (M ′

k, d′k) as follows: (M ′
1, d

′
1):= (Mn1 , dn1)

and M ′
k+1=M ′

k�Mnk+1/∼ with x∼y if and only if d′k+1(x, y)=0, where

d′k+1(x, y) =

⎧⎪⎨⎪⎩
d′k(x, y), if x, y ∈M ′

k,
d̂k+1(x, y), if x, y ∈Mnk

�Mnk+1 ,
infz∈Mnk

[d′k(x, z)+d̂k+1(z, y)], if x∈M ′
k and y ∈Mnk

�Mnk+1 .
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This way, ((M ′
k, d′k))k∈N is a sequence of complete separable metric spaces with Mnk

⊂M ′
k

and M ′
k⊂M ′

k+l for all k and l. Hence, M ′=
⋃∞

k=1 M ′
k is naturally equipped with a metric

d′=limk!∞ d′k.
Let (M, d) be the completion of (M ′, d′). Then (Mnk

, dnk
) is isometrically embedded

in (M, d) for each k∈N and the measure mnk
on Mnk

defines a push-forward measure
mnk

on M . By construction

dW (mnk
, mnk+1) �

(∫
d̂
2

k+1(x, y) dq̂k+1(x, y)
)1/2

� 2−k

for all k∈N. Hence, (mnk
)k∈N is a Cauchy sequence in (P2(M), dW ). According to

Proposition 2.10, the latter is complete. That is, there exists a probability measure m

on (M, d) such that

D((Mnk
, dnk

, mnk
), (M, d, m)) � dW (mnk

, m)! 0

as k!∞. This in turn implies that

D((Mn, dn, mn), (M, d, m))! 0

as n!∞ which proves the claim.
(vi) In order to see that (X1,D) is a length space it suffices to prove that each pair

of normalized configurations is connected by a geodesic. Now, let

(M0, d0, m0), (M1, d1, m1)∈X1,∗

be given. Without restriction M0={(0, 1), ..., (0, n)} and M1={(1, 1), ..., (1, n)} for some
n∈N and m0, m1 being uniform distributions. For each t∈[0, 1] we define a metric
measure space (Mt, dt, mt)) by Mt := {(t, 1), ..., (t, n)}, mt := (1/n)

∑n
i=1 δ(t,i) and

dt((t, i), (t, j)) = (1−t) d0((0, i), (0, j))+t d1((1, i), (1, j)).

Let q∗ and d̂∗ be a pair of optimal couplings. Again without restriction we may assume
that q=(1/n)

∑n
i=1 δ((0,i),(1,i)). Then

D((M0, d0, m0), (M1, d1, m1)) =
(

1
n

n∑
i=1

�2
i

)1/2

with �i := d̂∗((0, i), (1, i)). By the triangle inequality for d̂∗,

|d0((0, i), (0, j))−d1((1, i), (1, j))|� �i+�j
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for all i and j. For all s, t∈[0, 1] we define a coupling d̂s,t of ds and dt by

d̂s,t((s, i), (t, j)) = inf
k

[ds((s, i), (s, k))+|s−t|�k+dt((t, k), (t, j))].

In particular d̂s,t((s, i)(t, i))=|s−t|�i for all i and thus

D((Ms, ds, ms), (Mt, dt, mt)) � |s−t|D((M0, d0, m0), (M1, d1, m1)).

(vii) Non-degeneracy of D will follow from the corresponding property of Gromov’s
metric �1 together with the following Lemma 3.7.

Lemma 3.7. For metric measure spaces with diameter �L, the metric D is equiva-
lent to Gromov’s metric �1 [22, 31

2 .12]:

(
1
2 �1

)3/2�D�
(
L+ 1

4

) · �1/2
1 .

The lower bound also holds if L=∞.

Proof. In order to prove the lower estimate, let normalized metric measure spaces
(M, d, m) and (M ′, d′, m′) be given with D((M, d, m), (M ′, d′, m′))<ε3/2 for some ε>0.
Then for some metric d̂ on M�M ′ extending d and d′ and for some coupling q of m

and m′, ∫
d̂
2
(x, x′) dq(x, x′) < ε3.

Hence, q({(x, x′)∈M×M ′ : d̂(x, x′)�ε})<ε. Therefore there exists a measurable map
Φ: [0, 1[!M×M ′ such that Φ∗λ=q, where λ denotes the Lebesgue measure on [0, 1[
(parametrization of q) and there exists a measurable set Xε⊂[0, 1[ with λ(Xε)<ε such
that for all t∈[0, 1[\Xε,

d̂(Φ(t)) < ε. (3.8)

If we write Φ(t)=(ϕ(t), ϕ′(t)) with ϕ: [0, 1[!M and ϕ′: [0, 1[!M ′ then ϕ∗λ=m and
ϕ′
∗λ=m′. Moreover, for all s, t∈[0, 1[\Xε,

|d(ϕ(s), ϕ(t))−d′(ϕ′(s), ϕ′(t))|� d̂(ϕ(s), ϕ′(s))+d̂(ϕ(t), ϕ′(t)) = d̂(Φ(s))+d̂(Φ(t)) < 2ε,

according to (3.8). This yields

�1((M, d, m), (M ′, d′, m′)) < 2ε

which proves the lower estimate.
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For the upper estimate assume that �1((M, d, m), (M ′, d′, m′))<ε. Then there ex-
ists a measurable map Φ=(ϕ, ϕ′): [0, 1[!M×M ′ with ϕ∗λ=m and ϕ′

∗λ=m′ and there
exists a measurable set Xε⊂[0, 1[ with λ(Xε)<ε such that

|d(ϕ(s), ϕ(t))−d′(ϕ′(s), ϕ′(t))|< ε

for all s, t∈[0, 1[\Xε. Using the map Φ=(ϕ, ϕ′) and the set Xε we define a coupling d̂ of
d and d′ by

d̂(x, y′) = inf
s∈[0,1[\Xε

[d(x, ϕ(s))+ε/2+d(ϕ′(s), y′)]

for x∈M and y′∈M ′. Without restriction, we may assume that d̂�L (otherwise replace
d̂ by d̂∧L). Moreover, we define a coupling q of m and m′ by

q = (ϕ, ϕ′)∗λ.

Then

D2((M, d, m), (M ′, d′, m′)) �
∫

M×M ′
d̂
2
(x, x′) dq(x, x′)

=
∫ 1

0

d̂
2
(ϕ(t), ϕ′(t)) dt �

(ε

2

)2
(1−ε)+L2ε �

(
L+

1
4

)2
ε.

This proves the upper bound.

3.2. Examples for D-convergence

Let us demonstrate the notion of D-convergence with various examples.

Example 3.8. (Products) Let (Mn, dn, mn)∈X1 for n∈N. Then(
l⊗

n=1

(Mn, dn, mn)

)
l∈N

is a D-Cauchy sequence in X1 if (and only if)

∞∑
n=1

Var(Mn, dn, mn) <∞.

In this case, as l!∞,

l⊗
n=1

(Mn, dn, mn) D−−!
∞⊗

n=1

(Mn, dn, mn).
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Proof. Obviously, for all k and l

D2

(
l⊗

n=1

(Mn, dn, mn),
l+k⊗
n=1

(Mn, dn, mn)

)
�D2

(
({o}, 0, δo),

l+k⊗
n=l+1

(Mn, dn, mn)

)

�
l+k∑

n=l+1

D2(({o}, 0, δo), (Mn, dn, mn))

=
l+k∑

n=l+1

Var(Mn, dn, mn).

This proves the claim.

Example 3.9. (Dimension increasing to infinity) Let Mn=Rn with Euclidean
distance,

dmn(x) =
1

(2π)n/2
∏n

k=1 σk
exp
(
−1

2

n∑
k=1

(xk

σk

)2)
dx.

Then

(Mn, dn, mn) D−−! (M∞, d∞, m∞)

if and only if
∑∞

k=1 σ2
k<∞.

Example 3.10. (Increasing finite dimension) (i) Let Mn=((1/n)Z∩[0, 1])k be the
rescaled k-dimensional lattice, d be the Euclidean distance in Rk and mn be the renor-
malized counting measure on Mn. Then, as n!∞,

(Mn, d, mn) D−−! ([0, 1]k, d, m),

with m being the k-dimensional Lebesgue measure in [0, 1]k (see Figure 1).
(ii) Similarly, if M̃n denotes the graph obtained from Mn with edges between next

neighbors and m̃n being the 1-dimensional Lebesgue measure on the edges, then

(M̃n, d, m̃n) D−−! ([0, 1]k, d, m)

as n!∞ (see Figure 2).

Example 3.11. (Increasing to fractal dimension) Let (Mn)n∈N be the usual approx-
imation of the Sierpiński gasket M⊂R2 by graphs Mn with 3n edges of sidelength 21−n,
n∈N. To be more specific, M1 is the equilateral triangle with sidelength 1 and for each
n∈N, the graph Mn is obtained from Mn−1 by gluing together 3 copies and rescaling the
whole by the factor 1

2 . Let dn be the distance from the ambient 2-dimensional Euclidean
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D

Figure 1.

D

Figure 2.

space (or alternatively the induced length distance on Mn) and let mn be normalized
1-dimensional Lebesgue measure on Mn. Then

(Mn, dn, mn) D−−! (M, d, m),

where M is the Sierpiński gasket, d is the 2-dimensional Euclidean distance restricted
to M (or the induced length distance on M , respectively) and m is the normalized
log 3/log 2-dimensional Hausdorff measure on M (see Figure 3).

Similarly, we can approximate the 2-dimensional Sierpiński carpet M̃ (equipped
with Euclidean distance d̃—or alternatively with the induced length distance—and with
normalized log 8/log 3-Hausdorff measure m̃) by graphs M̃n with sidelength 3−n. Here
M̃1 is the square with sidelength 1 and M̃n is obtained by gluing together 8 copies of
M̃n−1 and rescaling the whole by the factor 1

3 . Then

(M̃n, d̃n, m̃n) D−−! (M̃, d̃, m̃)

as n!∞ (Figure 4). See for instance [32].

Example 3.12. (Decreasing dimension, collapse) (i) For each metric measure space
(M, d, m) and each sequence (Mn, dn, mn), n∈N, with limn!∞ Var(Mn, dn, mn)=0, one
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D

Figure 3.

D

Figure 4.

has
(M×Mn, d⊗dn, m⊗mn) D−−! (M, d, m)

as n!∞.
(ii) Let M be a finite graph, embedded in R3, let d be the graph distance and m

be the 1-dimensional Lebesgue measure on M normalized to 1. Let

Mn := {x∈R3 : dEuclid(x, M) � 1/n}

and
M̃n := {x∈R3 : dEuclid(x, M) = 1/n}

be the full (and surface, respectively) tubular neighborhood of M , let dn (and d̃n) be
the geodesic distance on Mn (or M̃n, respectively) induced by the Euclidean distance
dEuclid on the ambient space R3, and let mn (and m̃n) be the 3- (or 2-, respectively)
dimensional Lebesgue measure on M (or M̃ , respectively), normalized to 1. Then

(Mn, dn, mn) D−−! (M, d, m)

and
(M̃n, d̃n, m̃n) D−−! (M, d, m)
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D

Figure 5.

as n!∞ (see Figure 5).

Being a length space is not preserved under isomorphisms of metric measure spaces.
But the support supp[m] being a length space is preserved under isomorphisms. However,
also this property is not preserved under D-convergence.

Example 3.13. Let M=R with Euclidean distance d, dmn(x)=ϕn(x) dx with

ϕn(x) =

⎧⎪⎨⎪⎩
1/2n, if x∈ ]−1, 1[,
1/2, if x∈ [−2+1/n,−1]∪[1, 2−1/n],
0, otherwise,

and

dm(x) = 1
2 (1[−2,−1](x)+1[1,2](x)) dx.

Then (M, d, mn) D−−!(M, d, m) as n!∞ as well as (supp[mn], d, mn) D−−!(supp[m], d, m).
However, (supp[mn], d) does not converge with respect to DGH towards (supp[m], d) as
n!∞. It converges towards ([−2, 2], d). On the other hand, Example 3.10 (i) demon-
strates the opposite phenomenon: non-length spaces converging to a length space.

3.3. Doubling property under D-convergence

Definition 3.14. Let C∈R+. We say that a metric measure space (M, d, m) has the
restricted doubling property with doubling constant C if and only if for all x∈supp[m]
and all r∈R+,

m(B2r(x)) � Cm(Br(x)).
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A metric measure space (M, d, m) has the restricted doubling property if and only
if for all x∈supp[m] and all r, R∈R+,

m(BR(x)) � C�(log R/r)/ log 2+1�m(Br(x)),

where �a� denotes the greatest integer �a. It implies that for all x and r the sets
Br(x)∩supp[m] are compact.

Note that our definition differs from the usual definition of the doubling property:
we only impose a condition on balls with center in the support of the measure. Some
modification of this kind is necessary in order to obtain a property which is preserved
under isomorphisms of metric measure spaces. The usual doubling property without this
restriction implies that supp[m]=M whenever m(M) �=0.

For instance, let (M, d) be the 2-dimensional Euclidean plane and let m be the 1-
dimensional Lebesgue measure on the x1-axis. Then (M, d, m) has the restricted doubling
property but not the doubling property in the usual sense.

There is a huge literature on metric measure spaces which have the doubling prop-
erty; see e.g. [26] and references cited therein.

Theorem 3.15. The restricted doubling property is stable under D-convergence.
That is, if for all n∈N the normalized metric measure spaces (Mn, dn, mn) have the

restricted doubling property with a common doubling constant C and if (Mn, dn, mn) D−−!
(M, d, m) as n!∞, then also (M, d, m) has the restricted doubling property with the
same constant C.

Proof. Assume that the normalized metric measure spaces (Mn, dn, mn), n∈N, have
the restricted doubling property with a common doubling constant C and that

δn := D((Mn, dn, mn), (M, d, m))! 0

as n!∞. Then for each n∈N the spaces (supp[m], d) and (supp[mn], dn) can isometri-
cally be embedded into some space (M̂, d̂) such that

d̂W (m̂, m̂n) � 2δn,

where m̂ and m̂n denote the push-forwards of the measures m and mn, respectively,
under the embedding maps ψ and ψn, respectively.

Let x∈supp[m], r>0, ε>0 and α<1 be given (with 2rα2−6ε>0 for simplicity). Our
first observation is that

m̂n(B̂2ε(ψ(x)))� m̂(B̂ε(ψ(x)))− 1
ε2

d̂
2

W (m̂, m̂n), (3.9)
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since the mass which has to be transported from the interior of the small ball to the
exterior of the large ball has to be moved by a distance of at least ε. Moreover, we
know that m̂(B̂ε(ψ(x)))=m(Bε(x))>0, since by assumption x∈supp[m]. Hence, for
n large enough we conclude that m̂n(B̂2ε(ψ(x)))>0. Therefore, there exists a point
x̂n∈supp[m̂n]⊂M̂ with d̂(x̂n, ψ(x))�2ε. In particular, we may apply the restricted dou-
bling property for balls centered at xn. This yields

m(B2α2r−6ε(x)) = m̂(B̂2α2r−6ε(ψ(x)))

� m̂(B̂2α2r−4ε(x̂n))

� m̂n(B̂2αr−4ε(x̂n))+
1

(2rα−2rα2)2
d̂
2

W (m̂, m̂n)

� Cm̂n(B̂αr−2ε(x̂n))+
1

(2rα−2rα2)2
d̂
2

W (m̂, m̂n)

� Cm̂n(B̂αr(ψ(x)))+
1

(2rα−2rα2)2
d̂
2

W (m̂, m̂n)

� Cm̂(B̂r(ψ(x)))+
[

1
(2rα−2rα2)2

+
C

(2r−2rα)2

]
d̂
2

W (m̂, m̂n)

� Cm(Br(x))+
1+Cα2

(rα(1−α))2
δ2
n.

In the limit n!∞ we obtain

m(B2α2r−6ε(x)) � Cm(Br(x)).

Since this holds for any α<1 and any ε>0, we conclude that

m(B2r(x)) � Cm(Br(x)).

3.4. D-convergence and measured Gromov–Hausdorff convergence

The L2-transportation distance D on the space of metric measure spaces is closely related
to the notion of measured Gromov–Hausdorff convergence (briefly: mGH-convergence)
introduced by Fukaya [19].

Recall that a sequence of compact normalized metric measure spaces

((Mn, dn, mn))n∈N

converges in measured Gromov–Hausdorff sense to a compact normalized metric measure
space (M, d, m) if and only if there exist numbers εn&0 and εn-isometries ψn: Mn!M

such that (ψn)∗mn!m weakly on M for n!∞.
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Theorem 3.16. (Compactness) For each pair (C, L)∈R+×R+ the family X1(C, L)
of all isomorphism classes of normalized metric measure spaces with (‘restricted’ ) dou-
bling constant �C and diameter �L is D-compact (and thus also �1-compact).

Moreover, the family X̃1(C, L) of normalized metric measure spaces (M, d, m) with
full support, doubling constant �C and diameter �L is mGH-compact.

Proof. Let C and L be given and consider a space (M, d, m)∈X1(C, L). Without
restriction, we may assume that supp[m]=M . Then each ball Bε(x)⊂M=BL(x) has
volume

m(Bε(x)) �
( ε

2L

)N
with ‘doubling dimension’ N := log C/log 2. Hence, each family of disjoint balls of radius
ε in M contains at most (2L/ε)N elements which in turn implies that M can be covered
by (2L/ε)N balls of radius 2ε. Firstly, this implies that M is compact. Secondly, since
this covering property holds uniformly in (M, d, m)∈X̃1(C, L), according to Gromov’s
precompactness theorem ([20] or [7, Theorem 5.41]) it implies compactness of the family
X̃1(C, L) under Gromov–Hausdorff convergence. Moreover, due to Theorem 3.15 (to-
gether with Lemma 3.18 (i)) the family X̃1(C, L) is closed under D-convergence (as well
as under mGH-convergence). Due to the following Lemma 3.17 this in turn implies com-
pactness under mGH-convergence. Due to Lemma 3.18 (i) below, the mGH-compactness
implies D-compactness.

Lemma 3.17. Let {(Mi, di, mi) : i∈I} be an arbitrary family of normalized com-
pact metric measure spaces which is closed under mGH-convergence. If the family X′=
{(Mi, di) : i∈I} is compact with respect to Gromov–Hausdorff convergence then the family
X′={(Mi, di, mi) : i∈I} is compact with respect to measured Gromov–Hausdorff conver-
gence.

Proof. (Cf. [19, Proposition 2.10].) Let a sequence ((Mn, dn, mn))n∈N in X′ be
given. Then (by the assumption of compactness of X′) there exists a subsequence

((Mnk
, dnk

, mnk
))k∈N

and a compact metric space (M, d) such that (Mnk
, dnk

)!(M, d) in DGH. To simplify
notation, assume that the whole sequence is GH-convergent. Then there exist sequences
of numbers εn&0 and εn-isometries ψn: Mn!M . Now consider the sequence of proba-
bility measures m′

n=(ψn)∗mn on M . Since M is compact, Prohorov’s theorem implies
that m′

nl
!m as l!∞ weakly on M for a suitable subsequence (m′

nl
)l∈N and for some

probability measure m on M . In other words,

(Mnl
, dnl

, mnl
)! (M, d, m)

in mGH-sense. This proves the compactness.
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Lemma 3.18. (i) For any sequence of normalized compact metric measure spaces,
mGH-convergence implies D-convergence.

(ii) For any sequence of normalized compact metric measure spaces with full supports
and uniform bounds for the doubling constants and the diameters, mGH-convergence is
equivalent to D-convergence (as well as to �1-convergence).

Proof. (i) Assume that a sequence of compact normalized metric measure spaces
((Mn, dn, mn))n∈N mGH-converges to a compact normalized metric measure space
(M, d, m). That is, there exist numbers δn, εn&0 and εn -isometries ψn: Mn!M such
that dW (m′

n, m)�δn, where m′
n := (ψn)∗mn. We claim that this implies that

D((M, d, m), (Mn, dn, mn)) � δn+
εn

2
.

Obviously,
D((M, d, m), (M, d, m′

n)) � δn.

It remains to prove that

D((M, d, m′
n), (Mn, dn, mn)) � εn

2
.

For this purpose, we define couplings qn of m′
n and mn by qn=(ψn, Id)∗mn, and couplings

d̂n of d and dn by
d̂n(x, y) =

εn

2
+ inf

z∈Mn

[d(x, ψn(z))+dn(z, y)]

for x∈M and y∈Mn. Indeed, qn and d̂n are couplings and∫
M×Mn

d̂
2

n(x, y) dqn(x, y) =
∫

Mn

d̂
2

n(ψn(y), y) dmn(y) =
(εn

2

)2
.

This proves the claim.
(ii) By the homeomorphism theorem, part (i) together with the mGH-compactness

(Theorem 3.16) imply the equivalence of the topologies.

In general, there is no converse to the implication (i) of the previous Lemma 3.18.

Example 3.19. Let Mn=[−n, n] and mn(dx)=cn ·1[−n,n](x) exp(−n|x|) dx, with
cn=(n/2)(1−exp(−n2))−1. Then there exists no mGH-limit of the sequence

((Mn, dEuclid, mn))n∈N.

It also has no mGH-converging subsequence.
However, the above sequence D-converges to (R, dEuclid, δ0) (or equivalently, to

(0, dEuclid, δ0)).
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Example 3.20. Let (σk)k∈N be a sequence of positive numbers with
∑∞

k=1 σ2
k<∞

and consider for each n∈N the metric measure space (Mn, dn, mn) from Example 3.9,
where (Mn, dn) is the n-dimensional Euclidean space and mn is some Gaussian measure
with covariance matrix given by the σ1, ..., σn.

Let M ′
n=(R/Z)n be the n-dimensional torus with induced length metric d′n and let

πn: Mn!M ′
n be the projection map. Put m′

n=(πn)∗mn. Then the sequence

((M ′
n, d′n, m′

n))n∈N

will be D-convergent to some metric measure space (M ′
∞, d′∞, m′

∞), where M ′
∞ is the

infinite-dimensional torus and m′
∞ is some probability measure on it.

However, neither the given sequence ((M ′
n, d′n, m′

n))n∈N nor any subsequence of it
will converge in mGH-sense to some metric measure space.

Remark 3.21. (i) The concept of mGH-convergence is not appropriate to study iso-
morphism classes of metric measure spaces.

In particular, the mGH-convergence of a sequence (Mn, dn, mn) towards (M, d, m)
does not imply the mGH-convergence of the sequence (supp[mn], dn, mn) towards
(supp[m], d, m).

Similarly, the mGH-convergence of (supp[mn], dn, mn) towards (supp[m], d, m) does
not imply the mGH-convergence of the sequence (Mn, dn, mn) towards (M, d, m).

(ii) According to part (v) of the proof of Theorem 3.6 (cf. Gromov’s union lemma
[22]), for each sequence of metric measure spaces with D((M, d, m), (Mn, dn, mn))!0
sufficiently fast there exists a (huge) metric space (M̂, d̂) such that all the spaces Mn,
as well as the space M , can be isometrically embedded into M̂ and the push-forward
measures m̂n=(ψn)∗mn converge weakly to m̂=ψ∗m on M̂ . Hence (at least in some
extended sense), the sequence of metric measure spaces (M̂, d̂, m̂n) mGH-converges to
(M̂, d̂, m̂). This convergence, however, has no meaning in the sense of ‘convergence of
the original spaces’. The space M̂ has no geometric meaning. In general, it will be not
compact.

4. Curvature bounds for metric measure spaces

4.1. The relative entropy

Recall that a metric measure space always means a triple (M, d, m), where (M, d) is a
complete separable metric space and m is a locally finite measure on M equipped with its
Borel σ-algebra. To avoid pathologies, in the sequel we always exclude the case m(M)=0.



102 k.-t. sturm

Given a metric measure space (M, d, m) we denote by P2(M, d, m) the subspace of all
ν∈P2(M, d) which are absolutely continuous with respect to m, that is, which can be writ-
ten as ν=�m, with Radon–Nikodym density �. In other words, P2(M, d, m) can be iden-
tified with the set of all m-equivalence classes of non-negative Borel-measurable functions
�: M!R satisfying

∫
�(x) dm(x)=1 and

∫
d2(o, x)�(x) dm(x)<∞ for some o∈M .

For ν=�m∈P2(M, d, m) we define the relative entropy of ν with respect to m by

Ent(ν |m) := lim
ε&0

∫
{�>ε}

� log � dm. (4.1)

This coincides with ∫
{�>0}

� log � dm

provided
∫
{�>1}� log � dm<∞. Otherwise Ent(ν |m):= +∞. We also define Ent(ν |m):=

+∞ for ν∈P2(M, d)\P2(M, d, m). Finally, we put

P∗
2 (M, d, m) := {ν ∈P2(M, d) : Ent(ν |m) <∞}.

Lemma 4.1. If m has finite mass, then the relative entropy Ent( · |m) is lower
semicontinuous and �=−∞ on P2(M, d). More precisely, for all ν∈P2(M, d),

Ent(ν |m) �− log m(M). (4.2)

Proof. The lower estimate for the relative entropy is a simple application of Jensen’s
inequality. The lower semicontinuity is more subtle. For N>1 define UN (r)=−Nr1−1/N.

Then r �!UN (r) is convex on R+, hence

UN (r) � UN (r0)−(N−1)r−1/N
0 (r−r0) (4.3)

for all r and r0. Moreover,

lim
N!∞

[Nr+UN (r)] = sup
N

[Nr+UN (r)] = r log r.

Now consider S̃N :P2(M, d)!R with

S̃N (ν) :=
∫

UN (�) dm+N

for ν=ν0+ν∗∈P2(M, d), with ν∗⊥m and ν0=�m. Note that

N−Nν0(M)1−1/Nm(M)1/N � S̃N (ν) � N
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for all ν. Therefore, for all ν∈P2(M, d)

Ent(ν |m) = lim
N!∞

S̃N (ν) = sup
N

S̃N (ν). (4.4)

Hence, lower semicontinuity of Ent( · |m) will follow from lower semicontinuity of S̃N . In
order to verify the latter, let νn=�nm+ν∗

n be any sequence in P2(M, d) which converges
to some ν=�m+ν∗∈P2(M, d). It implies that νn!ν weakly in the sense of measures.
Since � is a sub-probability density, it lies in L1−1/N (M, m) and it can be approximated
in the metric D1−1/N by non-negative, bounded, continuous �(i)∈L1−1/N (M, m). Here
D1−1/N (u, v):=

∫ |u−v|1−1/N dm. Put �
(i)
n := �n−�+�(i). Then

|S̃N (�(i)m)−S̃N (�m)|� ND1−1/N (�(i), �)! 0

as well as
|S̃N (�(i)

n m)−S̃N (�nm)|� ND1−1/N (�(i), �)! 0

as i!∞, uniformly in n. According to (4.3),

S̃N (�(i)
n m)−S̃N (�(i)m) �−(N−1)

∫
[�(i)]−1/N (�(i)

n −�(i)) dm

=−(N−1)
∫ [

�(i)
]−1/N (�n−�) dm,

which tends to 0 as n!∞ due to the weak convergence of �nm to �m and since �(i) is
continuous and bounded. Summing up, we obtain

lim inf
n!∞ S̃N (�nm) � S̃N (�m)

and thus finally, as N!∞,

lim inf
n!∞ Ent(�nm |m) � Ent(�m |m).

Remark 4.2. The relative entropy can in the same manner also be defined for finite,
non-normalized measures ν (and m) on M . Then for all α, β>0,

Ent(αν |βm) =αEnt(ν |m)+(log α−log β)αν(M). (4.5)

Moreover, for all finite or countable sets I and all finite measures νi, i∈I,

Ent
(∑

i∈I

νi

∣∣∣∣m)�
∑
i∈I

Ent(νi |m) (4.6)
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with equality if and only if the νi, i∈I, are mutually singular, and

Ent
(∑

i∈I

νi

∣∣∣∣m)�
∑
i∈I

Ent(νi |m)−
∑
i∈I

νi(M) log νi(M). (4.7)

For convex combinations of probability measures νi, inequalities (4.6) and (4.7) become∑
i∈I

αi Ent(νi |m)+
∑
i∈I

αi log αi � Ent
(∑

i∈I

αiνi

∣∣∣∣m)�
∑
i∈I

αi Ent(νi |m). (4.8)

Proof. Indeed,

Ent
(∑

i∈I

νi

∣∣∣∣m)=
∑
i∈I

∫
�i log

(∑
k∈I

�k

)
dm

(∗)
�
∑
i∈I

∫
�i log �i dm =

∑
i∈I

Ent(νi |m),

with equality in (∗) if and only if �k�i=0 m-a.e. on M for all k �=i. On the other hand,
according to Jensen’s inequality (applied to the convex function ϕ(r)=r log r)

Ent
(∑

i∈I

νi

∣∣∣m)=
∫ (∑

i∈I

αi�̄i

)
log
(∑

i∈I

αi�̄i

)
dm

�
∫ ∑

i∈I

αi�̄i log �̄i dm

=
∑
i∈I

∫
�i log �i dm−

∑
i∈I

αi log αi,

with αi=νi(M), �̄i=(1/αi)�i and �i=dνi/dm.

Remark 4.3. (i) If m has infinite mass then Ent( · |m) may exhibit strange behavior.
In particular, it can attain the value −∞ and also lower semicontinuity may fail. See the
example below.

(ii) If m is finite on all balls and if Ent(ν |m)<∞ then

Ent(ν |m) = lim
R!∞

∫
BR(o)

� log � dm (4.9)

for each ν=�m (with any o∈M). Indeed, due to the finiteness of m on BR(o) the integral
on the right-hand side exists for all R and as R!∞ by monotone convergence∫

BR(o)∩{�>1}
� log � dm!

∫
{�>1}

� log � dm <∞,

whereas ∫
BR(o)∩{�<1}

� log � dm!
∫
{�<1}

� log � dm �∞.
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Example 4.4. Let M=R with Euclidean distance d and dm(x)=exp(exp(x2)) dx,
dµα(x)=(1/2α) exp(−|x|/α) dx.

(i) Then for all α>0 we have µα∈P2(M) with dW (µα, δ0)=α
√

2 and

Ent(µα |m) =−∞.

(ii) For each η∈P2(M, d) with Ent(η |m)>−∞ the relative entropy Ent( · |m) is not
lower semicontinuous at η, since

ηα := (1−α)η+αµα! η

in (P2(M), dW ) as α!0 and

−∞= lim
α!0

Ent(ηα |m) < Ent(η |m).

(iii) Moreover, given any ν0, ν1∈P2(M, d) there exists a midpoint η of them. If
Ent(η |m)<∞ then for each ε>0 there exists an α>0 such that ηα (defined as before) is
an ε-midpoint of ν0 and ν1 and

−∞= Ent(ηα |m) � 1
2

Ent(ν0 |m)+
1
2

Ent(ν1 |m)−K

8
d2

W (ν0, ν1)

for each K∈R.

4.2. Curvature bounds

Definition 4.5. (i) We say that a metric measure space (M, d, m) has curvature �K

for some number K∈R if and only if the relative entropy Ent( · |m) is weakly K-convex
on P∗

2 (M, d, m) in the following sense: for each pair ν0, ν1∈P∗
2 (M, d, m) there exists a

geodesic Γ: [0, 1]!P∗
2 (M, d, m) connecting ν0 and ν1 with

Ent(Γ(t) |m) � (1−t)Ent(Γ(0) |m)+tEnt(Γ(1) |m)−K

2
t(1−t) d2

W (Γ(0), Γ(1)) (4.10)

for all t∈[0, 1]. To be more specific, we say that in the previous case the metric measure
space (M, d, m) globally has curvature �K. Moreover, we put

Curv(M, d, m) := sup{K ∈R : (M, d, m) has curvature � K}

(with sup ∅:= −∞ as usual). Note that then (M, d, m) has curvature � Curv(M, d, m).
Occasionally, we use slightly modified concepts:
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(ii) We say that a metric measure space (M, d, m) (globally) has curvature �K in
the lax sense if and only if for each ε>0 and for each pair ν0, ν1∈P∗

2 (M, d, m) there exists
an ε-midpoint η∈P∗

2 (M, d, m) of ν0 and ν1 with

Ent(η |m) � 1
2

Ent(ν0 |m)+
1
2

Ent(ν1 |m)−K

8
d2

W (ν0, ν1)+ε. (4.11)

We denote the maximal K with this property by Curv lax(M, d, m).
(iii) We say that a metric measure space (M, d, m) locally has curvature �K if each

point of M has a neighborhood M ′ such that for each pair ν0, ν1∈P∗
2 (M, d, m) supported

in M ′ there exists a geodesic Γ: [0, 1]!P∗
2 (M, d, m) connecting ν0 and ν1 and satisfying

(4.10). (Note that we do not require that the Γ(t) are supported in M ′.)
The maximal K with this property will be denoted by Curv loc(M, d, m).

Remark 4.6. Let (M, d, m) be a metric measure space of finite mass.
(i) Then Curv(M, d, m)�K if and only if for each pair ν0, ν1∈P∗

2 (M, d, m) there
exists a midpoint η∈P∗

2 (M, d, m) of ν0 and ν1 with

Ent(η |m) � 1
2

Ent(ν0 |m)+
1
2

Ent(ν1 |m)−K

8
d2

W (ν0, ν1). (4.12)

(ii) Similarly, we have that Curv lax(M, d, m)�K if and only if for all ε>0 and all
ν0, ν1 ∈P∗

2 (M, d, m) there exists a curve Γ: [0, 1]!P∗
2 (M, d, m) connecting ν0 and ν1 with

Length(Γ) � dW (ν0, ν1)+ε (4.13)

and

Ent(Γ(t) |m) � (1−t)Ent(ν0 |m)+tEnt(ν1 |m)−K

2
t(1−t) d2

W (ν0, ν1)+ε (4.14)

for all t∈[0, 1].
(iii) The fact that Curv lax(M, d, m)>−∞ implies that P∗

2 (M, d, m) is a length space
(with metric dW ) and that M0=supp[m]⊂M is a length space (with metric d).

(iv) Obviously, Curv loc(M, d, m)�K provided each point of M has a neighborhood
M ′ such that (M ′, d, m) globally has curvature �K. Due to the previous remark (iii)
this requires M ′ to be convex, at least in some weak sense.

Proof. (i), (ii) We have to prove that the existence of (approximate) midpoints with
property (4.12) (or (4.11)) implies the existence of (approximate) geodesics with property
(4.10) (or (4.14), respectively).

Given ε=0 (or ε>0, respectively) define Γ
(

1
2

)
as an ε-midpoint of Γ(0):= ν0 and

Γ(1):= ν1 satisfying (4.11). Then define Γ
(

1
4

)
as an ε/2-midpoint of Γ(0) and Γ

(
1
2

)
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satisfying (4.11) with ε/2 and define Γ
(

3
4

)
as an ε/2-midpoint of Γ

(
1
2

)
and Γ(1) satisfying

(4.11) with ε/2. By iteration, we obtain Γ(t) for all dyadic t∈[0, 1]. The continuous
extension yields the required curve. (See, for instance, the proof of [50, Proposition 2.3],
for a similar argument.) Lower semicontinuity of the relative entropy then proves the
claim for all t∈[0, 1].

(iii) According to part (ii), it only remains to prove that M0 is a length space. Given
x0, x1∈M0 let νi, for i=0, 1, be the normalized volume in Bε(xi), i.e.

νi =
1

m(Bε(xi))
1Bε(xi)m,

with ε>0 to be chosen later. (Note that m(Bε(xi))>0 for all ε>0, since xi∈M0, and
m(Bε(xi))<∞ for all sufficiently small ε>0, since m is locally finite.) Then we have
νi∈P∗

2 (M, d, m). Hence, there exists η∈P∗
2 (M, d, m) with

dW (νi, η) � 1
2dW (ν0, ν1)+ε

for i=0, 1. Therefore∫
[d2(x0, y)+d2(x1, y)]dη(y) = d2

W (δx0 , η)+d2
W (δx1 , η)

� [dW (ν0, η)+ε]2+[dW (ν1, η)+ε]2

� 2
[
1
2dW (ν0, ν1)+2ε

]2
� 2
[
1
2d(x0, x1)+3ε

]2
= 1

2d2(x0, x1)+ε′

for arbitrarily small ε′>0. It implies that there exists a point y∈supp[η] with

d2(x0, y)+d2(x1, y) � 1
2d2(x0, x1)+ε′.

In other words, y is an approximate midpoint and thus M0 is a length space.

Lemma 4.7. If M is compact then curvature bounds in the usual sense and in the
lax sense coincide:

Curv(M, d, m) = Curv lax(M, d, m).

Proof. Given ν0, ν1∈P∗
2 (M, d, m) let η(i) be a family of ε-midpoints of ν0 and ν1 sat-

isfying (4.11) with ε=1/i. Consider the family of probability measures Q:= {η(i) :i∈N}.
This family is tight. Indeed, we may assume without restriction that M is a compact
length space (otherwise, replace M by M0=supp[m]; see Remark 4.6 (iii)). Hence, there
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exists a suitable subsequence (η(ij))j∈N which converges to some η∈P2(M, d). Continuity
of the distance dW and lower semicontinuity of the relative entropy Ent( · |m) imply that
η is a midpoint of ν0 and ν1 and (4.11) holds with ε=0. Iterating this procedure yields
a geodesic connecting ν0 and ν1 and satisfying (4.10).

The usual definition of K-convexity for the relative entropy would require that (4.10)
holds for each geodesic connecting ν0 and ν1. This leads to the following definition which,
however, will be not used in this paper.

We say that a metric measure space (M, d, m) (globally) has curvature �K in the
restricted sense if and only if P∗

2 (M, d, m) is a geodesic space and if and only if each
geodesic Γ in P∗

2 (M, d, m) satisfies (4.10).

Remark 4.8. Assume that M is a compact non-branching geodesic space where each
pair of points in M is connected by a unique geodesic which depends continuously on
the endpoints. Then curvature bounds in the restricted sense and curvature bounds in
the usual sense coincide.

Proof. The (uniformly) continuous dependence of the geodesics on the endpoints
implies (and actually is equivalent to the fact) that for each ε>0 there exists δ>0 such
that the midpoint z′ of x′∈Bδ(x) and y′∈Bδ(y) lies in Bε(z) whenever z is the midpoint
of x and y. Now let the probability measures q on M×M and η on M be given, which
are an optimal coupling and a midpoint, respectively, of some ν0 and ν1. Decompose q

into a sum q=
∑

i∈N qi of mutually singular qi, i∈N, with supp[qi]⊂Bδ(xi)×Bδ(yi) for
suitable xi, yi∈M , i∈N. Let ν0,i and ν1,i denote the marginals of qi. Assuming that
(M, d, m) has curvature �K in the usual sense then implies that for each i∈N there
exists a midpoint η̃i of ν0,i and ν1,i satisfying

Ent(η̃i |m) � 1
2

Ent(ν0,i |m)+
1
2

Ent(ν1,i |m)−K

8
d2

W (ν0,i, ν1,i).

The η̃i for i∈N are mutually singular, since M is non-branching and since the qi are
mutually singular (Lemma 2.11 (iii)). Hence, η̃=

∑
i∈N η̃i satisfies

Ent(η̃ |m) � 1
2

Ent(ν0 |m)+
1
2

Ent(ν1 |m)−K

8
d2

W (ν0, ν1).

Moreover, dW (η, η̃)�2ε since for each i∈N, supp[ηi]⊂Bε(zi) as well as supp[η̃i]⊂Bε(zi),
with zi being the midpoint of xi and yi. By lower semicontinuity of Ent( · |m) this implies

Ent(η |m) � 1
2

Ent(ν0 |m)+
1
2

Ent(ν1 |m)−K

8
d2

W (ν0, ν1).
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Theorem 4.9. (Riemannian spaces) Let M be a complete Riemannian manifold
with Riemannian distance d and Riemannian volume m and put m′=e−V m, with a C2

function V : M!R. Then

Curv(M, d, m′) = inf{RicM (ξ, ξ)+Hess V (ξ, ξ) : ξ ∈TM and |ξ|= 1}. (4.15)

In particular, (M, d, m) has curvature �K if and only if the Ricci curvature of M

is �K.

Note that in the above Riemannian setting for each pair of points ν0, ν1∈P2(M, d, m)
there exists a unique geodesic connecting them. Hence, curvature bounds in the usual
sense coincide with curvature bounds in the restricted sense. Moreover, note that in this
setting, local curvature bounds always coincide with global curvature bounds.

Proof. Let us briefly sketch the main ideas of the proof, ignoring smoothness and
regularity questions. For details, see [46] for the case V =0 and [51] for the general case.

Let ν0=�0m and ν1=�1m be given. According to Remark 2.12 (iii), there exists a
function ϕ: M!R such that

νt = (Ft)∗ν0,

with
Ft(x) = expx(−t∇ϕ(x)),

defines the unique geodesic t �!νt in P2(M, d) connecting ν0 and ν1. The change of
variable formula then gives

Ent(νt | e−V m) =
∫

�0 log �0 dm−
∫

yt�0 dm+
∫

V (Ft)�0 dm, (4.16)

with yt=log det dFt being the logarithm of the determinant of the Jacobian of Ft (in
some weak sense). Now for ν0-a.e. x∈M the function t �!yt(x) satisfies the differential
inequality

ÿt(x) �− 1
n

(ẏt)2(x)−Ric(Ḟt(x), Ḟt(x)). (4.17)

Together with (4.16), this yields

∂2

∂t2
Ent(νt | e−V m) �

∫
[Ric(Ḟt, Ḟt)+Hess V (Ḟt, Ḟt)]�0 dx � Kd2

W (ν0, ν1),

provided Ric(ξ, ξ)+Hess V (ξ, ξ)�K|ξ|2 for all ξ∈TM . This ‘proves’ the K-convexity of
Ent( · |e−V m).

Some of the most simple examples are the following.
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Example 4.10. (i) If M is an n-dimensional Riemannian manifold of constant sec-
tional curvature then

Curv(M, d, m) = (n−1) .

(ii) If M is the Euclidean space Rn with the weighted measure

dm(x) = exp
(−K‖x‖2

2

)
dx

then
Curv(M, d, m) =K.

(iii) If supp[m] consists of one point then Curv(M, d, m)=+∞.

Remark 4.11. If m is finite on all balls then it suffices to verify (4.11) for all νi=�im

with bounded density �i and with bounded support supp[νi], i=0, 1.

Proof. Let ν0, ν1∈P∗
2 (M, d, m) be given, say ν0=�0m and ν1=�1m. Fix o∈M and

define for i=0, 1,

�i,R =
1

αi,R
1BR(o)[�i∧R], with αi,R =

∫
BR(o)

(�i∧R) dm.

Then, according to Remark 4.3, we have αi,R!1 and Ent(�i,Rm|m)!Ent(νi |m) as
R!∞. Moreover, dW (�i,Rm, νi)!0 and thus for sufficiently large R, each ε/2-midpoint
of �0,Rm and �1,Rm will be an ε-midpoint of ν0 and ν1.

4.3. Basic transformations

Proposition 4.12. (Isomorphism) If (M, d, m) and (M ′, d′, m′) are isomorphic
metric measure spaces then

Curv(M, d, m) = Curv(M ′, d′, m′).

Thus Curv( · ) extends to a function on X, the family of isomorphism classes of metric
measure spaces.

Analogous statements hold for Curv lax( · ) and Curv loc( · ).
Proof. Let Ψ: M0!M ′

0 be an isometry between M0 := supp[m] and M ′
0 := supp[m′]

such that Ψ∗m=m′. Then for all ν=�m∈P2(M, d, m) the push-forward measure Ψ∗ν
is absolutely continuous with respect to m′ with density �(Ψ−1). Thus Ψ induces
an isometry ν �!Ψ∗ν between P2(M, d) and P2(M ′, d′) which maps P2(M, d, m) onto
P2(M ′, d′, m′). Moreover,

Ent(Ψ∗ν |m′) = Ent(ν |m).

This proves the claim.
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Proposition 4.13. (Scaled spaces) For each metric measure space (M, d, m) and
all α, β>0, we have

Curv(M, αd, βm) =α−2 Curv(M, d, m).

Analogous statements hold for Curv lax( · ) and Curv loc( · ).
Proof. Clearly,

Ent(ν |βm) = Ent(ν |m)−log β and (α ·d)W (ν0, ν1) =α ·dW (ν0, ν1).

Proposition 4.14. (Weighted spaces) For each metric measure space (M, d, m) and
each lower bounded, measurable function V : M!R, we have

Curv(M, d, e−V m) � Curv(M, d, m)+Hess V,

where Hess V := sup{K∈R: V is K-convex on supp[m]}. If V is locally bounded from
below then an analogous statement holds for Curv loc( · ).

Recall that a function V : M! ]−∞, +∞], defined on a geodesic space M , is called
K-convex, for some K∈R, if for each geodesic γ: [0, 1]!M and for each t∈[0, 1] the
following holds:

V (γ(t)) � (1−t)V (γ(0))+tV (γ(1))−K

2
t(1−t)d2(γ(0), γ(1)). (4.18)

Proof. A simple calculation yields

Ent
(
ν
∣∣ e−V m

)
= Ent(ν |m)+

∫
V dν.

Moreover, P∗
2 (M, d, e−V m)⊂P∗

2 (M, d, m) by the lower boundedness of V . Now put K0 :=
Curv(M, d, m) and K1 := Hess V . Given any geodesic Γ∈P∗

2 (M, d, m) and any t∈[0, 1],
choose an optimal coupling q̂ on M3 with marginals Γ(0), Γ(t) and Γ(1) in the sense of
Lemma 2.11 (ii). Then

Ent(Γ(t) | e−V m)−(1−t)Ent(Γ(0) | e−V m)−tEnt(Γ(1) | e−V m)

= Ent(Γ(t) |m)−(1−t)Ent(Γ(0) |m)−tEnt(Γ(1) |m)

+
∫

M

V dΓ(t)−(1−t)
∫

M

V dΓ(0)−t

∫
M

V dΓ(1)

= Ent(Γ(t) |m)−(1−t)Ent(Γ(0) |m)−tEnt(Γ(1) |m)

+
∫

M3

[
V (xt)−(1−t)V (x0)−V (x1)

]
dq̂(x0, xt, x1)

(∗)
� −K0

2
t(1−t)d2

W (Γ(0), Γ(1))−
∫

M3

K1

2
t(1−t)d2(x0, x1) dq̂(x0, xt, x1)

=−K0+K1

2
t(1−t)d2

W (Γ(0), Γ(1)).
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The inequality (∗) follows from K1-convexity of V , since for q̂-a.e. (x0, xt, x1) the point
xt lies on a geodesic connecting x0 and x1 (Lemma 2.11 (ii)).

Proposition 4.15. (Subsets) Let (M, d, m) be a metric measure space and let M ′

be a convex subset of M . Then

Curv(M ′, d, m) � Curv(M, d, m).

Here a set M ′⊂M is called convex if and only if γt∈M ′ for all t∈[0, 1] and all
geodesics γ: [0, 1]!M with endpoints γ0, γ1∈M ′.

Proof. Let ν0 and ν1 be probability measures in P∗
2 (M ′, d, m). Regard them as

probability measures on M . Let Γ be a geodesic in P∗
2 (M, d, m) connecting them and

satisfying (4.10). It remains to prove that for each t∈[0, 1] the measure Γ(t) is supported
by M ′, i.e.

Γ(t)(M \M ′) = 0.

According to Lemma 2.11 (ii), there exists an optimal coupling q̂ of Γ(0)=ν0, Γ(t) and
Γ(1)=ν1 such that for q̂-a.e. (x, z, y)∈M3 the point z lies on some geodesic connecting
the points x and y. But then q̂-almost surely z has to lie in M ′, since x and y lie in
M ′ and the latter is assumed to be convex. This proves that Γ(t)(M \M ′)=0 and thus
yields the claim for Curv(M ′, d, m).

Proposition 4.16. (Products) Let (Mi, di, mi) for i=1, ..., l be metric measure
spaces and

(M, d, m) =
l⊗

i=1

(Mi, di, mi).

Assume that M is non-branching and compact. Then

Curv(M, d, m) = inf
i∈{1,...,l}

Curv(Mi, di, mi). (4.19)

Proof. (i) Let us first prove the inequality

Curv(M, d, m) � inf
i∈{1,...,l}

Curv(Mi, di, mi).

Assume that this is not true. Then for some K∈R and i∈{1, ..., l},
Curv(M, d, m) � K > Curv(Mi, di, mi). (4.20)

Without restriction, we may assume that i=1. Then the last inequality implies that
there exist ν

(1)
0 , ν

(1)
1 ∈P∗

2 (M1, d1, m1) such that for each midpoint η(1) in P∗
2 (M1, d1, m1)

between ν
(1)
0 and ν

(1)
1 , the inequality (4.12) is violated, i.e.

Ent(η(1) |m1) >
1
2

Ent(ν(1)
0 |m1)+

1
2

Ent(ν(1)
1 |m1)−K

8
d2

W (ν(1)
0 , ν

(1)
1 ). (4.21)
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Now for j=0, 1 put νj := ν
(1)
j ⊗m2⊗...⊗ml with normalized measures mi=(1/mi(Mi))mi

for i=2, ..., l. Then obviously

Ent(νj |m) = Ent(ν(1)
j )−

l∑
i=2

log mi(Mi) (4.22)

and νj∈P∗
2 (M, d, m). Moreover

dW(ν0, ν1) = dW
1 (ν(1)

0 , ν
(1)
1 )

(where for typographical reasons, we replace the lower index ‘W ’ by an upper index,
again denoting the L2-Wasserstein distances derived from d and d1, respectively).

Now the first inequality in (4.20) implies that there exists a midpoint η of ν0 and ν1

satisfying (4.12). According to Remark 2.2, it implies that

dW(ν0, η)2+dW (η, ν1)2 � 1
2dW (ν0, ν1)2,

which in turn implies, for the first marginal η(1) of η, that

dW
1 (ν(1)

0 , η(1))2+dW
1 (η(1), ν

(1)
1 )2 � 1

2dW
1 (ν(1)

0 , ν
(1)
1 )2.

Again, according to Remark 2.2, this yields that η(1) is a midpoint of ν
(1)
0 and ν

(1)
1 . But

(4.21) and (4.22) imply that (4.12) is violated, contradicting our previous assertion. Thus
Curv(M, d, m)<K, which proves our first claim.

(ii) To prove the reverse implication, we start with treating the particular case
ν0=ν

(1)
0 ⊗...⊗ν

(l)
0 and ν1=ν

(1)
1 ⊗...⊗ν

(l)
1 . Assume that Curv(Mi, di, mi)�K for each

i= 1, ..., l. Then for each i there exists a midpoint η(i) of ν
(i)
0 and ν

(i)
1 with

Ent(η(i) |mi) � 1
2

Ent(ν(i)
0 |m)+

1
2

Ent(ν(i)
1 |m)−K

8
dW

i (ν(i)
0 , ν

(i)
1 )2.

Put η := η(1)⊗...⊗η(l). Then η is a midpoint of ν0 and ν1, since

dW (η, ν0)2 =
l∑

i=1

dW
i (η(i), ν

(i)
0 )2 �

l∑
i=1

[
1
2
dW

i (ν(i)
0 , ν

(i)
1 )
]2

=
[
1
2
dW(ν0, ν1)

]2
.

Moreover,

Ent(ν0 |m) =
l∑

i=1

Ent(ν(i)
0 |mi), Ent(ν1 |m) =

l∑
i=1

Ent(ν(i)
1 |mi)
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and

Ent(η |m) =
l∑

i=1

Ent(η(i) |mi).

Hence,

Ent(η |m) �
l∑

i=1

[
1
2

Ent(ν(i)
0 |m)+

1
2

Ent(ν(i)
1 |m)−K

8
dW

i (ν(i)
0 , ν

(i)
1 )2
]

� 1
2

Ent(ν0 |m)+
1
2

Ent(ν1 |m)−K

8
dW(ν0, ν1)2.

This proves the claim in the particular case.
(iii) Now let arbitrary ν0, ν1∈P∗

2 (M, d, m) and ε>0 be given. Then there exist

ν̃0 =
1
n

n∑
j=1

ν0,j ,

with mutually singular product measures ν0,j , j=1, ..., n, and

ν̃1 =
1
n

n∑
j=1

ν1,j ,

with mutually singular product measures ν1,j , j=1, ..., n, such that

Ent(ν̃0 |m) � Ent(ν0 |m)+ε, dW(ν0, ν̃0) � ε,

Ent(ν̃1 |m) � Ent(ν1 |m)+ε, dW(ν1, ν̃1) � ε

and

dW(ν̃0, ν̃1) �
[

1
n

n∑
j=1

dW(ν0,j , ν1,j)2
]1/2

−ε.

Furthermore, since ν0 is the sum of mutually singular ν0,j ,

Ent(ν̃0 |m) =
1
n

n∑
j=1

Ent(ν0,j |m)−log n

and, similarly,

Ent(ν̃1 |m) =
1
n

n∑
j=1

Ent(ν1,j |m)−log n.

According to part (ii), for each j=1, ..., n there exists a midpoint ηj of ν0,j and ν1,j

satisfying

Ent(ηj |m) � 1
2

Ent(ν0,j |m)+
1
2

Ent(ν1,j |m)−K

8
dW(ν0,j , ν1,j)2.
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According to Lemma 2.11 (iii), since M is non-branching and since the ν0,j for j=1, ..., n

are mutually singular, also the ηj for j=1, ..., n must be mutually singular. Hence,

η :=
1
n

n∑
j=1

ηj

satisfies

Ent(η |m) =
1
n

n∑
j=1

Ent(ηj |m)−log n

and thus

Ent(η |m) � 1
2

Ent(ν̃0 |m)+
1
2

Ent(ν̃1 |m)−K

8
1
n

n∑
j=1

dW(ν0,j , ν1,j)2

� 1
2

Ent(ν0 |m)+
1
2

Ent(ν1 |m)−K

8
[dW(ν0, ν1)∓3ε]2+ε

(with ∓ to be chosen according to the sign of K). Moreover, η is an approximate midpoint
of ν0 and ν1:

2dW(ν0, η) � 2
[

1
n

n∑
j=1

dW(ν0,j , ηj)2
]1/2

�
[

1
n

n∑
j=1

dW(ν0,j , ν1,j)2
]1/2

� dW(ν̃0, ν̃1)+ε � dW(ν0, ν1)+3ε

and similarly for dW(ν1, η). This proves that Curv lax(M, d, m)�K. Together with com-
pactness of M this finally yields the claim.

4.4. From local to global

A crucial implication of our definition of lower curvature bounds for metric measure
spaces is the following globalization theorem which states that local curvature bounds
imply global curvature bounds. This is in the spirit of the globalization theorem of
Toponogov for lower curvature bounds (in the sense of Alexandrov) for metric spaces.

Theorem 4.17. (Globalization) Let (M, d, m) be a compact, non-branching metric
measure space and assume that P∗

2 (M, d, m) is a geodesic space. Then

Curv(M, d, m) = Curv loc(M, d, m). (4.23)
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Proof. Put K= Curv loc(M, d, m) and consider for each number k∈N∪{0} the fol-
lowing property:

C(k): For each geodesic Γ: [0, 1]!P∗
2 (M, d, m) and for each pair s, t∈[0, 1] with

0�t−s�2−k there exists a midpoint η(s, t) of Γ(s) and Γ(t) such that

Ent(η(s, t) |m) � 1
2

Ent(Γ(s) |m)+
1
2

Ent(Γ(t) |m)−K

8
d2

W (Γ(s), Γ(t)). (4.24)

Our first claim is:

For each k∈N, C(k) implies C(k−1).

In order to prove this claim, let k∈N be given with property C(k), and let a geodesic
Γ and numbers s, t∈[0, 1] be given with 0�t−s�21−k. Define iteratively a sequence
(Γ(i))i∈N of geodesics in P∗

2 (M, d, m) which coincide with Γ on [0, s]∪[t, 1] as follows:
start with Γ(0) := Γ; assuming that Γ(2i) is already given, let Γ(2i+1): [0, 1]!P∗

2 (M, d, m)
be any geodesic which coincides with Γ on [0, s]∪[t, 1] and for which Γ(2i+1)(s+(t−s)/4)
is a midpoint of Γ(s)=Γ(2i)(s) and Γ(2i)(s+(t−s)/2), and for which Γ(2i+1)(s+3(t−s)/4)
is a midpoint of Γ(2i)(s+(t−s)/2) and Γ(t)=Γ(2i)(t) satisfying

Ent
(

Γ(2i+1)

(
s+

t−s

4

) ∣∣∣∣m)� 1
2

Ent(Γ(s) |m)

+
1
2

Ent
(

Γ(2i)

(
s+

t−s

2

) ∣∣∣∣m)− K

32
d2

W (Γ(s), Γ(t))

(4.25)

and

Ent
(

Γ(2i+1)

(
s+3

t−s

4

) ∣∣∣∣m)� 1
2

Ent(Γ(t) |m)

+
1
2

Ent
(

Γ(2i)

(
s+

t−s

2

) ∣∣∣∣m)− K

32
d2

W (Γ(s), Γ(t)).

(4.26)

Such midpoints exist by the assumption C(k).
Then let Γ(2i+2): [0, 1]!P∗

2 (M, d, m) be any geodesic which coincides with Γ on
[0, s]∪[t, 1] and for which Γ(2i+2)(s+(t−s)/2) is a midpoint of Γ(2i+1)(s+(t−s)/4) and
Γ(2i+1)(s+3(t−s)/4) satisfying

Ent
(

Γ(2i+2)

(
s+

t−s

2

) ∣∣∣∣m)� 1
2

Ent
(

Γ(2i+1)

(
s+

t−s

4

) ∣∣∣∣m)
+

1
2

Ent
(

Γ(2i+1)

(
s+3

t−s

4

) ∣∣∣∣m)
− K

32
d2

W (Γ(s), Γ(t)).

(4.27)
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Again, such a midpoint exists by the assumption C(k). This yields a sequence of
geodesics Γ(i), i∈N.

Combining (4.25)–(4.27) gives

Ent
(

Γ(2i+2)

(
s+

t−s

2

) ∣∣∣∣m)� 1
2

Ent
(

Γ(2i)

(
s+

t−s

2

) ∣∣∣∣m)
+

1
4

Ent(Γ(s) |m)+
1
4

Ent(Γ(t) |m)− K

16
d2

W (Γ(s), Γ(t)).

By iteration, it yields

Ent
(

Γ(2i)

(
s+

t−s

2

) ∣∣∣∣m)� 2−i Ent
(

Γ
(

s+
t−s

2

) ∣∣∣∣m)
+(1−2−i)

[
1
2

Ent(Γ(s) |m)+
1
2

Ent(Γ(t) |m)−K

8
d2

W (Γ(s), Γ(t))
]
.

By compactness of P2(M, d), there exists a subsequence of (Γ(2i)(s+(t−s)/2))i∈N con-
verging to some η∈P2(M, d). Continuity of the distance implies that η is a midpoint of
Γ(s) and Γ(t) (since each of the Γ(2i)(s+(t−s)/2) is a midpoint) and lower semicontinuity
of the relative entropy implies

Ent(η |m) � 1
2

Ent(Γ(s) |m)+
1
2

Ent(Γ(t) |m)−K

8
d2

W (Γ(s), Γ(t)).

This proves property C(k−1).
Now, according to our curvature assumption, each point x∈M has a neighborhood

M(x) such that probability measures in P∗
2 (M, d, m) which are supported on M(x) can

be joined by geodesics in P∗
2 (M, d, m) satisfying (4.10). By compactness of M , there exist

λ>0, finitely many disjoint sets L1, ..., Ln which cover M , and closed sets Mj⊃Bλ(Lj),
for j=1, ..., n, such that probability measures in P∗

2 (M, d, m) which are supported on Mj

can be joined by geodesics in P∗
2 (M, d, m) satisfying (4.10). Choose k′∈N such that

2−k′
diam(M, d, m) � λ. (4.28)

Our next claim is:

Property C(k′) is satisfied.

In order to prove this claim, fix Γ, s and t, and let q̂ be a coupling of Γ(0), Γ(s),
Γ(t) and Γ(1) on M4. Then, according to Lemma 2.11, for q̂-a.e. (x0, xs, xt, x1)∈M4 the
points xs and xt lie on some geodesic connecting x0 and x1 with

d(xs, xt) = |t−s|d(x0, x1) � 2−k′
diam(M, d, m) � λ, (4.29)
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by (4.28). Define probability measures Γj(s) and Γj(t), for j=1, ..., n, by

Γj(s)(A) :=
1
αj

Γ(s)(A∩Lj) =
1
αj

q̂(M×(A∩Lj)×M×M)

and
Γj(t)(A) :=

1
αj

q̂(M×Lj×A×M),

provided αj := Γs(Lj) �=0. (Otherwise, define Γj(s) and Γj(t) arbitrarily.) Then

supp[Γj(s)]⊂ L̄j

which, together with (4.29), implies that

supp[Γj(s)]∪supp[Γj(t)]⊂Bλ(Lj)⊂Mj . (4.30)

Therefore, for each j∈{1, ..., n}, the assumption Curv loc(M, d, m)�K can be applied to
the probability measures Γj(s), Γj(t)∈P∗

2 (M, d, m), both supported on Mj . It yields the
existence of a midpoint ηj(s, t) of them with the property

Ent(ηj(s, t) |m) � 1
2

Ent(Γj(s) |m)+
1
2

Ent(Γj(t) |m)−K

8
d2

W (Γj(s), Γj(t)). (4.31)

Define

η(s, t) :=
n∑

j=1

αjηj(s, t).

Then η(s, t) is a midpoint of Γ(s)=
∑n

j=1 αjΓj(s) and Γ(t)=
∑n

j=1 αjΓj(t). Moreover,
since the Γj(s), for j=1, ..., n, are mutually singular and since M is non-branching, also
the ηj(s, t), for j=1, ..., n, are mutually singular (see Lemma 2.11 (iii)). Hence, by (4.6),

Ent(η(s, t) |m) =
n∑

j=1

αj Ent(ηj(s, t) |m)+
n∑

j=1

αj log αj (4.32)

and

Ent(Γ(s) |m) =
n∑

j=1

αj Ent(Γj(s) |m)+
n∑

j=1

αj log αj , (4.33)

whereas

Ent(Γ(t) |m) �
n∑

j=1

αj Ent(Γj(t) |m)+
n∑

j=1

αj log αj , (4.34)

since the Γj(t), for j=1, ..., n, are not necessarily mutually singular. Summing up (4.31)
over j=1, ..., n and using (4.32)–(4.34) yields (4.24). This proves property C(k′).
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In order to finish the proof of the theorem, let two probability measures ν0, ν1∈
P∗

2 (M, d, m) be given. By assumption, there exists a geodesic Γ in P∗
2 (M, d, m) connect-

ing them. According to our second claim, property C(k′) is satisfied and according to our
first claim, this implies property C(k) for all k=k′−1, k′−2, ..., 0. Property C(0) finally
states that there exists a midpoint η of Γ(0) and Γ(1) with

Ent(η |m) � 1
2

Ent(Γ(0) |m)+
1
2

Ent(Γ(1) |m)−K

8
d2

W (Γ(0), Γ(1)). (4.35)

This proves the theorem.

Remark 4.18. Let M be a compact space.
(i) The condition on P∗

2 (M, d, m) to be a geodesic space is always satisfied if
Curv(M, d, m)>−∞ (Remark 4.6 (iii)).

(ii) If P∗
2 (M, d, m) is a geodesic space then supp[m] is a geodesic space. The converse

is not true in general; however, we conjecture that it is true under the additional
assumption Curv loc(M, d, m)>−∞.

(iii) If M0 := supp[m] is a geodesic space then P2(M0, d) is a geodesic space . More-
over, the space P∗

2 (M0, d, m) is dense in P2(M0, d). Indeed, given any µ∈P2(M0, d) and
any ε>0 there exist n∈N and x1, ..., xn∈M0 such that dW (µ, µ′)�ε, where

µ′ :=
1
n

n∑
i=1

δxi
.

Moreover, dW (µ′, µ′′)�ε, where

µ′′ :=
1
n

n∑
i=1

1
m(Bε(xi))

·1Bε(xi) m

and

Ent(µ′′ |m) � sup
x∈M0

log
[

1
n

n∑
i=1

1
m(Bε(xi))

·1Bε(xi)(x)
]

�− inf
i∈{1,...,n}

log m(Bε(xi)) <∞.

That is, µ′′∈P∗
2 (M0, d, m) and dW (µ, µ′′)�2ε, which proves the density.

4.5. Stability under convergence

One of the most important results in this paper is that our curvature bounds for metric
measure spaces are stable under convergence. The key to this result is the fact that we
are able to construct a transformation Q′ from the L2-Wasserstein space over one metric
measure space (M, d, m) to the L2-Wasserstein space over any other metric measure space
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(M ′, d′, m′) which reduces the relative entropy and which is almost an isometry between
these spaces, provided the underlying spaces are close to each other in the metric D.

Actually, this is quite easy in the particular case where m is the push-forward of m′

under a map ψ′: M ′!M . In this case we can define (similarly to the construction in the
proof of Proposition 4.12)

Q′:P2(M, d, m)−!P2(M ′, d′, m′)

�m �−! (� ψ′)m′.

The general case is more subtle, since we may not restrict ourselves to transformations
derived from push-forward maps. For instance, if m′ is the Riemannian measure of a col-
lapsed space, then the Riemannian measure m of the initial space cannot be represented
as a push-forward measure.

Given two normalized metric measure spaces (M, d, m) and (M ′, d′, m′) we will
define a canonical map

Q′:P2(M, d, m)−!P2(M ′, d′, m′)

as follows: Let q be a coupling of m and m′ and d̂ be a coupling of d and d′ such that∫
d̂
2
(x, x′) dq(x, x′) � 2D2((M, d, m), (M ′, d′, m′)).

Let Q′ and Q be the disintegrations of q with respect to m′ and m, respectively, that is,

dq(x, x′) =Q′(x′, dx) dm′(x′) =Q(x, dx′) dm(x)

and let L̂ denote the m-essential supremum of the map

x �−!
[∫

M ′
d̂
2
(x, x′) Q(x, dx′)

]1/2

.

In general, of course, L̂ may attain the value ∞. However, if both metric measure spaces
have finite diameter we have

L̂ � diam(M, d, m)+diam(M ′, d′, m′) <∞.

For ν=�m∈P2(M, d, m) define Q′(ν)∈P2(M ′, d′, m′) by Q′(ν):= �′m′, where

�′(x′) :=
∫

M

�(x)Q′(x′, dx). (4.36)
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In other words, for all measurable A⊂M ′,

Q′(ν)(A) =
∫

M ′
1A(x′)�′(x′) dm′(x′)

=
∫

M ′

∫
M

1A(x′)�(x)Q′(x′, dx) dm′(x′)

=
∫

M×M ′
1A(x′)�(x) dq(x, x′).

Lemma 4.19. The map Q′ defined as above satisfies Q′(m)=m′ and, for all ν=�m,

Ent(Q′(ν) |m′) � Ent(ν |m) (4.37)

and

d2
W (ν, Q′(ν)) � 2+L̂2 Ent(ν |m)

− log D((M, d, m), (M ′, d′, m′))
(4.38)

provided D((M, d, m), (M ′, d′, m′))<1.

Proof. Inequality (4.37) is a consequence of Jensen’s inequality, applied to the convex
function r �!r log r, as follows

Ent(Q′(ν) |m′) =
∫

�′ log �′ dm′

=
∫ [∫

�(x)Q′(x′, dx)
]

log
[∫

�(x)Q′(x′, dx)
]

dm′(x′)

�
∫∫

�(x) log �(x)Q′(x′, dx) dm′(x′)

=
∫

�(x) log �(x) dm(x)

= Ent(ν |m).

Inequality (4.38) follows from the fact that the measure

�(x) dq(x, x′) = �(x)Q(x, dx′) dm(x)

is a coupling of �(x) dm(x) and

�′(x′) dm′(x′) =
∫

M

�(x)Q′(x′, dx) dm′(x′) =
∫

M

�(x) dq(x, x′)

and thus
d2

W (�m, �′m′) �
∫∫

d̂
2
(x, x′)Q(x, dx′)�(x) dm(x) =: Φ(�).
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Now, again with Jensen’s inequality applied to the convex function ψ(r):= r log r,

ψ

(
Φ(�)
Φ(1)

)
� 1

Φ(1)

∫∫
d̂
2
(x, x′)Q(x, dx′)ψ(�(x)) dm(x) � L̂2

Φ(1)
Ent(ν |m).

Hence, since by assumption Φ(1)�2D((M, d, m), (M ′, d′, m′))<2,

d2
W (�m, �′m′) � Φ(�)

� Φ(1)ψ−1(L̂2 Ent(ν |m)/Φ(1))

� Φ(1)ψ−1([2+L̂2 Ent(ν |m)]/Φ(1))

=
2+L̂2 Ent(ν |m)

log ψ−1([2+L̂2 Ent(ν |m)]/Φ(1))

� 2
2+L̂2 Ent(ν |m)

log([2+L̂2 Ent(ν |m)]/Φ(1))

� 2
2+L̂2 Ent(ν |m)

log([2+L̂2 Ent(ν |m)]/2D2)

� 2+L̂2 Ent(ν |m)
− log D

,

where we have used the abbreviation D:= D((M, d, m), (M ′, d′, m′)).

Theorem 4.20. (Convergence) Let ((Mn, dn, mn))n∈N be a sequence of normalized
metric measure spaces with uniformly bounded diameter. If

(Mn, dn, mn) D−−! (M, d, m)

as n!∞, then
lim sup

n!∞
Curv lax(Mn, dn, mn) � Curv lax(M, d, m).

In particular, for each K∈R and L∈R+ the family X1(K, L) of isomorphism classes of
normalized metric measure spaces with curvature �K in the lax sense and diameter �L

is closed with respect to D.

Remarks. (i) As an obvious corollary to Theorem 4.20 and Lemma 3.18 we ob-
tain that our curvature bounds are also preserved under measured Gromov–Hausdorff
convergence. As usual, of course, then one has to restrict to compact spaces.

(ii) Another corollary (to Theorems 4.20 and 3.16) is that for each triple of real
numbers K, C and L the family of all isomorphism classes of normalized metric measure
spaces with curvature �K, doubling constant �C and diameter �L is D-compact.
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Proof of Theorem 4.20. Let ((Mn, dn, mn))n∈N be a sequence in (X1,D) with

(Mn, dn, mn)−! (M, d, m)

and assume that diam(M, d, m)�L and Curv lax(Mn, dn, mn)�K for some L, K∈R and
all sufficiently large n∈N. Now let ε>0 and ν0=�0m, ν1=�1m∈P∗

2 (M, d, m) be given.
Choose R with

sup
i=0,1

Ent(νi |m)+
|K|
8

[dW (ν0, ν1)+2ε]2+ε � R. (4.39)

We have to deduce the existence of an ε-midpoint η which satisfies inequality (4.11).
Choose n∈N with

D((Mn, dn, mn), (M, d, m)) � exp
(
−2+(L+L′)2R

ε2

)
. (4.40)

Define the map Q′
n:P2(M, d, m)!P2(Mn, dn, mn) as in the previous lemma, now with

mn in the place of m′, and analogously the map Qn:P2(Mn, dn, mn)!P2(M, d, m). Put

νi,n := Q′
n(νi) = �i,nmn,

with �i,n(y)=
∫

�i(x)Q′
n(y, dx) for i=0, 1, and let ηn be an ε-midpoint of ν0,n and ν1,n,

with

Ent(ηn |mn) � 1
2

Ent(ν0,n |mn)+
1
2

Ent(ν1,n |mn)−K

8
d2

W (ν0,n, ν1,n)+ε. (4.41)

From (4.38)–(4.40) we conclude that

d2
W (ν0, ν0,n) � 2+L̂2 Ent(ν0 |m)

− log D((M, d, m), (Mn, dn, mn))

� 2+(L+L′)2R
− log D((M, d, m), (Mn, dn, mn))

� ε2

and analogously d2
W (ν1, ν1,n)�ε2. Moreover, (4.37) and (4.41) imply

Ent(ηn |mn) � 1
2

Ent(ν0,n |mn)+
1
2

Ent(ν1,n |mn)−K

8
d2

W (ν0,n, ν1,n)+ε

� 1
2

Ent(ν0 |m)+
1
2

Ent(ν1 |m)−K

8
d2

W (ν0, ν1)+ε′,

with ε′=[1+(|K|/2)(dW (ν0, ν1)+ε)]ε. Finally, put

η = Qn(ηn).
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Then again by (4.38)–(4.40) and by the previous estimate for Ent(ηn |m),

d2
W (ηn, η) � 2+L̂2 Ent(ηn |m)

− log D((M, d, m), (Mn, dn, mn))

� 2+(L+L′)2R
− log D((M, d, m), (Mn, dn, mn))

� ε2.

Hence,

sup
i=0,1

dW (η, νi) � 1
2
dW (ν0, ν1)+4ε,

i.e. η is a 4ε-midpoint of ν0 and ν1. Furthermore, by (4.37),

Ent(η |m) � Ent(ηn |mn) � 1
2

Ent(ν0 |m)+
1
2

Ent(ν1 |m)−K

8
d2

W (ν0, ν1)+ε′,

with ε′ as above. This proves that Curv lax(M, d, m)�K.

As an immediate consequence of Theorem 4.20, together with Proposition 4.16, we
obtain the following result.

Corollary 4.21. (Infinite products) Let

(M, d, m) =
⊗
n∈N

(Mn, dn, mn),

where (Mn, dn, mn) for n∈N are normalized metric measure spaces with compact non-
branching Mn. Assume that

∑
n∈N Var(Mn, dn, mn)<∞. Then

Curv(M, d, m) = inf
n∈N

Curv(Mn, dn, mn).

Important infinite-dimensional examples are given by abstract Wiener spaces. Let
(M, H, m) be an abstract Wiener space, that is, M is a separable Banach space, m is a
Gaussian measure on M , and H is a separable Hilbert space that is continuously and
densely embedded in M , such that∫

M

exp(i〈x, y〉) dm(x) = exp
(− 1

2‖y‖2
H

)
for any y∈M∗⊂H (where we identify H with its dual). For the classical Wiener space,
M=C(R+,R) is the path space of 1-dimensional Brownian motion,

H = {u∈M : u is absolutely continuous with
∫
R+

|u̇(t)|2 dt <∞}

is the Cameron–Martin space, and m is the Wiener measure.
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Given any abstract Wiener space (M, H, m), define a pseudo-metric on M by

d(x, y) :=
{ ‖x−y‖H , if x−y ∈H,

∞, otherwise,

and consider the pseudo-metric measure space (M, d, m). Of course, formally this does
not fit in our framework. Nevertheless, the definition of the L2-Wasserstein distance dW

derived from this pseudo-metric d perfectly makes sense. It is a pseudo-metric on the
space of probability measures on M and a metric on the subspace of all those probability
measures which have finite dW -distance from m. Also, the relative entropy Ent( · |m)
and the curvature bound Curv(M, d, m) are well defined. Particular attention, however,
has to be paid to the fact that dW is not continuous with respect to the weak topology
of measures on M ; it behaves very singular. For a detailed analysis, we refer to [17] and
[18]. Here we restrict ourselves to the following result.

Proposition 4.22. (Wiener space)

Curv lax(M, d, m) � 1.

Proof. Let ν0, ν1∈P∗
2 (M, d, m) and ε>0 be given. Choose an increasing (total)

sequence (Mn)n∈N of regular finite-dimensional subspaces with
⋃

n∈N Mn being dense in
M and H. Let mn, ν0,n and ν1,n be the image measures of m, ν0 and ν1, respectively,
under the projections πn: M!Mn. Then

dW (ν0,n, ν0)! 0, dW (ν1,n, ν1)! 0

and
Ent(ν0,n |mn)! Ent(ν0 |m), Ent(ν1,n |mn)! Ent(ν1 |m)

as n!∞. The space (Mn, Mn, mn) is a finite-dimensional abstract Wiener space. Thus,
it is isomorphic to (RN ,RN , exp(−‖x‖2/2) dx) for some N=N(n)∈N (where dx denotes
the Lebesgue measure in RN ). Hence, according to Theorem 4.9,

Curv(Mn, d, mn) = 1.

Thus, for each n∈N, there exists a midpoint ηn of ν0,n and ν1,n with

Ent(ηn |m) = Ent(ηn |mn)

� 1
2

Ent(ν0,n |mn)+
1
2

Ent(ν1,n |mn)−K

8
d2

W (ν0,n, ν1,n)

� 1
2

Ent(ν0 |m)+
1
2

Ent(ν1 |m)−K

8
d2

W (ν0, ν1)+ε

for n large enough. This proves the claim, since ηn is an ε-midpoint of ν0 and ν1 (again,
for large enough n).
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4.6. Volume growth estimates

In the Riemannian setting, it is well known that lower bounds for the Ricci curvature of
the underlying space imply upper bounds for the growth

R �−!m(BR(x))

of the volume of concentric balls. In particular, this growth is at most exponential in R.
This is the content of the well-known Bishop volume estimate.

Also, for general metric measure spaces, lower bounds for the curvature will imply
upper estimates for the volume growth of concentric balls. These estimates, however, have
to take into account that in the general case (without any dimensional restriction) the
volume can grow much faster than exponentially. For instance, already in the following
standard example we observe squared exponential volume growth.

Example 4.23. Let (M, d) be the 1-dimensional Euclidean space equipped with the
measure dm(x)=exp(−(K/2)x2) dx for some K∈R. Then Curv(M, d, m)=K and, if
K<0,

m(BR(x)) � exp
( |K|

2

(
R− 1

2

)2)
for each x∈M and R� 1

2 .

Theorem 4.24. Let (M, d, m) be an arbitrary metric measure space satisfying
Curv(M, d, m)�K for some K�0. For fixed x∈supp[m]⊂M consider the volume growth

vR := m(BR(x))

of closed balls centered at x. Then for all R�2ε>0,

vR � v2ε

(
v2ε

vε

)R/ε

exp
( |K|

2

(
R+

ε

2

)2)
. (4.42)

In particular, each ball in M has finite volume.

Proof. Apply the following lemma with r=ε.

Lemma 4.25. Let (M, d, m), K and x be as in the above theorem. Then for all
ε, R>0 and all t∈ ]0, 1],

log vR � 1
t

log vε+t(R+ε)+
(

1− 1
t

)
log vε+

|K|
2

(1−t)(R+ε)2. (4.43)

In other words, for all ε, r>0 and all R>ε+r,

vR � vε

(
vε+r

vε

)(R+ε)/r

exp
( |K|

2
(R+ε−r)(R+ε)

)
. (4.44)
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Proof. Fix x∈supp[m] and ε, R>0. Let ν0 and ν1 denote the uniform distributions
in Bε(x) and BR(x), respectively. That is,

dν0(x) =
1
vε

·1Bε(x) dm(x) and dν1(x) =
1
vR

·1BR(x) dm(x).

Then, obviously, ν0, ν1∈P∗
2 (M, d, m), with

Ent(ν0 |m) =− log vε and Ent(ν1 |m) =− log vR.

Let νt, t∈[0, 1], be a geodesic in P∗
2 (M, d, m) connecting ν0 and ν1 such that

Ent(νt |m) � (1−t)Ent(ν0 |m)+tEnt(ν1 |m)−K

2
t(1−t)d2

W (ν0, ν1).

Such a geodesic exists according to our curvature assumption. Since dW (ν0, δx)�ε and
dW (ν1, δx)�R it follows that

dW (ν0, ν1) � R+ε. (4.45)

Moreover, if q̂ is an optimal coupling of ν0, νt and ν1, then for q̂-a.e. (y0, yt, y1) the
point yt lies on a geodesic connecting y0 and y1, with d(y0, yt)=td(y0, y1). Together with
inequality (4.45), the latter implies

supp[νt]⊂Bε+t(R+ε)(x). (4.46)

Now, according to Jensen’s inequality, for all νt satisfying (4.46),

Ent(νt |m) � Ent(mt |m),

where
mt :=

1
vε+t(R+ε)

1Bε+t(R+ε)(x)m

denotes uniform distribution in the closed ball Bε+t(R+ε)(x). Hence,

− log vε+t(R+ε) = Ent(mt |m)

� Ent(νt |m)

� (1−t)Ent(ν0 |m)+tEnt(ν1 |m)−K

2
t(1−t)d2

W (ν0, ν1)

�−(1−t) log vε−t log vR+
|K|
2

t(1−t)(R+ε)2.

This proves the first claim. For the second claim, choose t=r/(R+ε) and apply the first
claim.
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Slightly modifying the previous arguments also yields estimates for the volume of
spherical shells

vR,δ := m(BR(x)\BR−δ(x)).

Let ν1 denote uniform distribution in the shell BR(x)\BR−δ(x) and let ν0 (as before) be
uniform distribution in Bε(x). Then we now obtain

R−ε−δ � dW (ν0, ν1) � R+ε

and

supp[νt]⊂Bε+t(R+ε)(x)\BR−δ−(1−t)(R+ε) (4.47)

for the probability measures on the geodesic connecting ν0 and ν1. Hence, arguing
similarly as before, we deduce the following result.

Theorem 4.26. Let (M, d, m) be an arbitrary metric measure space with

Curv(M, d, m) � K

for some K∈R. For fixed x∈supp[m] consider vR,δ := m(BR(x)\BR−δ(x)). Then, for
all ε, δ, r>0 and all R>r>2ε+δ,

vR,δ � vε

(
vε+r,2ε+δ

vε

)(R+ε)/r

exp
(
−K

2

(
1− r

R+ε

)(
R− δ

2
± 2ε+δ

2

)2)
, (4.48)

where ± has to be chosen as + if K�0 and as − if K>0.

Choosing ε=δ=r/2, this yields, in the case K�0, for all R�3ε>0,

vR,ε � v3ε

(
v3ε

vε

)R/2ε

exp
(
−K

2
[(R−3ε)2−ε2]

)
. (4.49)

In particular, K>0 implies that m has finite mass and finite variance.

In general, estimating the volume of concentric balls in terms of squared exponen-
tial growing functions is best possible, as demonstrated in the previous example. In
the accompanying paper [53], we discuss metric measure spaces satisfying a so-called
curvature-dimension condition (K, N) (replacing the condition that the curvature is �K),
with some additional number N∈R+ playing the role of a dimension. We will prove that
under this condition the volume of balls grows at most exponentially.
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64–72 (Russian). English translation in Problems of Information Transmission, 5:3
(1969), 47–52.

Karl-Theodor Sturm
Institut für Angewandte Mathematik
Universität Bonn
Wegelerstrasse 6
DE-53115 Bonn
Germany
sturm@uni-bonn.de

Received October 29, 2004
Received in revised form January 11, 2006



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AardvarkPSMT
    /AceBinghamSH
    /AddisonLibbySH
    /AGaramond-Italic
    /AGaramond-Regular
    /AkbarPlain
    /Albertus-Bold
    /AlbertusExtraBold-Regular
    /AlbertusMedium-Italic
    /AlbertusMedium-Regular
    /AlfonsoWhiteheadSH
    /Algerian
    /AllegroBT-Regular
    /AmarilloUSAF
    /AmazoneBT-Regular
    /AmeliaBT-Regular
    /AmerigoBT-BoldA
    /AmerTypewriterITCbyBT-Medium
    /AndaleMono
    /AndyMacarthurSH
    /Animals
    /AnneBoleynSH
    /Annifont
    /AntiqueOlive-Bold
    /AntiqueOliveCompact-Regular
    /AntiqueOlive-Italic
    /AntiqueOlive-Regular
    /AntonioMountbattenSH
    /ArabiaPSMT
    /AradLevelVI
    /ArchitecturePlain
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialMTBlack-Regular
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeLight
    /ArialUnicodeLight-Bold
    /ArialUnicodeLight-BoldItalic
    /ArialUnicodeLight-Italic
    /ArrowsAPlentySH
    /ArrusBT-Bold
    /ArrusBT-BoldItalic
    /ArrusBT-Italic
    /ArrusBT-Roman
    /Asiana
    /AssadSadatSH
    /AvalonPSMT
    /AvantGardeITCbyBT-Book
    /AvantGardeITCbyBT-BookOblique
    /AvantGardeITCbyBT-Demi
    /AvantGardeITCbyBT-DemiOblique
    /AvantGardeITCbyBT-Medium
    /AvantGardeITCbyBT-MediumOblique
    /BankGothicBT-Light
    /BankGothicBT-Medium
    /Baskerville-Bold
    /Baskerville-Normal
    /Baskerville-Normal-Italic
    /BaskOldFace
    /Bauhaus93
    /Bavand
    /BazookaRegular
    /BeauTerrySH
    /BECROSS
    /BedrockPlain
    /BeeskneesITC
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BenguiatITCbyBT-Bold
    /BenguiatITCbyBT-BoldItalic
    /BenguiatITCbyBT-Book
    /BenguiatITCbyBT-BookItalic
    /BennieGoetheSH
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BernhardBoldCondensedBT-Regular
    /BernhardFashionBT-Regular
    /BernhardModernBT-Bold
    /BernhardModernBT-BoldItalic
    /BernhardModernBT-Italic
    /BernhardModernBT-Roman
    /Bethel
    /BibiGodivaSH
    /BibiNehruSH
    /BKenwood-Regular
    /BlackadderITC-Regular
    /BlondieBurtonSH
    /BodoniBlack-Regular
    /Bodoni-Bold
    /Bodoni-BoldItalic
    /BodoniBT-Bold
    /BodoniBT-BoldItalic
    /BodoniBT-Italic
    /BodoniBT-Roman
    /Bodoni-Italic
    /BodoniMTPosterCompressed
    /Bodoni-Regular
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolFive
    /BookshelfSymbolFour
    /BookshelfSymbolOne-Regular
    /BookshelfSymbolThree-Regular
    /BookshelfSymbolTwo-Regular
    /BookwomanDemiItalicSH
    /BookwomanDemiSH
    /BookwomanExptLightSH
    /BookwomanLightItalicSH
    /BookwomanLightSH
    /BookwomanMonoLightSH
    /BookwomanSwashDemiSH
    /BookwomanSwashLightSH
    /BoulderRegular
    /BradleyHandITC
    /Braggadocio
    /BrailleSH
    /BRectangular
    /BremenBT-Bold
    /BritannicBold
    /Broadview
    /Broadway
    /BroadwayBT-Regular
    /BRubber
    /Brush445BT-Regular
    /BrushScriptMT
    /BSorbonna
    /BStranger
    /BTriumph
    /BuckyMerlinSH
    /BusoramaITCbyBT-Medium
    /Caesar
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-Italic
    /CalligrapherRegular
    /CameronStendahlSH
    /Candy
    /CandyCaneUnregistered
    /CankerSore
    /CarlTellerSH
    /CarrieCattSH
    /CaslonOpenfaceBT-Regular
    /CassTaylorSH
    /CDOT
    /Centaur
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturyOldStyle-BoldItalic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Cezanne
    /CGOmega-Bold
    /CGOmega-BoldItalic
    /CGOmega-Italic
    /CGOmega-Regular
    /CGTimes-Bold
    /CGTimes-BoldItalic
    /CGTimes-Italic
    /CGTimes-Regular
    /Charting
    /ChartreuseParsonsSH
    /ChaseCallasSH
    /ChasThirdSH
    /ChaucerRegular
    /CheltenhamITCbyBT-Bold
    /CheltenhamITCbyBT-BoldItalic
    /CheltenhamITCbyBT-Book
    /CheltenhamITCbyBT-BookItalic
    /ChildBonaparteSH
    /Chiller-Regular
    /ChuckWarrenChiselSH
    /ChuckWarrenDesignSH
    /CityBlueprint
    /Clarendon-Bold
    /Clarendon-Book
    /ClarendonCondensedBold
    /ClarendonCondensed-Bold
    /ClarendonExtended-Bold
    /ClassicalGaramondBT-Bold
    /ClassicalGaramondBT-BoldItalic
    /ClassicalGaramondBT-Italic
    /ClassicalGaramondBT-Roman
    /ClaudeCaesarSH
    /CLI
    /Clocks
    /ClosetoMe
    /CluKennedySH
    /CMBX10
    /CMBX5
    /CMBX7
    /CMEX10
    /CMMI10
    /CMMI5
    /CMMI7
    /CMMIB10
    /CMR10
    /CMR5
    /CMR7
    /CMSL10
    /CMSY10
    /CMSY5
    /CMSY7
    /CMTI10
    /CMTT10
    /CoffeeCamusInitialsSH
    /ColetteColeridgeSH
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CommercialPiBT-Regular
    /CommercialScriptBT-Regular
    /Complex
    /CooperBlack
    /CooperBT-BlackHeadline
    /CooperBT-BlackItalic
    /CooperBT-Bold
    /CooperBT-BoldItalic
    /CooperBT-Medium
    /CooperBT-MediumItalic
    /CooperPlanck2LightSH
    /CooperPlanck4SH
    /CooperPlanck6BoldSH
    /CopperplateGothicBT-Bold
    /CopperplateGothicBT-Roman
    /CopperplateGothicBT-RomanCond
    /CopticLS
    /Cornerstone
    /Coronet
    /CoronetItalic
    /Cotillion
    /CountryBlueprint
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /CSSubscript
    /CSSubscriptBold
    /CSSubscriptItalic
    /CSSuperscript
    /CSSuperscriptBold
    /Cuckoo
    /CurlzMT
    /CybilListzSH
    /CzarBold
    /CzarBoldItalic
    /CzarItalic
    /CzarNormal
    /DauphinPlain
    /DawnCastleBold
    /DawnCastlePlain
    /Dekker
    /DellaRobbiaBT-Bold
    /DellaRobbiaBT-Roman
    /Denmark
    /Desdemona
    /Diploma
    /DizzyDomingoSH
    /DizzyFeiningerSH
    /DocTermanBoldSH
    /DodgenburnA
    /DodoCasalsSH
    /DodoDiogenesSH
    /DomCasualBT-Regular
    /Durian-Republik
    /Dutch801BT-Bold
    /Dutch801BT-BoldItalic
    /Dutch801BT-ExtraBold
    /Dutch801BT-Italic
    /Dutch801BT-Roman
    /EBT's-cmbx10
    /EBT's-cmex10
    /EBT's-cmmi10
    /EBT's-cmmi5
    /EBT's-cmmi7
    /EBT's-cmr10
    /EBT's-cmr5
    /EBT's-cmr7
    /EBT's-cmsy10
    /EBT's-cmsy5
    /EBT's-cmsy7
    /EdithDaySH
    /Elephant-Italic
    /Elephant-Regular
    /EmGravesSH
    /EngelEinsteinSH
    /English111VivaceBT-Regular
    /English157BT-Regular
    /EngraversGothicBT-Regular
    /EngraversOldEnglishBT-Bold
    /EngraversOldEnglishBT-Regular
    /EngraversRomanBT-Bold
    /EngraversRomanBT-Regular
    /EnviroD
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /ErasITC-Ultra
    /ErnestBlochSH
    /EstrangeloEdessa
    /Euclid
    /Euclid-Bold
    /Euclid-BoldItalic
    /EuclidExtra
    /EuclidExtra-Bold
    /EuclidFraktur
    /EuclidFraktur-Bold
    /Euclid-Italic
    /EuclidMathOne
    /EuclidMathOne-Bold
    /EuclidMathTwo
    /EuclidMathTwo-Bold
    /EuclidSymbol
    /EuclidSymbol-Bold
    /EuclidSymbol-BoldItalic
    /EuclidSymbol-Italic
    /EuroRoman
    /EuroRomanOblique
    /ExxPresleySH
    /FencesPlain
    /Fences-Regular
    /FifthAvenue
    /FigurineCrrCB
    /FigurineCrrCBBold
    /FigurineCrrCBBoldItalic
    /FigurineCrrCBItalic
    /FigurineTmsCB
    /FigurineTmsCBBold
    /FigurineTmsCBBoldItalic
    /FigurineTmsCBItalic
    /FillmoreRegular
    /Fitzgerald
    /Flareserif821BT-Roman
    /FleurFordSH
    /Fontdinerdotcom
    /FontdinerdotcomSparkly
    /FootlightMTLight
    /ForefrontBookObliqueSH
    /ForefrontBookSH
    /ForefrontDemiObliqueSH
    /ForefrontDemiSH
    /Fortress
    /FractionsAPlentySH
    /FrakturPlain
    /Franciscan
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /FranklinUnic
    /FredFlahertySH
    /Freehand575BT-RegularB
    /Freehand591BT-RegularA
    /FreestyleScript-Regular
    /Frutiger-Roman
    /FTPMultinational
    /FTPMultinational-Bold
    /FujiyamaPSMT
    /FuturaBlackBT-Regular
    /FuturaBT-Bold
    /FuturaBT-BoldCondensed
    /FuturaBT-BoldItalic
    /FuturaBT-Book
    /FuturaBT-BookItalic
    /FuturaBT-ExtraBlack
    /FuturaBT-ExtraBlackCondensed
    /FuturaBT-ExtraBlackCondItalic
    /FuturaBT-ExtraBlackItalic
    /FuturaBT-Light
    /FuturaBT-LightItalic
    /FuturaBT-Medium
    /FuturaBT-MediumCondensed
    /FuturaBT-MediumItalic
    /GabbyGauguinSH
    /GalliardITCbyBT-Bold
    /GalliardITCbyBT-BoldItalic
    /GalliardITCbyBT-Italic
    /GalliardITCbyBT-Roman
    /Garamond
    /Garamond-Antiqua
    /Garamond-Bold
    /Garamond-Halbfett
    /Garamond-Italic
    /Garamond-Kursiv
    /Garamond-KursivHalbfett
    /Garcia
    /GarryMondrian3LightItalicSH
    /GarryMondrian3LightSH
    /GarryMondrian4BookItalicSH
    /GarryMondrian4BookSH
    /GarryMondrian5SBldItalicSH
    /GarryMondrian5SBldSH
    /GarryMondrian6BoldItalicSH
    /GarryMondrian6BoldSH
    /GarryMondrian7ExtraBoldSH
    /GarryMondrian8UltraSH
    /GarryMondrianCond3LightSH
    /GarryMondrianCond4BookSH
    /GarryMondrianCond5SBldSH
    /GarryMondrianCond6BoldSH
    /GarryMondrianCond7ExtraBoldSH
    /GarryMondrianCond8UltraSH
    /GarryMondrianExpt3LightSH
    /GarryMondrianExpt4BookSH
    /GarryMondrianExpt5SBldSH
    /GarryMondrianExpt6BoldSH
    /GarryMondrianSwashSH
    /Gaslight
    /GatineauPSMT
    /Gautami
    /GDT
    /Geometric231BT-BoldC
    /Geometric231BT-LightC
    /Geometric231BT-RomanC
    /GeometricSlab703BT-Bold
    /GeometricSlab703BT-BoldCond
    /GeometricSlab703BT-BoldItalic
    /GeometricSlab703BT-Light
    /GeometricSlab703BT-LightItalic
    /GeometricSlab703BT-Medium
    /GeometricSlab703BT-MediumCond
    /GeometricSlab703BT-MediumItalic
    /GeometricSlab703BT-XtraBold
    /GeorgeMelvilleSH
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansBC
    /GillSans-Bold
    /GillSans-BoldItalic
    /GillSansCondensed-Bold
    /GillSansCondensed-Regular
    /GillSansExtraBold-Regular
    /GillSans-Italic
    /GillSansLight-Italic
    /GillSansLight-Regular
    /GillSans-Regular
    /GoldMinePlain
    /Gonzo
    /GothicE
    /GothicG
    /GothicI
    /GoudyHandtooledBT-Regular
    /GoudyOldStyle-Bold
    /GoudyOldStyle-BoldItalic
    /GoudyOldStyleBT-Bold
    /GoudyOldStyleBT-BoldItalic
    /GoudyOldStyleBT-Italic
    /GoudyOldStyleBT-Roman
    /GoudyOldStyleExtrabold-Regular
    /GoudyOldStyle-Italic
    /GoudyOldStyle-Regular
    /GoudySansITCbyBT-Bold
    /GoudySansITCbyBT-BoldItalic
    /GoudySansITCbyBT-Medium
    /GoudySansITCbyBT-MediumItalic
    /GraceAdonisSH
    /Graeca
    /Graeca-Bold
    /Graeca-BoldItalic
    /Graeca-Italic
    /Graphos-Bold
    /Graphos-BoldItalic
    /Graphos-Italic
    /Graphos-Regular
    /GreekC
    /GreekS
    /GreekSans
    /GreekSans-Bold
    /GreekSans-BoldOblique
    /GreekSans-Oblique
    /Griffin
    /GrungeUpdate
    /Haettenschweiler
    /HankKhrushchevSH
    /HarlowSolid
    /HarpoonPlain
    /Harrington
    /HeatherRegular
    /Hebraica
    /HeleneHissBlackSH
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Narrow
    /Helvetica-Narrow-Bold
    /Helvetica-Narrow-BoldOblique
    /Helvetica-Narrow-Oblique
    /Helvetica-Oblique
    /HenryPatrickSH
    /Herald
    /HighTowerText-Italic
    /HighTowerText-Reg
    /HogBold-HMK
    /HogBook-HMK
    /HomePlanning
    /HomePlanning2
    /HomewardBoundPSMT
    /Humanist521BT-Bold
    /Humanist521BT-BoldCondensed
    /Humanist521BT-BoldItalic
    /Humanist521BT-Italic
    /Humanist521BT-Light
    /Humanist521BT-LightItalic
    /Humanist521BT-Roman
    /Humanist521BT-RomanCondensed
    /IBMPCDOS
    /IceAgeD
    /Impact
    /Incised901BT-Bold
    /Incised901BT-Light
    /Incised901BT-Roman
    /Industrial736BT-Italic
    /Informal011BT-Roman
    /InformalRoman-Regular
    /Intrepid
    /IntrepidBold
    /IntrepidOblique
    /Invitation
    /IPAExtras
    /IPAExtras-Bold
    /IPAHighLow
    /IPAHighLow-Bold
    /IPAKiel
    /IPAKiel-Bold
    /IPAKielSeven
    /IPAKielSeven-Bold
    /IPAsans
    /ISOCP
    /ISOCP2
    /ISOCP3
    /ISOCT
    /ISOCT2
    /ISOCT3
    /Italic
    /ItalicC
    /ItalicT
    /JesterRegular
    /Jokerman-Regular
    /JotMedium-HMK
    /JuiceITC-Regular
    /JupiterPSMT
    /KabelITCbyBT-Book
    /KabelITCbyBT-Ultra
    /KarlaJohnson5CursiveSH
    /KarlaJohnson5RegularSH
    /KarlaJohnson6BoldCursiveSH
    /KarlaJohnson6BoldSH
    /KarlaJohnson7ExtraBoldCursiveSH
    /KarlaJohnson7ExtraBoldSH
    /KarlKhayyamSH
    /Karnack
    /Kartika
    /Kashmir
    /KaufmannBT-Bold
    /KaufmannBT-Regular
    /KeplerStd-Black
    /KeplerStd-BlackIt
    /KeplerStd-Bold
    /KeplerStd-BoldIt
    /KeplerStd-Italic
    /KeplerStd-Light
    /KeplerStd-LightIt
    /KeplerStd-Medium
    /KeplerStd-MediumIt
    /KeplerStd-Regular
    /KeplerStd-Semibold
    /KeplerStd-SemiboldIt
    /KeystrokeNormal
    /Kidnap
    /KidsPlain
    /Kindergarten
    /KinoMT
    /KissMeKissMeKissMe
    /KoalaPSMT
    /KorinnaITCbyBT-Bold
    /KorinnaITCbyBT-KursivBold
    /KorinnaITCbyBT-KursivRegular
    /KorinnaITCbyBT-Regular
    /KristenITC-Regular
    /Kristin
    /KunstlerScript
    /KyotoSong
    /LainieDaySH
    /LandscapePlanning
    /Lapidary333BT-Bold
    /Lapidary333BT-BoldItalic
    /Lapidary333BT-Italic
    /Lapidary333BT-Roman
    /Latha
    /LatinoPal3LightItalicSH
    /LatinoPal3LightSH
    /LatinoPal4ItalicSH
    /LatinoPal4RomanSH
    /LatinoPal5DemiItalicSH
    /LatinoPal5DemiSH
    /LatinoPal6BoldItalicSH
    /LatinoPal6BoldSH
    /LatinoPal7ExtraBoldSH
    /LatinoPal8BlackSH
    /LatinoPalCond4RomanSH
    /LatinoPalCond5DemiSH
    /LatinoPalCond6BoldSH
    /LatinoPalExptRomanSH
    /LatinoPalSwashSH
    /LatinWidD
    /LatinWide
    /LeeToscanini3LightSH
    /LeeToscanini5RegularSH
    /LeeToscanini7BoldSH
    /LeeToscanini9BlackSH
    /LeeToscaniniInlineSH
    /LetterGothic12PitchBT-Bold
    /LetterGothic12PitchBT-BoldItal
    /LetterGothic12PitchBT-Italic
    /LetterGothic12PitchBT-Roman
    /LetterGothic-Bold
    /LetterGothic-BoldItalic
    /LetterGothic-Italic
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LetterGothic-Regular
    /LibrarianRegular
    /LinusPSMT
    /Lithograph-Bold
    /LithographLight
    /LongIsland
    /LubalinGraphMdITCTT
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /LydianCursiveBT-Regular
    /Magneto-Bold
    /Mangal-Regular
    /Map-Symbols
    /MarcusHobbesSH
    /Mariah
    /Marigold
    /MaritaMedium-HMK
    /MaritaScript-HMK
    /Market
    /MartinMaxxieSH
    /MathTypeMed
    /MatisseITC-Regular
    /MaturaMTScriptCapitals
    /MaudeMeadSH
    /MemorandumPSMT
    /Metro
    /Metrostyle-Bold
    /MetrostyleExtended-Bold
    /MetrostyleExtended-Regular
    /Metrostyle-Regular
    /MicrogrammaD-BoldExte
    /MicrosoftSansSerif
    /MikePicassoSH
    /MiniPicsLilEdibles
    /MiniPicsLilFolks
    /MiniPicsLilStuff
    /MischstabPopanz
    /MisterEarlBT-Regular
    /Mistral
    /ModerneDemi
    /ModerneDemiOblique
    /ModerneOblique
    /ModerneRegular
    /Modern-Regular
    /MonaLisaRecutITC-Normal
    /Monospace821BT-Bold
    /Monospace821BT-BoldItalic
    /Monospace821BT-Italic
    /Monospace821BT-Roman
    /Monotxt
    /MonotypeCorsiva
    /MonotypeSorts
    /MorrisonMedium
    /MorseCode
    /MotorPSMT
    /MSAM10
    /MSLineDrawPSMT
    /MS-Mincho
    /MSOutlook
    /MSReference1
    /MSReference2
    /MTEX
    /MTEXB
    /MTEXH
    /MT-Extra
    /MTGU
    /MTGUB
    /MTLS
    /MTLSB
    /MTMI
    /MTMIB
    /MTMIH
    /MTMS
    /MTMSB
    /MTMUB
    /MTMUH
    /MTSY
    /MTSYB
    /MTSYH
    /MT-Symbol
    /MTSYN
    /Music
    /MVBoli
    /MysticalPSMT
    /NagHammadiLS
    /NealCurieRuledSH
    /NealCurieSH
    /NebraskaPSMT
    /Neuropol-Medium
    /NevisonCasD
    /NewMilleniumSchlbkBoldItalicSH
    /NewMilleniumSchlbkBoldSH
    /NewMilleniumSchlbkExptSH
    /NewMilleniumSchlbkItalicSH
    /NewMilleniumSchlbkRomanSH
    /News702BT-Bold
    /News702BT-Italic
    /News702BT-Roman
    /Newton
    /NewZuricaBold
    /NewZuricaItalic
    /NewZuricaRegular
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NigelSadeSH
    /Nirvana
    /NuptialBT-Regular
    /OCRAbyBT-Regular
    /OfficePlanning
    /OldCentury
    /OldEnglishTextMT
    /Onyx
    /OnyxBT-Regular
    /OpenSymbol
    /OttawaPSMT
    /OttoMasonSH
    /OzHandicraftBT-Roman
    /OzzieBlack-Italic
    /OzzieBlack-Regular
    /PalatiaBold
    /PalatiaItalic
    /PalatiaRegular
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /PalmSpringsPSMT
    /Pamela
    /PanRoman
    /ParadisePSMT
    /ParagonPSMT
    /ParamountBold
    /ParamountItalic
    /ParamountRegular
    /Parchment-Regular
    /ParisianBT-Regular
    /ParkAvenueBT-Regular
    /Patrick
    /Patriot
    /PaulPutnamSH
    /PcEncodingLowerSH
    /PcEncodingSH
    /Pegasus
    /PenguinLightPSMT
    /PennSilvaSH
    /Percival
    /PerfectRegular
    /Pfn2BlackItalic
    /Phantom
    /PhilSimmonsSH
    /Pickwick
    /PipelinePlain
    /Playbill
    /PoorRichard-Regular
    /Poster
    /PosterBodoniBT-Italic
    /PosterBodoniBT-Roman
    /Pristina-Regular
    /Proxy1
    /Proxy2
    /Proxy3
    /Proxy4
    /Proxy5
    /Proxy6
    /Proxy7
    /Proxy8
    /Proxy9
    /Prx1
    /Prx2
    /Prx3
    /Prx4
    /Prx5
    /Prx6
    /Prx7
    /Prx8
    /Prx9
    /Pythagoras
    /Raavi
    /Ranegund
    /Ravie
    /Ribbon131BT-Bold
    /RMTMI
    /RMTMIB
    /RMTMIH
    /RMTMUB
    /RMTMUH
    /RobWebsterExtraBoldSH
    /Rockwell
    /Rockwell-Bold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /RomanC
    /RomanD
    /RomanS
    /RomanT
    /Romantic
    /RomanticBold
    /RomanticItalic
    /Sahara
    /SalTintorettoSH
    /SamBarberInitialsSH
    /SamPlimsollSH
    /SansSerif
    /SansSerifBold
    /SansSerifBoldOblique
    /SansSerifOblique
    /Sceptre
    /ScribbleRegular
    /ScriptC
    /ScriptHebrew
    /ScriptS
    /Semaphore
    /SerifaBT-Black
    /SerifaBT-Bold
    /SerifaBT-Italic
    /SerifaBT-Roman
    /SerifaBT-Thin
    /Sfn2Bold
    /Sfn3Italic
    /ShelleyAllegroBT-Regular
    /ShelleyVolanteBT-Regular
    /ShellyMarisSH
    /SherwoodRegular
    /ShlomoAleichemSH
    /ShotgunBT-Regular
    /ShowcardGothic-Reg
    /Shruti
    /SignatureRegular
    /Signboard
    /SignetRoundhandATT-Italic
    /SignetRoundhand-Italic
    /SignLanguage
    /Signs
    /Simplex
    /SissyRomeoSH
    /SlimStravinskySH
    /SnapITC-Regular
    /SnellBT-Bold
    /Socket
    /Sonate
    /SouvenirITCbyBT-Demi
    /SouvenirITCbyBT-DemiItalic
    /SouvenirITCbyBT-Light
    /SouvenirITCbyBT-LightItalic
    /SpruceByingtonSH
    /SPSFont1Medium
    /SPSFont2Medium
    /SPSFont3Medium
    /SpsFont4Medium
    /SPSFont4Medium
    /SPSFont5Normal
    /SPSScript
    /SRegular
    /Staccato222BT-Regular
    /StageCoachRegular
    /StandoutRegular
    /StarTrekNextBT-ExtraBold
    /StarTrekNextPiBT-Regular
    /SteamerRegular
    /Stencil
    /StencilBT-Regular
    /Stewardson
    /Stonehenge
    /StopD
    /Storybook
    /Strict
    /Strider-Regular
    /StuyvesantBT-Regular
    /StylusBT
    /StylusRegular
    /SubwayRegular
    /SueVermeer4LightItalicSH
    /SueVermeer4LightSH
    /SueVermeer5MedItalicSH
    /SueVermeer5MediumSH
    /SueVermeer6DemiItalicSH
    /SueVermeer6DemiSH
    /SueVermeer7BoldItalicSH
    /SueVermeer7BoldSH
    /SunYatsenSH
    /SuperFrench
    /SuzanneQuillSH
    /Swiss721-BlackObliqueSWA
    /Swiss721-BlackSWA
    /Swiss721BT-Black
    /Swiss721BT-BlackCondensed
    /Swiss721BT-BlackCondensedItalic
    /Swiss721BT-BlackExtended
    /Swiss721BT-BlackItalic
    /Swiss721BT-BlackOutline
    /Swiss721BT-Bold
    /Swiss721BT-BoldCondensed
    /Swiss721BT-BoldCondensedItalic
    /Swiss721BT-BoldCondensedOutline
    /Swiss721BT-BoldExtended
    /Swiss721BT-BoldItalic
    /Swiss721BT-BoldOutline
    /Swiss721BT-Italic
    /Swiss721BT-ItalicCondensed
    /Swiss721BT-Light
    /Swiss721BT-LightCondensed
    /Swiss721BT-LightCondensedItalic
    /Swiss721BT-LightExtended
    /Swiss721BT-LightItalic
    /Swiss721BT-Roman
    /Swiss721BT-RomanCondensed
    /Swiss721BT-RomanExtended
    /Swiss721BT-Thin
    /Swiss721-LightObliqueSWA
    /Swiss721-LightSWA
    /Swiss911BT-ExtraCompressed
    /Swiss921BT-RegularA
    /Syastro
    /Sylfaen
    /Symap
    /Symath
    /SymbolGreek
    /SymbolGreek-Bold
    /SymbolGreek-BoldItalic
    /SymbolGreek-Italic
    /SymbolGreekP
    /SymbolGreekP-Bold
    /SymbolGreekP-BoldItalic
    /SymbolGreekP-Italic
    /SymbolGreekPMono
    /SymbolMT
    /SymbolProportionalBT-Regular
    /SymbolsAPlentySH
    /Symeteo
    /Symusic
    /Tahoma
    /Tahoma-Bold
    /TahomaItalic
    /TamFlanahanSH
    /Technic
    /TechnicalItalic
    /TechnicalPlain
    /TechnicBold
    /TechnicLite
    /Tekton-Bold
    /Teletype
    /TempsExptBoldSH
    /TempsExptItalicSH
    /TempsExptRomanSH
    /TempsSwashSH
    /TempusSansITC
    /TessHoustonSH
    /TexCatlinObliqueSH
    /TexCatlinSH
    /Thrust
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldOblique
    /Times-ExtraBold
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Oblique
    /Times-Roman
    /Times-Semibold
    /Times-SemiboldItalic
    /TimesUnic-Bold
    /TimesUnic-BoldItalic
    /TimesUnic-Italic
    /TimesUnic-Regular
    /TonyWhiteSH
    /TransCyrillic
    /TransCyrillic-Bold
    /TransCyrillic-BoldItalic
    /TransCyrillic-Italic
    /Transistor
    /Transitional521BT-BoldA
    /Transitional521BT-CursiveA
    /Transitional521BT-RomanA
    /TranslitLS
    /TranslitLS-Bold
    /TranslitLS-BoldItalic
    /TranslitLS-Italic
    /TransRoman
    /TransRoman-Bold
    /TransRoman-BoldItalic
    /TransRoman-Italic
    /TransSlavic
    /TransSlavic-Bold
    /TransSlavic-BoldItalic
    /TransSlavic-Italic
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /TribuneBold
    /TribuneItalic
    /TribuneRegular
    /Tristan
    /TrotsLight-HMK
    /TrotsMedium-HMK
    /TubularRegular
    /Tunga-Regular
    /Txt
    /TypoUprightBT-Regular
    /UmbraBT-Regular
    /UmbrellaPSMT
    /UncialLS
    /Unicorn
    /UnicornPSMT
    /Univers
    /UniversalMath1BT-Regular
    /Univers-Bold
    /Univers-BoldItalic
    /UniversCondensed
    /UniversCondensed-Bold
    /UniversCondensed-BoldItalic
    /UniversCondensed-Italic
    /UniversCondensed-Medium
    /UniversCondensed-MediumItalic
    /Univers-CondensedOblique
    /UniversExtended-Bold
    /UniversExtended-BoldItalic
    /UniversExtended-Medium
    /UniversExtended-MediumItalic
    /Univers-Italic
    /UniversityRomanBT-Regular
    /UniversLightCondensed-Italic
    /UniversLightCondensed-Regular
    /Univers-Medium
    /Univers-MediumItalic
    /URWWoodTypD
    /USABlackPSMT
    /USALightPSMT
    /Vagabond
    /Venetian301BT-Demi
    /Venetian301BT-DemiItalic
    /Venetian301BT-Italic
    /Venetian301BT-Roman
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /VinetaBT-Regular
    /Vivaldii
    /VladimirScript
    /VoguePSMT
    /Vrinda
    /WaldoIconsNormalA
    /WaltHarringtonSH
    /Webdings
    /Weiland
    /WesHollidaySH
    /Wingdings-Regular
    /WP-HebrewDavid
    /XavierPlatoSH
    /YuriKaySH
    /ZapfChanceryITCbyBT-Bold
    /ZapfChanceryITCbyBT-Medium
    /ZapfDingbatsITCbyBT-Regular
    /ZapfElliptical711BT-Bold
    /ZapfElliptical711BT-BoldItalic
    /ZapfElliptical711BT-Italic
    /ZapfElliptical711BT-Roman
    /ZapfHumanist601BT-Bold
    /ZapfHumanist601BT-BoldItalic
    /ZapfHumanist601BT-Italic
    /ZapfHumanist601BT-Roman
    /ZappedChancellorMedItalicSH
    /ZurichBT-BlackExtended
    /ZurichBT-Bold
    /ZurichBT-BoldCondensed
    /ZurichBT-BoldCondensedItalic
    /ZurichBT-BoldItalic
    /ZurichBT-ExtraCondensed
    /ZurichBT-Italic
    /ZurichBT-ItalicCondensed
    /ZurichBT-Light
    /ZurichBT-LightCondensed
    /ZurichBT-Roman
    /ZurichBT-RomanCondensed
    /ZurichBT-RomanExtended
    /ZurichBT-UltraBlackExtended
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


