
CONVEX FUNCTIONALS OF PROBABILITY MEASURES AND
NONLINEAR DIFFUSIONS ON MANIFOLDS

KARL-THEODOR STURM

Abstract. The topic of this paper are convexity properties of free energy functionals on the
space P2(M) of probability measures over a Riemannian manifold. As applications, we obtain
contraction properties of nonlinear diffusions on Rn or on a Riemannian manifold M , regard-
ing them as gradient flows of appropriate free energy functionals. In particular, we present
extensions of the Bakry-Emery criterion to nonlinear equations.

1. Introduction and statement of the main results

Throughout this paper, let M be a smooth complete Riemannian manifold of dimension n,
with Riemannian distance d and Riemannian volume measure m. We denote by P2(M) the
space of probability measures on M , equipped with the L2-Wasserstein distance dW

2 derived
from the Riemannian distance on M (see section 3).

Moreover, we fix a lower semicontinuous function V : M → R and an increasing function
U : R → R. We define the free energy S : P2(M) → [−∞,∞] by

S(ν) :=
∫

M
U

(
log

dν

dm

)
dν +

∫
M
V dν(1.1)

provided ν is absolutely continuous w.r.t. the Riemannian volume measurem and
∫
U+(log dν

dm) dν+∫
V+ dν <∞ (where we put U(log 0) = 0). Otherwise, we define S(ν) := +∞.
We say that S is K-convex iff

HessS ≥ K

in some rough sense, to be made precise in section 2. The aim of this paper is to derive conditions
on the manifold M as well as on the functions U and V which are necessary and sufficient for
K-convextiy of the functional S on P2(M).

Remark 1.1. The importance of K-convexity and our interest in it arises from the fact that
K-convexity together with some minimal regularity assumptions on M , U and V imply:

(i) There exists a unique gradient flow σ : R+ × P2(M) → P2(M) for S and it satisfies

dW
2 (νt, µt) ≤ e−Kt · dW

2 (ν0, µ0)(1.2)

for all ν0, µ0 ∈ P2(M) and all t ≥ 0 where νt := σ(t, ν0), µt := σ(t, ν0).
(ii) If in addition K > 0 and inf S = 0 then there exists a unique ground state ν∞ ∈ P2(M)

satisfying

S(ν0) ≥
K

2
dW

2 (ν0, ν∞)(1.3)

for all ν0 ∈ P2(M). Moreover, along the curves t 7→ νt of the gradient flow from ν0 to the ground
state ν∞ we have

−∂tS(νt) ≥ 2K · S(νt)(1.4)
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and thus

S(νt) ≤ e−2Kt · S(ν0).(1.5)

(iii) The curves of the gradient flow are given by νt(dx) = ρ(t, x)m(dx) where the densities ρ
solve the nonlinear PDE

∂tρ(t, x) = ∆(ρU ′(log ρ))(t, x) +∇(ρ · ∇V )(t, x)(1.6)

on R+ ×M .

See [OV00], [Vi03], [vRS03], [Ly03], [PePe].
Inequalities (1.3) and (1.4) may be regarded as generalized versions of Talagrand’s inequality

and Gross’ logarithmic Sobolev inequality, resp. This may be seen in Example 1.2 below where
we choose the function S more specifically. If we can verify K-convexity of S for some K > 0
then this nonlinear diffusion equation has a unique stationary solution and any other solution
converges exponentially fast to the stationary solution.

Example 1.2. The main examples are:
• U(r) = r, V = 0 yields the relative entropy S(ν) =

∫
M log dν

dm dν. Its gradient flow is
the usual heat equation ∂tρ = ∆ρ. More precisely, the densities of the gradient flow are
solutions of the heat equation.

• U(r) = r leads to the Fokker-Planck equation

∂tρ = ∆ρ+∇(ρ · ∇V ).

In this case, an easy calculation shows S(σ(t, ν)) =
∫
u2 log(u2)e−V dm and−∂tS(σ(t, ν)) =

1
4

∫
|∇u|2e−V dm provided we write dσ

dm = u2e−V . Hence, here we indeed obtain the usual
version of the logarithmic Sobolev inequality.

• U(r) = 1
a exp(ar) for a constant a 6= 0 and V = 0 yields S(ν) = 1

a

∫
M

(
dν
dm

)a
dν. The

associated gradient flow is given by the porous medium equation (if a > 0) or fast diffusion
equation (if a < 0)

∂tρ = ∆(ρ1+a).

Our main result yields K-convexity for large classes of energy functionals associated to non-
linear diffusions on Euclidean and Riemannian spaces. As a consequence it yields exponential
convergence to equilibrium for the solutions to these equations together with explicit bounds for
the rate of convergence.

Theorem 1.3. Assume that U and V are C2. Then the free energy S from (1.1) is K-convex if
and only if

(1.7) U ′′(r) +
1
n
U ′(r) ≥ 0

and

(1.8) U ′(r) · Ricx(ξ, ξ) + HessxV (ξ, ξ) ≥ K · |ξ|2

for all r ∈ R, x ∈M and ξ ∈ TxM .

Remark 1.4. The above Theorem has a canonical extension to nonsmooth U and V . Instead
of requiring U ∈ C2 and (1.7) it suffices to require that the function

(1.9) r 7→ U(−n log r) is convex on ]0,∞[.

In this case, depending on the sign of Ric the derivative U ′ in (1.8) should be replaced by the
upper or lower derivative, resp.

Instead of restricting to V ∈ C2 we may admit any lower semicontinuous function V provided
we replace (1.8) by the weaker condition:

(1.10) ∂2
tV (γt, γt) ≥ −U ′(r) · Ric(γ̇t, γ̇t) +K · |γ̇t|2
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for all r ∈ R and all geodesics γ : [0, 1] → M . For the definition of the lower centered second
derivative we refer to section 3.

The proof of the above Theorem will be given in sections 4 and 5. Applications of this result
to heat equation, Fokker-Planck equation and porous medium equation are straightforward:

Corollary 1.5. The free energy S(ν) =
∫
M log dν

dm dν +
∫
M V dν associated with the Fokker-

Planck equation is K-convex if and only if the Bakry-Emery criterion

Ricx(ξ, ξ) + HessxV (ξ, ξ) ≥ K · |ξ|2(1.11)

is satisfied (∀x ∈M,∀ξ ∈ TxM).
In particular, the relative entropy S(ν) =

∫
M log dν

dm dν is a K-convex function on the metric
space P2(M) if and only if the Ricci curvature of the underlying Riemannian manifold M is
bounded from below by K.

Corollary 1.6. For any N > 0 the free energy S(ν) = −N ·
∫
M

(
dν
dm

)−1/N
dν associated with the

fast diffusion equation ∂tρ = ∆(ρ1−1/N ) is a convex function on the metric space P2(M) if and
only if the underlying Riemannian manifold M has nonnegative Ricci curvature and dimension
≤ N .

Parts of the above corollaries had been obtained in [OV00], [CMS01] and [vRS03]. The
previous results yields a characterization of the curvature-dimension conditions CD(K,∞) as
well as CD(0, N) of Bakry-Emery in terms of contraction properties of nonlinear diffusions. The
general condition CD(K,N) may be characterized in a similar manner:

Theorem 1.7. i) For K > 0 and N > 0 consider the free energy functional

S(ν) =
∫

M

[
log
(
dν

dm

)
−N

(
dν

dm

)−1/N
]
dν(1.12)

associated with the nonlinear diffusion equation

∂tρ = ∆(ρ(1 + ρ−1/N )).

Then S is K-convex if and only if the dimension of the manifold is bounded from above by N
and its Ricci curvature is bounded from below by K.

ii) For K < 0 and N > 0 consider the free energy functional

S(ν) = −N
∫

M
log

[
1 +

(
dν

dm

)−1/N
]
dν(1.13)

associated with the nonlinear diffusion equation

∂tρ = ∆(ρ(1 + ρ1/N )−1).

Then S is K-convex if and only if the dimension of the manifold is bounded from above by N
and its Ricci curvature is bounded from below by K.

Proof. i) The S under consideration corresponds to U(r) = r−Ne−r/N . Hence, U ′′(r)+ 1
nU

′(r) =
1
n + ( 1

n −
1
N )e−r/N is nonnegative for all r ∈ R if and only if n ≤ N . And U ′(r) · Ricx(ξ, ξ) =

(1+e−r/N ) ·Ricx(ξ, ξ is bounded from below by K · |ξ|2 (for all r, x, ξ) with some constant K > 0
if and only if Ricx(ξ, ξ) ≥ K · |ξ|2.

ii) In this case, S corresponds to U(r) = −N log(1 + e−r/N ). Then U ′′(r) + 1
nU

′(r) =
(1 + e−r/N )−2( 1

n + ( 1
n −

1
N )e−r/N is nonnegative for all r ∈ R if and only if n ≤ N . And

U ′(r) ·Ricx(ξ, ξ) = (1 + e−r/N )−1 ·Ricx(ξ, ξ is bounded from below by K · |ξ|2 for all r, x, ξ with
some constant K < 0 if and only if Ricx(ξ, ξ) ≥ K · |ξ|2. �
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The choice of the functionals S (or the functions U) in the above Theorem is by no means
unique. Roughly speaken, for K > 0 the requirement is that U(r) ∼ r as r → ∞ and U(r) ∼
−C · e−r/N as r → −∞. For instance, one could choose

U(r) =
{
r − β, if r ≥ β

N
[
1− e−(r−β)/N

]
, if r < β

for any parameter β ∈ R. This leads to U(log ρ) = log+(ρ/α)+N
[
1− (ρ/α)−1/N

]
+

with α = eβ

and
S(ρm) =

∫
{ρ≥α}

log(ρ/α)ρ dm+N

∫
{ρ<α}

[
1− (ρ/α)−1/N

]
ρ dm.

Similarly, in the case K < 0 one may choose

S(ρm) =
∫
{ρ≤α}

log(ρ/α)ρ dm+N

∫
{ρ>α}

[
1− (ρ/α)−1/N

]
ρ dm

for any parameter α > 0. In the latter case, the associated diffusion equation is (at least
formally)

∂tρ = ∆(ρ(1 ∧ (ρ/α)−1/N ))
whereas in the former it is

∂tρ = ∆(ρ(1 ∨ (ρ/α)−1/N )).

Our results strongly depend on new insights and estimates for the optimal mass transportation
on manifolds. From the work of McCann [McC01] and Cordero-Erausquin, McCann, Schmuck-
enschläger [CMS01] we know that for any pair of absolutely continuous probability measures µ0

and µ1 in P2(M), there exists a unique geodesic t 7→ µt in the space P2(M) connecting µ0 and
µ1. Moreover, there exists a vector field Φ such that µt is the push forward of µ0 under the map

Ft(x) = expx(tΦ(x)).

It turns out that it is quite important to have precise estimates for the Jacobian dFt of the map
Ft : M → M . The inequality (1.14) below is the key to describe how curvature effects optimal
mass transport. It will play a fundamental role in this paper.

Theorem 1.8. The logarithmic determinant yt(x) := log det dFt(x) of the Jacobian of Ft sat-
sifies in some appropriate weak sense (to be made precise in Theorem 3.1 below) the following
differential inequality in t (for fixed x)

ÿt(x) ≤ − 1
n
ẏ2

t (x)− Ric(Ḟt(x), Ḟt(x)).(1.14)

2. K-Convexity

Given an arbitrary geodesic space (N, dN ), a number K ∈ R and a function S : N →
[−∞,+∞] we say that S isK-convex iff for each (constant speed, as usual) geodesic γ : [0, 1] → N
with S(γ0) <∞ and S(γ1) <∞ and for each t ∈ [0, 1]:

S(γt) ≤ (1− t)S(γ0) + t S(γ1)−
K

2
t(1− t) d2

N (γ0, γ1).(2.1)

If S is lower semicontinuous along geodesics, then it suffices to verify this for all geodesics γ and
t = 1

2 .
In other words, a function S on a geodesic space N is K-convex if and only if for each geodesic

γ : [0, 1] → N the function f := S(γ) is K ′-convex on [0, 1] with K ′ = Kd2
N (γ0, γ1) = K|γ̇|2.

The function S is called convex if it is K-convex for K = 0. It is called uniformly convex if it is
K-convex for some K > 0.
K-convex functions on a interval I ⊂ R are semiconvex. Recall that a function f : I → R

is called semiconvex iff there exists a smooth function F : I → R such that f + F is convex.
In particular, semiconvex functions are lower semicontinuous and they are continuous in the
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interior of the interval {f < ∞} ⊂ I. For each semiconvex function f : I → R we define the
lower centered second derivative

∂2
t f(t) := lim inf

s→0

1
s2
· [f(t+ s)− 2f(t) + f(t− s)]

and the centered first derivative

∂tf(t) := lim
s→0

1
2s
· [f(t+ s)− f(t− s)] .

The latter limit exists since it may be written as 1
2 · lims→0

1
s · [f(t+ s)− f(t)] + 1

2 · lims→0
1
s ·

[f(t)− f(t− s)] and both limits exist, e.g. for convex functions as monotone limits. Analogously,
we define semiconcave functions and the upper centered second derivative

∂
2
t f(t) := lim sup

s→0

1
s2
· [f(t+ s)− 2f(t) + f(t− s)] .

K-convexity is a local property. The above inequality (2.1) holds for a given function S
and a given geodesic γ : [0, 1] → N provided there exists a partition 0 = t0 < t1 < . . . <
tn+1 = 1 such that for each i = 1, . . . , n the geodesic γ : [ti−1, ti+1] → N satisfies (after suitable
reparametrization) inequality (2.1).

A function S is K-convex if and only if it is lower semicontinuous along geodesics and if for
each geodesic γ : [0, 1] → N with S(γ0) <∞ and S(γ1) <∞ one has S(γt) <∞ for all t ∈]0, 1[
and

∂2
tS(γt) ≥ K · d2

N (γ0, γ1).

Example 2.1. A smooth function S on a Riemannian manifold (N, dN ) is K-convex if and only
if

HessS ≥ K.

Following [McC01], K-convex functions on N = P2(M) are also called displacement K-convex
(to emphasize that it means K-convexity along the geodesics t 7→ γt w.r.t. dN = dW

2 and not
along the geodesics t 7→ (1− t)γ0 + tγ1 in the linear space of signed measures).

3. Optimal Mass Transportation on Manifolds

Let us recall some basic results about mass transportation on Riemannian manifolds. Recall
that M is a smooth complete Riemannian manifold of dimension n, with Riemannian distance
d and Riemannian volume measure m. The set of all probability measures µ on M (equipped
with its Borel σ-algebra B(M)) satisfying

∫
d2(x, y)µ(dy) <∞ for some (hence all) x ∈M will

be denoted by P2(M). Given µ0, µ1 ∈ P2(M) we define their L2-Wasserstein distance by

dW
2 (µ0, µ1) = inf


∫
M

∫
M

d2(x, y)π(dxdy) : π ∈ P(M2) is coupling of µ0 and µ1


1/2

.

Here π ∈ P(M2) is called coupling (or transportation plan) of µ0 and µ1 iff its marginals are
µ0 and µ1, that is, iff π(A × N) = µ0(A) and π(M × A) = µ1(A) for all A ∈ B(M). See e.g.
[Du89], [RR98], [Vi03]. The set of absolutely continuous measures in P2(M) is a convex subset
of P2(M) and contains the set {S < ∞} for each functional S to be studied in this paper.
Hence, in the sequel we may restrict ourselves to absolutely continuous measures in P2(M).

Lemma 3.1. Given two absolutely continuous probability measures µ0 = ρ0m and µ1 = ρ0m in
P2(M) with densities ρ0, ρ1 on M , there exists a unique geodesic t 7→ µt in the space P2(M)
connecting µ0 and µ1. Again each µt is absolutely continuous, say µt = ρtm. Moreover, there
exists a vector field Φ such that µt is the push forward of µ0 under the map

Ft(x) = expx(tΦ).

If the measures µ0, µ1 are compactly supported then so are all the µt for t ∈ [0, 1].
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Proof. (i) For absolutely continuous measures with compact support, these results are due to
McCann [McC01]. Actually, the vector field is given µ0-almost everywhere as Φ = −∇ϕ where
ϕ : M → R shares a some kind of concavity property, called d2/2-concavity (which, however, is
entirely different from the notion of concavity used in this paper and introduced in the previous
section). Here we only discuss the extension to measures with noncompact support.

(ii) Fix absolutely continuous µ0, µ1 ∈ P2(M) with some optimal coupling π ∈ P(M ×M).
Given any pair of compact sets M ′

0,M
′
1 ⊂M with π(M ′

0 ×M ′
1) > 0 define by

π′(A,B) := π(A ∩M ′
0, B ∩M ′

1)

a coupling π′ ∈ P(M ×M) between the compactly supported, absolutely continuous measures
µ′0 and µ′1 defined by

µ′0(A) := π′(A,M), µ′1(B) := π′(M,B).

Both measures µ′0 and µ′1 have total mass π(M ′
0×M ′

1) ∈ ]0, 1]. Optimality of π implies optimality
of π′. Hence, there exists a vector field Φ′ and maps F ′t(x) = expx(tΦ′) such that π′ = (id, F ′1)∗µ

′
0

and t 7→ µ′t := (F ′t)∗µ
′
0 is the unique geodesic connecting µ′0 and µ′1.

Choosing another pair of compact sets M ′′
0 ⊃ M ′

0,M
′′
1 ⊃ M ′

1 yields a vector field Φ′′ such
that F ′′t (x) = expx(tΦ′′) defines the optimal coupling π′′ = (id, F ′′1 )∗µ′′0 and the unique geodesic
t 7→ µ′′t := (F ′′t )∗µ′′0 between µ′′0 and µ′′1. Uniqueness of the optimal transport now implies that
for each t

F ′t = F ′′t µ′0-a.e. on M ′
0

and thus
Φ′ = Φ′′ µ′0-a.e. on M ′

0.

Exhausting M ×M by compact sets M ′
0 ×M ′

1 then yields the existence of a vector field Φ
and maps Ft(x) = exp(tΦ) such that π = (id, F1)∗µ0 is the unique optimal coupling of µ0 and
µ1 and t 7→ µt := (Ft)∗µ0 is the unique geodesic connecting µ0 and µ1. �

Theorem 3.2. Let t 7→ µt = ρtm = (Ft)∗µ0 be a geodesic in P2(M) connecting two absolutely
continuous probability measures µ0 and µ1. Then there exists a map y : M × [0, 1] → R such
that

(i) ∀t ∈ [0, 1]: the function x 7→ yt(x) is Borel measurable and

ρ0(x) = ρt(Ft(x)) · eyt(x) for µ0-a.e. x ∈M ;(3.1)

(ii) ∀x ∈M : the function t 7→ yt(x) is semiconcave (in particular, upper semicontinuous) on
[0, 1] and, restricted to ]0, 1[, it is continuous, has centered derivatives and satisfies:

∂
2
t yt(x) ≤ − 1

n
(∂tyt(x))2 − Ric(Ḟt(x), Ḟt(x)).(3.2)

Remark 3.3. Equality (3.1) justifies to interpret Jt(x) := eyt(x) for fixed t ∈ [0, 1] as the
Jacobian determinant det dFt(x) of the map Ft : M →M . Indeed, for any measurable function
u on M ∫

M
uρt dm =

∫
M
u(Ft)ρ0 dm =

∫
{ρ0>0}

u(Ft)ρt(Ft)Jt dm.

The fundamental inequality (3.2) is closely related to a similar inequality which plays a role
in the proof of Bishop-Gromov’s volume comparison theorem. Roughly speaken, in the latter
result one considers transport problems for measures which are absolutely continuous for the
(n− 1)-dimensional surface measure on spheres and finally obtains an inequality of the form

∂2
t yt(x) ≤ − 1

n− 1
(∂tyt(x))2 − Ric(Ḟt(x), Ḟt(x)),(3.3)

cf. [Ch93] (3.42). Note that both, (3.2) and (3.3), are sharp.



CONVEX FUNCTIONALS OF PROBABILITY MEASURES AND NONLINEAR DIFFUSIONS ON MANIFOLDS 7

We will present two different argumentations for the fundamental inequality (3.2). Firstly,
we will give a self-contained and straighforward derivation under the assumption of sufficient
smoothness and the absence of cut locus and degeneration effects. Here we will not care about
regularity questions (like differentiability of the transport map, existence of conjugate points
along the transport rays, nondegeneracy of the Jacobi determinant) but we aim to present
the core of the geometric argument. The general case may be deduced from this result using
appropriate approximations. This, however, will not be carried out here since we present another
proof focussing on the regularity problems. Our second proof works in full generality. It is based
on previous calculations and results in [CMS01] and [vRS03].

Proof. Let us fix two absolutely continuous probability measures µ0 = ρ0m and µ1 = ρ0m in
P2(M) with densities ρ0, ρ1 on M . Without restriction, we may assume that both are compactly
supported. (Otherwise, we have to choose compact exhaustions of M ×M and to consider the
restriction of the coupling to these compact sets, see proof of the previous Lemma 3.1). Then
there exists a unique geodesic t 7→ µt in the space P2(M) connecting µ0 and µ1. Again each
µt is compactly supported and absolutely continuous, say µt = ρtm. Moreover, there exists a
vector field Φ such that µt is the push forward of µ0 under the map Ft(x) = expx(tΦ).

First argumentation. Let us for simplicity assume that Φ is a smooth vector field and that for
each x there are no conjugate points on the curve t 7→ Ft(x), t ∈ [0, 1]. For each x, consider the
matrix of Jacobi fields

At(x) := dFt(x) : TxM → TFt(x)M

along the geodesic F�(x). (More precisely, At(x)v is a Jacobi field along F�(x) for each v ∈ TxM .)
It is the unique solution of the Jacobi equation

(3.4) ∇t∇tAt(x) +R
(
At(x), Ḟt(x)

)
Ḟt(x) = 0

with initial conditions A0 = Id, ∇tA0 = ∇Φ. Here R is the curvature tensor and ∇t denotes
covariant derivates along the geodesics F�(x) (cf. [Ch93] (3.4), [Jo95] (4.2.1) or [GHL87] (3.41)).
Now assume in addition that the matrix At(x) is nondegenerate for all x, t under consideration.
In this case, the Jacobi equation immediately implies that the selfadjoint matrix valued map
U := ∇tA ◦ A−1 solves the Riccati type equation

∇tUt + U2
t +R

(
� , Ḟt

)
Ḟt = 0

and thus

(3.5) tr (∇tUt) + tr (U2
t ) + Ric

(
Ḟt, Ḟt

)
= 0.

Now (cf. [Ch93], Prop. 2.8)

trUt = tr (∇tAt ◦ A−1
t ) =

d

dt
(log detAt) =

d

dt
(log det dFt) = ẏt.

Hence,

tr (U2
t ) ≥ 1

n
(trUt)2 =

1
n

(ẏt)2 and tr (∇tUt) =
d

dt
tr (Ut) = ÿt.

Together with (3.5), the latter proves inequality (3.2).

Second argumentation. Now we will present an argumentation which holds in the general
case, without any restricting smoothness assumptions. Let µ0, µ1 be given and define µt, ρt, Ft

as before. Let J̃t := det dFt be the Jacobian determinant of the map Ft : M → M (for fixed
t ∈ [0, 1]) as introduced in [CMS01]. It is well-defined for µ0-almost all points in M (with
exceptional set depending on t). Let M∗ be the convex closure of the union of the supports of
µ0 and µ1 and let K be a lower bound for the Ricci curvature on M∗. Put ỹt(x) = log J̃t(x) and

ỹ0
t (x) = ỹt(x)− tỹ1(x)−

K

2
· t(1− t) · d2(x, F1(x))
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and define the map Θ : B(M)× [0, 1] → R by

Θ(A, t) :=
∫

A
ỹ0

t (x)µ0(dx).

Our first claim is that for each A ∈ B(M) the function t 7→ Θ(A, t) is concave and satisfies
Θ(A, 0) = Θ(A, 1) = 0. The latter is obvious by construction. The former was deduced in
[vRSt] for the case A = M . However, the general case works in the same manner. (In addition,
we will give an explicit proof of the more precise estimate (3.2) below.) Representation results
for concave functions imply that for each A ∈ B(M) there exists a finite measure P(A, ds) on
[0, 1] (equipped with its Borel field) such that

Θ(A, t) =
∫ 1

0
(s ∧ t− st) P(A, ds)

for all t ∈ [0, 1]. On the other hand, one easily verifies that for each fixed Borel set B ⊂ [0, 1]
the map A 7→ P(A,B) is a measure, absolutely continuous with respect to µ0. In other words,
(A,B) 7→ P(A,B) is a measure on M × [0, 1]. Desintegration theory for product measures
(or existence of regular conditional expectations) now implies the existence of a kernel Q :
M × B([0, 1]) → R satisfying P(A, ds) =

∫
A Q(x, ds)µ0(dx) for all Borel sets A ⊂M and thus

Θ(A, t) =
∫ 1

0

∫
A
(s ∧ t− st) Q(x, ds)µ0(dx).

Now put

y0
t (x) :=

∫ 1

0
(s ∧ t− st) Q(x, ds).

Then for each x ∈ M the function t 7→ y0
t (x) is concave and for each t ∈ [0, 1] the functions y0

t

and ỹ0
t coincide µ0-a.e. on M . Finally, put

yt(x) := y0
t (x) + tỹ1(x) +

K

2
· t(1− t) · d2(x, F1(x)).

Then t 7→ yt(x) is semiconcave for each x ∈ M and for each t ∈ [0, 1] the functions yt and
ỹt = log J̃t coincide µ0-a.e. on M . The change of variable formula for J̃t from [CMS] now
implies (3.1).

Our next claim is that for each ε > 0 there exists a number s0 > 0 such that

1
s2

[yt+s(x)− 2yt(x) + yt−s(x)] ≤ ε− Ric(Ḟt(x), Ḟt(x))−
n

s2

(
eyt+s(x)/n − eyt−s(x)/n

eyt+s(x)/n + eyt−s(x)/n

)2

(3.6)

for all t ∈ ]0, 1[, all s ∈ ]0, s0[ and µ0-a.e. x ∈ M (with exceptional set depending on s and t).
Choosing an apporiate Borel set M0 of measure µ(M0) = 0 we may then redefine the function y
on M0× [0, 1] (e.g. by y := 0) in such a way that the above inequality (3.4) holds for all rational
t ∈ ]0, 1[, s ∈ ]0, s0] and all x ∈M . Since both sides in (3.4) are continuous in s and t it follows
that (3.4) holds for all s, all t and all x.

Note that

∂tyt(x) = lim
s→0

yt+s(x)− yt−s(x)
2s

= lim
s→0

n

s

eyt+s(x)/n − eyt−s(x)/n

eyt+s(x)/n + eyt−s(x)/n
.

Hence, in the limit s→ 0 inequality (3.4) immediately yields claim (3.2)

∂
2
t yt(x) ≤ − 1

n
(∂ty(x))2 − Ric(Ḟt(x), Ḟt(x)).

In order to prove the inequality (3.4) put Yt := eyt(x)/n. Then

yt+s(x)−2yt(x)+yt−s(x) = n

[
log Yt+s − 2 log(

Yt+s + Yt−s

2
) + log Yt−s

]
−2n

[
log Yt − log(

Yt+s + Yt−s

2
)
]
.
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The first term on the RHS can be estimated from above by

n

(
Yt+s − Yt−s

Yt+s + Yt−s

)2

= n

(
eyt+s(x)/n − eyt−s(x)/n

eyt+s(x)/n + eyt−s(x)/n

)2

.

In order to estimate the second term, put d(x) := d(x, F1(x)), let K(x) denote a lower bound
for the Ricci curvature Ric(Ḟr(x), Ḟr(x)) for r ∈ [t − s, t + s] and let v denote the volume
distortion coefficent from [CMS]. Then following [CMS] and [vRSt] we obtain

−2n
[
log Yt − log(

Yt+s + Yt−s

2
)
]

≤ −2n · log v 1
2
(Ft+s, Ft−s)

1
n

≤ −2n · log

2 sin(
√

K
n−1sd)

sin(
√

K
n−12sd)


n−1

n

≤ s2 ·
[ ε
2
−K · d2

]
≤ s2 ·

[
ε− Ric(Ḟt(x), Ḟt(x))

]
for all s ≤ s0 (provided s0 is sufficiently small). Let us mention that the above estimate only
requires to have bounds for the Ricci curvature in direction of the geodesic, and not on the
whole space.

Summing up and dividing by s2 we obtain inequality (3.4). �

Corollary 3.4. For each x ∈M , the function Yt(x) := eyt(x)/n is semiconcave in t ∈ [0, 1] and
satisfies

∂
2
tYt(x) ≤ − 1

n
Ric(Ḟt(x), Ḟt(x)) · Yt(x).

This follows immediatley from the above Theorem and the following

Remark 3.5. For any C2-function u on R
1
s2

[u(yt+s) − 2u(yt) + u(yt−s)]

=
1
s2

[
u(yt+s)− 2u(

yt+s + yt−s

2
) + u(yt−s)

]
+

2
s2

[
u(
yt+s + yt−s

2
)− u(yt)

]
= u′′(ξ1) ·

(
yt+s − yt−s

2s

)2

+ u′(ξ2) ·
1
s2

[yt+s − 2yt + yt−s]

with suitable ξ1 between yt−s and yt+s and ξ2 between yt and yt+s+yt−s

2 . Similarly, for any convex
function u on R

1
s2

[u(yt+s) − 2u(yt) + u(yt−s)]

≤ u′−(ξ) · 1
s2

[yt+s − 2yt + yt−s]

with suitable ξ between yt and yt+s+yt−s

2 . Here the left derivative u′− can also be replaced by
the right derivative u′+.

4. Uniform Convexity of Generalized Entropy Functionals

Let M and m as before, choose an increasing function U : R → R and a lower semicontinuous
function V : M → R and put

S(ρm) :=
∫
{ρ>0}

[U(log ρ) + V ] ρ dm
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for absolutely continuous probability measures ν = ρm provided
∫
{ρ>0} [U+(log ρ) + V+] ρ dm <

∞. Otherwise, we define S(ρm) := +∞. In other words,

S(ρm) = lim
k→∞

∫
{ρ>0}

[
U (k)(log ρ) + V (k)

]
ρ dm

with U (k)(r) := U(r)∨ (−k), V (k)(r) := V (r)∨ (−k). Hence, without restriction we may assume
in the sequel that U and V are bounded from below.

Let us first consider the internal energy

SU (ρm) :=
∫
{ρ>0}

U(log ρ)ρ dm

Then for each geodesic t 7→ νt = ρtm we obtain

SU (ρtm) =
∫
{ρt>0}

U(log ρt) ρt dm

=
∫
{ρ0>0}

U(log ρt(Ft)) ρt(Ft) Jt dm

=
∫
{ρ0>0}

U(log
ρ0

Jt
)ρ0dm

=
∫
{ρ0>0}

U(log ρ0 − yt)ρ0dm.

In terms of the functions Un(r) := U(−n log r) and Yt(x) := exp(yt(x)/n) this may be rewritten
as

SU (ρtm) =
∫
{ρ0>0}

Un(ρ−1/n
0 · Yt)ρ0dm.

Now let us assume that Un is convex. Note that for smooth U this is equivalent to (1.7)
and for general U it implies that the right and left derivative of U exists and infr U ′(r) as
well as supr U

′(r) are well defined. Moreover, it implies that the map t 7→ SU (ρtm) is lower
semicontinuous (since t 7→ Yt is upper semicontinuous and r 7→ Un(r) is decreasing and lower
semicontinuous).

Our goal is to estimate the second derivative of t 7→ SU (ρtm). For simplicity we may assume
in the following argumentation that U is smooth. Then by Remark 3.5

∂2
tU(log ρ0 − yt) = lim inf

s→0

1
s2

[U(log ρ0 − yt+s)− 2U(log ρ0 − yt) + U(log ρ0 − yt−s)]

≥ U ′′(log ρ0 − yt)(∂tyt)2 − U ′(log ρ0 − yt)∂
2
t yt

(1.14)
≥

{
U ′′(log ρ0 − yt) +

1
n
U ′(log ρ0 − yt)

}
(∂tyt)2 + U ′(log ρ0 − yt) Ric(Ḟt, Ḟt)

(1.7)
≥ U ′(log ρ0 − yt) Ric(Ḟt, Ḟt).

Integrating this inequality yields

1
s2

[U(log ρ0 − yt+s)− 2U(log ρ0 − yt) + U(log ρ0 − yt−s)]

≥ 1
s2

∫ s

−s
(s− |ξ|) · U ′(log ρ0 − yt+ξ) Ric( ˙Ft+ξ, ˙Ft+ξ)dξ



CONVEX FUNCTIONALS OF PROBABILITY MEASURES AND NONLINEAR DIFFUSIONS ON MANIFOLDS11

and thus

∂2
tSU (ρt) = lim inf

s→0

1
s2

[SU (ρt+sm)− 2SU (ρt) + SU (ρt−s)]

≥ lim inf
s→0

1
s2

∫
M

∫ s

−s
(s− |ξ|) · U ′(log ρ0 − yt+ξ) Ric( ˙Ft+ξ, ˙Ft+ξ)dξ ρ0 dm

=
∫
U ′(log ρ0 − yt) Ric(Ḟt, Ḟt) ρ0 dm.

By approximation, this argument extends to all U satisfying (1.9) provided U ′ is continuous. If
one wants to relax the latter, one has to replace U ′ by bounds for the upper or lower derivative
(depending on the sign of the Ricci curvature).

Now let us treat the external energy

SV (ρm) =
∫
V ρdm

for lower semicontinuous V : M → R, without restriction assumed to be bounded from below.
Then

SV (ρtm) =
∫
V ρtdm =

∫
V (Ft)ρt(Ft)Jtdm =

∫
V (Ft)ρ0dm

and thus lower semicontinuity of t 7→ SV (ρtm) is obvious. Moreover,

1
s2

[SV (ρt+sm) − 2SV (ρt) + SV (ρt−s)]

=
1
s2

∫
[V (Fs+t)− 2V (Ft) + V (Ft−s)] ρ0 dm.

This immediately implies

∂2
tSV (ρtm) ≥

∫
M

HessV (Ḟt, Ḟt)ρ0 dm

where for v ∈ TM
HessV (v, v) := lim inf

t→0
∂2

tV (exp(tv)).

Hence, combining internal and external energy we obtain

∂2
tS(ρtm) ≥

∫ [
U ′(log ρ0 − yt) · Ric(Ḟt, Ḟt) + HessV (Ḟt, Ḟt)

]
ρ0dm.

Theorem 4.1. Assume that V : M → R is lower semicontinuous, U : R → R is increasing with
Un : r 7→ U(−n log r) being convex and that ∀r > 0 , ∀v ∈ TM :

U ′(r) · Ric(v, v) + HessV (v, v) ≥ K · |v|2.

Then S = SU + SV is K-convex on P2(M): it is lower semicontinuous along geodesics and
satisfies

∂2
tS(µt) ≥ K · d2(µ0, µ1).

Note that in this formulation no second derivative of U is required. Also the existence of the
first derivative can be avoided if we interpret U ′ depending on the sign of Ric as the upper or
lower derivative, resp.

Summarizing, we have verified the sufficiency of our conditions for K-convexity in Theorem
1.3.
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5. Necessity of the Conditions for K-Convexity

Theorem 5.1. Let U : R → R be continuous, increasing and let V : M → R be continuous.
Assume that S as defined in (1.1) is K-convex on P2(M) for some K ∈ R. Then U satisfies
(1.9), i.e. Un : r 7→ U(−n log r) is convex.

Proof. Assume that the function Un is not convex. Then there exist numbers r0, r1 ∈ R and
r1/2 = r0+r1

2 such that

Un(r1/2) >
1
2
Un(r0) +

1
2
Un(r1).

Indeed, this implies that for suitable ε > 0

Un(r̃1/2) >
1
2
Un(r̃0) +

1
2
Un(r̃1) + 2ε

for all r̃i ∈ [ri − ε, ri + ε], i = 0, 1/2, 1.
Now fix two points y, z ∈ M , choose δ > 0 sufficiently small (to be specified later), R ≥

max{r0, r1} and let cn denote the volume of the unit ball in Rn. Let µ0 be the Dirac mass in y,
let µR be the normalized uniform distribution in BδR(y) and let r 7→ µr denote the geodesic in
P2(M) connecting µ0 and µR. Each of the measures µr for 0 < r ≤ R is absolutely continuous
and supported in the ball Bδr(y). Choosing δ sufficiently small we can achieve that for each
r ∈ ]0, R] the density of the measure µr is bounded from below by c−1

n δ−n(r + ε)−n and from
above by c−1

n δ−n(r − ε)−n.
Now put νr = cnδ

nµr + (1 − cnδ
n)η where η denotes the normalized uniform distribution in

Bδ(z). Then again r 7→ νr for 0 ≤ r ≤ R is a geodesic in P2(M) and

dW (νr0 , νr1)
2 = cnδ

n+2(r0 − r1)2.

Moreover, for all 0 < r ≤ R

S(νr) ≤ cn · δn · Un (r − ε) + cn · δn · sup
x∈Bδr(y)

V (y) + Cδ

and
S(νr) ≥ cn · δn · Un (r + ε) + cn · δn · inf

x∈Bδr(y)
V (y) + Cδ

where

Cδ = (1− cn) · δn · Un

(
|Bδ(z)|1/n

c
1/n
n · δ

)
+ (1− cn · δn) · 1

|Bδ(z)|

∫
Bδ(z)

V dm

(independent of r). Choosing δ sufficiently small we can achieve that

sup
x∈BδR(y)

V (y) ≤ ε+ inf
x∈BδR(y)

V (y).

Hence, we obtain

S(νr1/2
) − 1

2
S(νr0)−

1
2
S(νr1) +

K

8
d2

W (νr0 , νr1)

≥ cnδ
n

[
Un(r1/2 + ε)− 1

2
Un(r0 − ε)− 1

2
Un(r1 − ε)− ε

]
+
K

8
cnδ

n+2(r0 − r1)2

≥ cnδ
n[ε− |K|δ2(r0 − r1)2/8] > 0

for δ sufficiently small. This contradicts the K-convexity of S. �

Theorem 5.2. Let U ∈ C2(R) be increasing and satisfying (1.9) (or equivalently (1.7)) with
n = 1, let V ∈ C2(M) and K ∈ R. Assume that S as defined in (1.1) is K-convex on P2(M).
Then conditon (1.8) is fulfilled.
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Proof. Assume that (1.8) is not true. Then U ′(s) · (Rico(e1, e1)+ ε)+HessoV (e1, e1)+ ε ≤ K for
some s ∈ R, some o ∈M , some unit vector e1 ∈ ToM and some ε > 0. Put K1 = Rico(e1, e1)+ ε
and K2 = HessoV (e1, e1) + ε.

For δ, r > 0 let A1 := Bδ exp(−s/n)(expo(re1)) and A0 := Bδ exp(−s/n)(expo(−re1)) be geodesic
balls of radius δ exp(−s/n). Then

m(A0) = cnδ
n exp(−s+O(δ2)) and m(A1) = cnδ

n exp(−s+O(δ2))

for small δ. As before, cn denotes the volume of the unit ball in Rn.
Choosing δ � r � 1 we can find a set A1/2 such that γ1/2 ∈ A1/2 for each minimizing geodesic

γ : [0, 1] →M with γ0 ∈ A0, γ1 ∈ A1 and such that

m(A1/2) = cnδ
n exp(−s+O(δ2) + r2/2(K1 − ε/2) +O(r4))

([vRS03], proof of Thm. 1).

Now let µ0, µ̃1/2 and µ1 be the normalized uniform distribution in A0, A1/2 and A1, resp.
and let µ1/2 be the midpoint in P2(M) of µ0 and µ1. According to our construction, µ1/2 is
supported in the set A1/2.

Fix some point z in M with d(z, o) � r and put νi = cnδ
nµi +(1−·nδn)η for i = 0, 1/2, 1 and

ν̃1/2 = cnδ
nµ̃1/2 + (1− cnδn)η where as before η denotes the normalized uniform distribution in

Bδ(z). Obviously ν1/2 is the midpoint in P2(M) of ν0 and ν1. Then for i = 0, 1

SU (νi) = cnδ
nU(log(cnδn/m(Ai))) + C(δ) = cnδn ·

[
U(s) + U ′(s) · (1 +O(δ2))

]
+ C(δ)

and

SU (ν̃1/2) = cnδn ·
[
U(s) + U ′(s) · (1 +O(δ2) + r2/2(K1 − ε/2) +O(r4))

]
+ C(δ)

where C(δ) = (1− cn) · δn · U (log(cnδn/m(Bδ(z)))).

Now ν1/2 as well as ν̃1/2 are supported on the disjoint union of A1/2 and Bδ(z) and they
coincide on Bδ(z). On A1/2, the probability measure ν̃1/2 has constant density w.r.t. m. Hence.

SU (ν1/2) ≥ SU (ν̃1/2).

Indeed, by our assumption on U the function ψ : t 7→ ψ(t) := U(log t)t is convex. Hence, if on
A := A1/2 the probability measure ν1/2 has density ρ w.r.t. m and if ν̃1/2 has constant density
α then by Jensen’s inequality∫

A
U(log ρ)ρdm =

∫
A
ψ(ρ)dm ≥ m(A) · ψ

(
1

m(A)

∫
A
ρdm

)
= m(A) · ψ(α) =

∫
A
U(logα)αdm.

Hence, for δ � r � 1

SU (ν1/2)−
1
2
SU (ν0)−

1
2
SU (ν1) ≥ SU (ν̃1/2)−

1
2
SU (ν0)−

1
2
SU (ν1)

≥ cnδ
nU ′(s)

[
−K1

2
r2 +

ε

4
r2 +O(r4) +O(δ2)

]
> −U ′(s)K1

8
dW

2 (ν0, ν1)2.

Now consider SV .

SV (ν1/2)−
1
2
SV (ν0)−

1
2
SV (ν1) = cnδ

n

∫
M

[
V (F1/2)−

1
2
V (F0)−

1
2
V (F1)

]
dµ0

= −cnδn/2
∫

A0

∫ 1

0
[t ∧ (1− t)] ·HessV (Ḟt, Ḟt) dt dµ0
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where Ft denotes the transport map pushing forward µ0 to µt. Choosing δ and r small enough
one achieves that HessV < K2 along all transport rays from µ0 to µ1. Then

SV (ν1/2)−
1
2
SV (ν0)−

1
2
SV (ν1) > −K2

8
dW

2 (ν0, ν1)2.

Together with the previous inequality for SU this yields

S(ν1/2)−
1
2
S(ν0)−

1
2
S(ν1) > −K

8
dW

2 (ν0, ν1)2

which contradicts the K-convexity of S. �
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