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Abstract. We present various characterizations of uniform lower bounds for the Ricci curvature
of a smooth Riemannian manifold M in terms of convexity properties of the entropy (considered
as a function on the space of probability measures on M) as well as in terms of transportation
inequalities for volume measures, heat kernels and Brownian motions and in terms of gradient
estimates for the heat semigroup.
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1 Introduction and statement of the main results

For metric measure spaces there is neither a notion of Ricci curvature nor a common notion of
bounds for the Ricci curvature (comparable for instance to Alexandrov’s notion of bounds for
the sectional curvature for metric spaces).

The goal of this paper is to present various characterizations of uniform lower bounds for
the Ricci curvature of a smooth Riemannian manifold M in terms of convexity properties of the
entropy (considered as a function on the space of probability measures on M) as well as in terms
of transportation inequalities for volume measures, heat kernels and Brownian motions and in
terms of gradient estimates for the heat semigroup.

In the sequel, (M, g) always is assumed to be a smooth connected Riemannian manifold
with dimension n, Riemannian distance d(x, y) and Riemannian volume m(dx) = vol(dx). For
r ∈ [1,∞[ the Lr-Wasserstein distance of two measures µ1, µ2 on M is defined as

dW
r (µ1, µ2) := inf

{∫

M×M
d(x1, x2)r µ(dx1dx2) : µ ∈ C(µ1, µ2)

}1/r

where C(µ1, µ2) denotes the set of all couplings of µ1 and µ2, that is, the set of all measures µ
on M ×M with µ(A×M) = µ1(A) and µ(M ×A) = µ2(A) for all measurable A ⊂ M .

Here and in the sequel ”measure on M” always means: measure on M equipped with its
Borel σ-field. The set of probability measures µ on M with

∫
M d(x, y)r µ(dy) < ∞ for some
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(hence all) x ∈ M will be denoted by Pr(M). Equipped with the metric dW
r , the space Pr(M)

is a geodesic space.
The entropy is defined as a function on Pr(M) by

Ent(ν) :=
∫

M

dν

dx
log

dν

dx
vol(dx)

if ν is absolutely continuous w.r.t. vol with
∫
M

dν
dx

[
log dν

dx

]
+

vol(dx) < ∞ and Ent(ν) := +∞
otherwise.

Given an arbitrary geodesic space (X, ρ), a number K ∈ R and a function U : X → ]−∞, +∞]
we say that U is K-convex iff for each (constant speed, as usual) geodesic γ : [0, 1] → X and for
each t ∈ [0, 1]:

U(γt) ≤ (1− t) U(γ0) + t U(γ1)− K

2
t(1− t) ρ2(γ0, γ1).

K-convex functions on P2(M) are also called displacement K-convex (to make sure that
t 7→ γt is really the geodesic w.r.t. dW

2 and not the linear interpolation t 7→ (1 − t)γ0 + tγ1 in
the space P2(M)).

Theorem 1. For any smooth connected Riemannian manifold M and any K ∈ R the following
properties are equivalent:

(i) Ric(M) ≥ K,
which always should be read as: Ricx(v, v) ≥ K|v|2 for all x ∈ M, v ∈ TxM .

(ii) The entropy Ent(.) is displacement K-convex on P2(M).

One reason for the importance of Theorem 1 is that it characterizes lower Ricci bounds
referring neither to the differential structure of M nor to the dimension of M . Property (ii) may
be formulated in any metric measure space.

F. Otto & C. Villani [OV00] gave a very nice heuristic argument for the implication ”(i)⇒(ii)”.
In the case K = 0 this implication was proven in [CMS01].

Remark 1. The argument in [OV00] is based on a kind of formal Riemannian calculus on
the space (P2(M), dW

2 ). This calculus allows to interpret the heat flow Φ : (t, µ) 7→ µpt :=∫
µ(dx)pt(x, .) as the gradient flow w.r.t. the entropy Ent(.) on the space (P2(M), dW

2 ). If the
latter was a finite dimensional smooth Riemannian manifold then one easily could conclude that
(ii) is equivalent to:

(iii) The gradient flow Φ : R+ × P2(M) → P2(M) w.r.t. Ent(.) satisfies

dW
2 (Φ(t, µ), Φ(t, ν)) ≤ e−Kt · dW

2 (µ, ν) (∀µ, ν ∈ P2(M),∀t ≥ 0).

Indeed, both statements are equivalent. However, we will derive the equivalence of (ii) and (iii)
only through their equivalence with (i). The equivalence of (i) and (iii) will be obtained as part
of the more general Corollary 1 below.

Here and henceforth, pt(x, y) always denotes the heat kernel on M , i.e. the minimal positive
fundamental solution to the heat equation (∆ − ∂

∂t)pt(x, y) = 0. It is smooth in (t, x, y), sym-
metric in (x, y) and satisfies

∫
M pt(x, y)vol(dy) ≤ 1. Hence, it defines a subprobability measure

pt(x, dy) := pt(x, y)vol(dy) as well as operators pt : C∞c (M) → C∞(M) and pt : L2(M) → L2(M)
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which are all denoted by the same symbol. Given µ ∈ Pr(M) and t > 0 we define a new measure
µpt ∈ Pr(M) by µpt(A) =

∫
A

∫
M pt(x, y)µ(dx)vol(dy).

Brownian motion on M is by definition the Markov process with generator 1
2∆. Thus its

transition (sub-)probabilities are given by pt/2.
If the Ricci curvature of the underlying manifold M is bounded from below then all the

pt(x, .) are probability measures. If the latter holds true we say that the heat kernel and the
associated Brownian motion are conservative. It means that the Brownian motion has infinite
lifetime.

The heat kernel on a Riemannian manifold is a fundamental object for analysis, geometry and
stochastics. Many properties and precise estimates are known. In most of these results, lower
bounds on the Ricci curvature of the underlying manifold play a crucial role. Often, the results
for the heat kernel on Riemannian manifolds turned out to be a source of inspiration for results
in entirely different frameworks or much greater generality e.g. (hypo-)elliptic operators, Hodge-
Laplacians, Feller generators or generators of Dirichlet forms instead of the Laplace-Beltrami
operator; path spaces, spaces of measures or fractals instead of finite dimensional manifolds.

Our second main result deals with robust versions of gradient estimates.

Theorem 2. For any smooth connected Riemannian manifold M and any K ∈ R the following
properties are equivalent:

(i) Ric(M) ≥ K.

(iv) For all f ∈ C∞
c (M), all x ∈ M and all t > 0

|∇ptf |(x) ≤ e−Kt pt|∇f |(x).

(v) For all f ∈ C∞c (M) and all t > 0

‖∇ptf‖∞ ≤ e−Kt ‖∇f‖∞ .

(vi) For all bounded f ∈ CLip(M) and all t > 0

Lip(ptf) ≤ e−Kt Lip(f).

The equivalence of (i) and (iv), perhaps, is one of the most famous general results which
relate heat kernels with Ricci curvature. It is due to D. Bakry & M. Emery [BE84], see also
[ABC+00] and references therein. Property (iv) is successfully used in various applications as a
replacement (or definition) of lower Ricci curvature bounds for symmetric Markov semigroups
on general state spaces. Our result states that (iv) can be weakened in two respects:
– one can replace the pointwise estimate by an estimate between L∞-norms;
– one can drop the pt on the RHS.
Besides being formally weaker than (iv) one other advantage of (v) is that it is an explicit
statement on the smoothing effect of pt whereas (iv) is implicit (since pt appears on both sides).

As an easy corollary to the equivalence of the statements (iv) and (v) one may deduce the
well known fact that (iv) is equivalent to the assertion that for all f, x and t as above

|∇ptf |(x) ≤ e−Kt
[
pt(|∇f |2)(x)

]1/2
.

Property (vi) may be considered as a replacement (or as one possible definition) for lower
Ricci curvature bounds for Markov semigroups on metric spaces. For several non-classical exam-
ples (including nonlocal generators as well as infinite dimensional or singular finite dimensional
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state spaces) we refer to [Stu03], [DR02] and [vRen03]. This property turned out to be the key
ingredient to prove Lipschitz continuity for harmonic maps between metric spaces in [Stu03].

According to the Kantorovich-Rubinstein duality, property (vi) is equivalent to a contraction
property for the heat kernels in terms of the L1-Wasserstein distance dW

1 . Actually, however,
much more can be proven:
– one obtains contraction in dW

r for each r ∈ [1,∞] and for any initial data;
– one obtains pathwise contraction for Brownian trajectories.

Corollary 1. For any smooth connected Riemannian manifold M and any K ∈ R the following
properties are equivalent:

(i) Ric(M) ≥ K.

(vii) For all x, y ∈ M and all t > 0 there exists r ∈ [1,∞] with

dW
r (pt(x, .), pt(y, .)) ≤ e−Kt · d(x, y).

(viii) For all r ∈ [1,∞], all µ, ν ∈ Pr(M) and all t > 0:

dW
r (µpt, νpt) ≤ e−Kt · dW

r (µ, ν).

(ix) For all x1, x2 ∈ M there exists a probability space (Ω,A,P) and two conservative Brownian
motions (X1(t))t≥0 and (X2(t))t≥0 defined on it, with values in M and starting in x1 and
x2, respectively, such that for all t > 0

E [d(X1(t), X2(t))] ≤ e−Kt/2 · d(x1, x2).

(x) There exists a conservative Markov process (Ω,A,Px, X(t))x∈M×M,t≥0 with values in M×M
such that the coordinate processes (X1(t))t≥0 and (X2(t))t≥0 are Brownian motions on M
and such that for all x = (x1, x2) ∈ M ×M and all t > 0

d(X1(t), X2(t)) ≤ e−Kt/2 · d(x1, x2) Px-a.s.

Note that each of the statements (vii) and (viii) implicitly includes the conservativity of
the heat kernel. Indeed, the finiteness of the Wasserstein distance implies that the measures
under consideration must have the same total mass. Thus pt(x,M) is constant in x, hence also
constant in t and therefore equal to 1.

Our interpretation of these results is as follows: if we put mass distributions µ and ν on
M and if they spread out according to the heat equation then the lower bound for the Ricci
curvature of M controls how fast the distances between these distributions may expand (or have
to decay) in time.

Our third main result deals with transportation inequalities for uniform distributions on
spheres and analogous inequalities for uniform distributions on balls. Here the lower Ricci
bound is characterized as a control for the increase of the distances if we replace Dirac masses δx

and δy by uniform distributions σr,x and σr,y on spheres around x and y, resp. or if we replace
them by uniform distributions mr,x and mr,y on balls around x and y, resp.
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Theorem 3. For any smooth connected compact Riemannian manifold M and any K ∈ R the
following properties are equivalent:

(i) Ric(M) ≥ K.

(xi) The normalized Riemannian uniform distribution on spheres

σr,x(A) :=
Hn−1(A ∩ ∂Br(x))
Hn−1(∂Br(x))

, A ∈ B(M)

satisfies the asymptotic estimate

dW
1 (σr,x, σr,y) ≤

(
1− K

2n
r2 + o(r2)

)
· d(x, y) (1)

where the error term is uniform w.r.t. x, y ∈ M .

(xii) The normalized Riemannian uniform distribution on balls

mr,x(A) :=
m(A ∩Br(x))

m(Br(x))
, A ∈ B(M)

satisfies the asymptotic estimate

dW
1 (mr,x,mr,y) ≤

(
1− K

2(n + 2)
r2 + o(r2)

)
· d(x, y) (2)

where the error term is uniform w.r.t. x, y ∈ M .

The advantage of this characterization of Ricci curvature is that it depends only on the basic,
robust data: measure and metric. It does not require any heat kernel, any Laplacian or any
Brownian motion. It might be used as a guideline in much more general situations.

For instance, let (M,d) be an arbitrary separable metric space equipped with a measure m
on its Borel σ-field and assume that (2) holds true (with some numbers K ∈ R and n > 0).
Define an operator mr acting on bounded measurable functions by mrf(x) =

∫
M f(y) mr,x(dy).

Then by the Arzela-Ascoli theorem there exists a sequence (lj)j ⊂ N such that

ptf := lim
j→∞

(
m√

2(n+2)t/lj

)lj
f

exists (as a uniform limit) for all bounded f ∈ CLip(M) and it defines a Markov semigroup on
M satisfying

Lip(ptf) ≤ e−KtLip(f)

(cf. proof of the implication ”(xi)⇒(i)” of the above Theorem and proof of Theorem 4.3 in
[Stu03]).

2 Ricci curvature and entropy

Proof of Theorem 1.

(ii)⇒(i): Assume ¬(i). Then Ric0(e1, e1) ≤ K − ε for some o ∈ M , some unit vector
e1 ∈ ToM and some ε > 0. Let e1, e2, . . . , en be a ONB of ToM such that

R(e1, ei)e1 = kiei
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for suitable numbers ki, i = 1, . . . , n (denoting the sectional curvature of the plane spanned by
e1 and ei if i 6= 1). Then

∑n
i=1 ki = Ric0(e1, e1) ≤ K − ε.

For δ, r > 0 let A1 := Bδ(expo(re1)) and A0 := Bδ(expo(−re1)) be geodesic balls and let

A1/2 := expo

({
y ∈ ToM :

n∑

i=1

(yi/δi)2 ≤ 1

})

with δi := δ · (1 + r2(ki + ε
2n)/2). Choosing δ ¿ r ¿ 1 we can achieve that γ1/2 ∈ A1/2 for each

minimizing geodesic γ : [0, 1] → M with γ0 ∈ A0, γ1 ∈ A1.
Now let µ0 and µ1 be the normalized uniform distribution in A0 and A1, resp. and let ν be

the normalized uniform distribution in A1/2. Then

Ent(µ0) = − log volA0 = − log cn − n log δ + O(δ2)

Ent(µ1) = − log volA0 = − log cn − n log δ + O(δ2)

with cn := V ol(B1) in Rn whereas

Ent(ν) = − log volA1/2 = − log cn −
n∑

i=1

log δi + O(δ2)

= − log cn − n log δ − r2(ε/2 +
n∑

i=1

ki)/2 + O(r4) + O(δ2)

≥ − log cn − n log δ − r2(K − ε/2)/2 + O(r4) + O(δ2)

Since the optimal mass transport from µ0 to µ1 (w.r.t. dW
2 ) is along geodesics of M , the support

of µ1/2 must be contained in the set A1/2. Hence,

Ent(µ1/2) ≥ Ent(ν)

and thus

Ent(µ1/2)−
1
2
Ent(µ0)− 1

2
Ent(µ1) ≥ −K

2
r2 +

ε

4
r2 + O(r4) + O(δ2)

> −K

8
dW

2 (µ0, µ1)2

for δ ¿ r ¿ 1.

(i)⇒(ii): Here we follow closely the argumentation of [CMS01] and use their notation.
Assume that Ric(M) ≥ K. We have to prove that

Ent(µt) ≤ (1− t)Ent(µ0) + tEnt(µ1)− K

2
t(1− t)dW

2 (µ0, µ1)2

for each geodesic t 7→ µt in (P2(M), dW
2 ) and each t ∈ [0, 1]. Without restriction, we may

assume that µ0 and µ1 are absolutely continuous (otherwise the RHS is infinite). Hence,
there exists a unique geodesic connecting them. It is given as µt = (Ft)∗µ0 where Ft(x) =
expx(−t∇ϕ(x)) with a suitable function ϕ. Moreover, with Jt(x) := det dFt(x) and s(r) :=

sin
(√

K
n−1 · r

)
/

(√
K

n−1 · r
)

(which should be read as s(r) := sinh
(√

−K
n−1 · r

)
/

(√
−K
n−1 · r

)
if
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K < 0 and as s(r) = 1 if K = 0) and with vt(x, y) being the volume distortion coefficient of
[CMS01] we deduce

Ent(µt) = Ent(µ0)−
∫

M
log Jt(x)µ0(dx)

and thus

−Ent(µt) + (1− t)Ent(µ0) + tEnt(µ1)

=
∫

M
log Jt(x)µ0(dx)− t

∫

M
log J1(x)µ0(dx)

≥ n

∫
log

[
(1− t)v1−t(F1(x), x)1/n + tvt(x, F1(x))1/nJ1(x)1/n

]
µ0(dx)− t

∫

M
log J1(x)µ0(dx)

≥ n

∫
log

[
(1− t)

[
s((1− t)d(F1(x), x))

s(d(F1(x), x))

]1−1/n

+ t

[
s(td(x, F1(x)))
s(d(F1(x), x))

]1−1/n

J1(x)1/n

]
µ0(dx)

−t

∫

M
log J1(x)µ0(dx)

≥ (n− 1)
∫

[(1− t) log s((1− t)d(F1(x), x)) + t log s(td(F1(x), x))− log s(d(F1(x), x))]µ0(dx)

≥ K

2
t(1− t)

∫
d2(F1(x), x)µ0(dx)

=
K

2
t(1− t)dW

2 (µ0, µ1).

Here the first and second inequality follow from [CMS01], equations (73) and (24). The third
inequality follows from the concavity of the logarithm and the last one from the fact that

(1− t) log s ((1− t)r) + t log s (tr)− log s(r) − t(1− t)
2

K

n− 1
r2

= (1− t)λ((1− t)r) + tλ(tr)− λ(r) ≥ 0

for all r ≥ 0 under consideration and t ∈ [0, 1] since λ′(r) ≤ 0 where λ(r) := log s(r) + 1
6

K
n−1r2.

Note that according to the Bonnet-Myers theorem we may restrict ourselves to r ≥ 0 with
K

n−1r2 ≤ π2.
In order to verify that λ′(r) ≤ 0 it suffices to consider the cases K = ±(n−1). If K = −(n−1)

then λ(r) = log sinh r − log r − 1
6r2 and λ′(r) = cosh r

sinh r − 1
r − 1

3r. The latter is nonpositive for all
r > 0 if and only if

r cosh r − sinh r − 1
3
r2 sinh r ≤ 0

for all r > 0. Differentiating and dividing by r/3 we see that this is equivalent to −r cosh r +
sinh r ≤ 0 which (again by differentiation) will follow from −r sinh r ≤ 0 which is obviously true.

Analogously, if K = n− 1 the condition λ′(r) ≤ 0 is equivalent to

r cos r − sin r +
1
3
r2 sin r ≤ 0

which (by the same arguments as before) is equivalent to −r sin r ≤ 0. Here of course, we have
to restrict ourselves to r ∈ [0, π]. ¤
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3 Ricci curvature and transport inequalities for heat kernels and
Brownian motions

Proof of Theorem 2 and Corollary 1.

(i)⇒(iv): This is due to D. Bakry & M. Emery [BE84] and can be obtained using their Γ2

calculus (cf. [ABC+00], prop. 5.4.5.).

(iv)⇒(v): Take ‖.‖∞ on both sides and use (on the RHS) the fact that pt is a contraction on
L∞(M).

(v)⇒(i): We prove it by contradiction, assuming ¬ (i) ∧ (v). If (i) is not true then there exists
a point 0 ∈ M and v ∈ Sn−1 ⊂ T0M such that Ric0(v, v) ≤ K − ε for some ε > 0. Let
F = {x ∈ M \ Cut(0) | log0 x⊥v} ⊂ M be the orthogonal hypersurface to v in M and
define the signed distance function d±F from F by

d±F : M \ Cut(0) → R, d±F (x) := dist(x,F)sign〈v, log0 x〉. (3)

It is shown in Lemma 1 below that d±F ∈ C∞(U) for some neighborhood U 3 0 and that
furthermore

∇d±F (0) = v (4)
|∇d±F |(x) = 1 ∀x ∈ U (5)

Hess0(d±F ) = 0. (6)

Hence for any neighborhood U ′ 3 0 with U ′ ⊂ U and any smooth cut-off function ψ ∈
C∞

c (U) with ψ|U ′ ≡ 1 the function f = d±F · ψ inherits the properties (4), (5) and (6) with
U replaced by U ′ in (5). In particular, by continuity of the function Γ2(f, f) : U → R

Γ2(f, f)(x) := ‖Hessx(f)‖2 + Ricx(∇f,∇f)

we find
Γ2(f, f) ≤ K − 1

2
ε

on some neighborhood of 0 which contains w.l.o.g. U ′. If, moreover, (v) is true then for
any nonnegative test function ϕ ∈ C∞

c and t ¿ 1 we obtain
∫

M
|∇ptf |2ϕdvol ≤ ‖∇ptf‖2

∞

∫

M
ϕ dvol

≤ exp(−2Kt)
∫

M
ϕdvol

= (1− 2Kt + o(t))
∫

M
ϕdvol. (7)

We choose a test function 0 ≤ ϕ ∈ C∞
c (U ′) and define for t > 0

Φ(t) :=
∫

M

|∇ptf |2ϕdvol.
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Hence, since |∇ptf |2 → |∇f |2 ≡ 1 on supp(ϕ) ⊂ U ′, the function Φ extends continuously
on the entire nonnegative half line by Φ(0) :=

∫
M ϕ. From Bochner’s formula we deduce

Φ′(t) =
∫

M

2〈∇pt∆f,∇ptf〉ϕdvol

=
∫

M

(2∆|∇ptf |2 − 2Γ2(ptf, ptf))ϕ dvol

=
∫

M

2|∇ptf |2∆ϕ− 2Γ2(ptf, ptf)ϕdvol

t→0−→
∫

M

(2|∇f |2∆ϕ− 2Γ2(f, f)ϕ) dvol

= −2
∫

M

Γ2(f, f)ϕ dvol ≥ (ε− 2K)
∫

M

ϕ = (ε− 2K)Φ(0).

Thus t → Φ(t) is differentiable in t = 0+ with Φ′(0+) > (ε − 2K)Φ(0). Consequently we
find for small t that Φ(t) ≥ Φ(0) + (ε− 2K)Φ(0)t + o(t) = Φ(0)(1− 2Kt + o(t)), i.e.

∫

M

|∇ptf |2ϕdvol ≥ (1 + (ε− 2K)t + o(t))
∫

M

ϕdvol

which is a contradiction to (7).

(vi)⇒(v): Trivial

(vii)⇒(vi): By Hölder’s inequality, property (vii) for some r ≥ 1 implies property (vii) for
r = 1 which in turn implies (vi) according to the Kantorovich-Rubinstein duality.

Or explicitly: for each coupling λ of pt(x, .) and pt(y, .)

|ptf(x)− ptf(y)| =
∣∣∣∣
∫

[f(z)− f(w)]λ(dzdw)
∣∣∣∣

≤ Lip(f) ·
∫

d(z, w)λ(dzdw)

≤ Lip(f) ·
[∫

d(z, w)rλ(dzdw)
]1/r

.

Hence,

|ptf(x)− ptf(y)| ≤ Lip(f) · dW
r (pt(x, .), pt(y, .)) ≤ Lip(f) · d(x, y) · e−Kt.

(viii)⇒(vii): Choose µ = δx, ν = δy.

(ix)⇒(vii): The distribution λ(.) := P ((X1(2t), X2(2t)) ∈ .) of the pair (X1(2t), X2(2t)) defines
a coupling of pt(x1, .) and pt(x2, .). Hence,

dW
1 (pt(x1, .), pt(x2, .)) ≤

∫
d(z1, z2) λ(dz1dz2) = E [d(X1(2t), X2(2t))] ≤ e−Kt · d(x1, x2).
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(x)⇒(viii): Let λ be an optimal coupling of µ and ν w.r.t. dW
r and let Πt be the transition

semigroup of the Markov process from (x). Then λt := λΠ2t is a coupling of µpt and νpt.
Hence,

dW
r (µpt, νpt)r ≤

∫
d(w1, w2)rλt(dw1dw2)

=
∫ ∫

d(w1, w2)rΠ2t((x1, x2), dw1dw2)λ(dx1dx2)

=
∫
E(x1,x2) [d(X1(2t), X2(2t))r] λ(dx1dx2)

≤ e−Ktr ·
∫

d(x1, x2)rλ(dx1, dx2)

= e−Ktr · dW
r (µ, ν)r.

(x)⇒(ix): Take expectations.

(i)⇒(x) is well known and can be shown using either SDE theory on Riemannian manifolds in
order to construct the coupling by parallel transport process on M ×M for two Brownian
motions (cf. [Wan97] and references therein) or by a central limit theorem for coupled
geodesic random walks and an estimate of the type (2) (cf. [vRen03] for a similar argu-
ment). ¤

Remark 2. There are two more very natural candidates which one could consider as a test
function in the proof of the (v)⇒ (i) part above, namely f1(z) := 〈log0(z), v〉T0M and f2(z) =
d(exp0(Lv), z) with L being large compared to U . However, even if ∇f1(0) = ∇f2(0) = v none
of the two will help because |∇f1| 6≡ 1 in a neighborhood of 0 and Hess0 f2 6= 0, which were
essential properties of d±F in our proof.

Lemma 1. Let M be a Riemannian manifold, 0 ∈ M , v ∈ T0M and F = {exp0(u) |u ∈
T0M, u⊥v} ⊂ M the (n − 1)-dimensional hypersurface through 0 orthogonal to v. Then the
signed distance function d±F : M → R belongs to C∞(U) for some neighborhood U 3 0 and
Hess0(d±F ) = 0.

Proof. The level sets Fε = {x ∈ M |d±F (x) = ε} of d±F for |ε| ¿ 1 define a foliation of (a sufficiently
small) neighborhood U 3 0 by smooth hypersurfaces. The unit normal vector field to Fε is given
by ν = ∇d±F which is well defined and smooth sufficiently close to F (d±F is a ’distance function’
on U in the sense of [Pet98], sec. 2.3.). Hence the Hessian of d±F in a point p ∈ U may be
interpreted as the shape operator of Fε in p ∈ Fε with ε = d±F (p), i.e.

Hessp(X, X) = ΠFε
p (X,X) = 〈SFε

p (X), X〉TpM ,

where ΠFε
p is the second fundamental form of the hypersurface Fε ⊂ M and SFε : TpM → TpFε

is the associated shape operator. The claim Hess0(d±F ) = 0 then follows from the construction
of F which implies that F = F0 ⊂ M is flat in 0, i.e. SF0 = 0.
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4 Ricci curvature and transport inequalities for uniform distri-
butions on spheres and balls

Proof of Theorem 3.
(xi) ⇒ (i): Let us define the family of Markov operators σr : FB → FB on the set FB

of bounded Borel measurable functions on M by σrf(x) =
∫
M f(y)σr,x(dy). Using that for

f ∈ C3(M)

σrf(x) = f(x) +
r2

2n
∆f(x) + o(r2) (8)

and an appropriate version of the Trotter-Chernov product formula (cf. thm. 1.6.5. in [EK86],
applied to pt = exp(t∆) as Feller semigroup on (C(M), ‖.‖∞)) we find for all f ∈ C(M)

(
σ√

2nt/j

)j
f(x)

j→∞−→ ptf(x)

uniformly in x ∈ M and locally uniformly in t ≥ 0. By the Rubinstein-Kantorovich duality
condition (xi) implies

|σrf(x)− σrf(y)| ≤
(

1− K

2n
r2 + o(r2)

)
· d(x, y) · Lip(f)

for all f ∈ CLip(M) and x, y ∈ M , i.e.

Lip(σrf) ≤ (
1− K

2n
r2 + o(r2)

) · Lip(f)

and hence by iteration for j ∈ N, r =
√

2nt/j

Lip
((

σ√
2nt/j

)j
f

)
≤ (

1−Kt/j + o(t/j)
)j · Lip(f).

Passing to the limit for j →∞ yields

Lip(ptf) ≤ exp(−Kt) · Lip(f),

which is equivalent to (i) by Theorem 2.

For the proof of the converse we construct an explicit transport from σr,x to σr,y in the
following lemma, whose proof is given below.

Lemma 2. Let M be a smooth connected compact Riemannian manifold and for x ∈ M let
σr,x(.) denote the normalized Riemannian uniform distribution on Sr(x) := ∂Br(x). Then for
r sufficiently small for each x, y ∈ M there exits a geodesic segment γ = γxy and a measurable
map Ψx,y

r : Sr(x) → Sr(y) such that the push forward measure Ψx,y
r,∗ σr,x equals σr,y and

sup
z∈Sr(x)

sup
y∈M

| logx z − //−1
γ logy Ψx,y

r (z)|
d(x, y)

= o(r2) (9)

where the error term o(r2) is uniform in x ∈ M .
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(i) ⇒ (xi): We show it for the case K < 0, the case K ≥ 0 is treated analogously. Due
to Lemma 2 we can assume that up to a negligible error Ψx,y

r is indeed nothing but parallel
transport because

d(z, Ψx,y
r (z)) ≤ d(z, expy(//γxy

logx(z))) + d(expy(//γ logx(z)), Ψx,y
r (z))

≤ d(z, expy(//γ logx(z))) + L|//γ logx(z)− logy Ψx,y
r (z)|

≤ d(z, expy(//γ logx(z))) + Ld(x, y)o(r2),

where L is some uniform upper bound for the Lipschitz constant of log.(.) with respect to the
second argument. The asymptotic inequality (1) is now easily verified from (8), since

dW
1 (σr,x, σr,y) ≤ 1

Hn−1(∂Br(x))

∫

∂Br(x)

d(z, Ψx,y
r (z))Hn−1(dz)

=
1

Hn−1(∂Br(x))

∫

∂Br(x)

d(z, expy //γ logx z)Hn−1(dz) + d(x, y)o(r2)

= d(x, y) +
r2

2n
∆Dx,y(x) + d(x, y)o(r2)

with z → Dx,y(z) = d(z, expy //γ logx z). Since

∆Dx,y(x) = trace HessxDx,y =
n∑

i=2

Iγ
M (Ji, Ji)

where Iγ
M (Ji, Ji) is the Indexform of M along γxy applied to the Jacobi field induced from parallel

geodesic varations of γ in the direction ei with {γ̇e
xy, e2, · · · , en} being an orthonormal basis of

TxM . Hence we may conclude by the standard Ricci comparison argument that

∆Dx,y(x) ≤ 2(n− 1)

√
−K

n− 1

cosh
(√ −K

n−1d(x, y)
)− 1

sinh
(√ −K

n−1d(x, y)
) ≤ −Kd(x, y)

such that we finally arrive at

dW
1 (σr,x, σr,y) ≤ d(x, y)− r2

2n
Kd(x, y) + d(x, y)o(r2).

(xii) ⇒ (i): This is shown in the same way as the implication ”(xi) ⇒ (i)” with the slight
difference that instead of (8) one uses

mrf(x) = f(x) +
r2

2(n + 2)
∆f(x) + o(r2).

(i) ⇒ (xii): We proceed as before for ”(i) ⇒ (xi)” where now we have to construct a map
Φx,y

r which preserves the normalized uniform distributions on balls. However, since similarly to
the condition (16) in the proof of Lemma 2 we have

mr,x(A) =
1

m(Br(x))

r∫

0

σu,x(A)Hn−1(∂Bu(x))du

12



such a map can be constructed from a map Ψx,y
r1,r2 : ∂Br1(x) → ∂Br2(y) with (Ψx,y

r1,r2)∗σr1,x = σr2,y

and which is almost induced from parallel transport in the sense of (9). It is clear that Lemma
2 can easily be generalized to yield such a map Ψx,y

r1,r2 which is all we need.
¤

Proof of Lemma 2. We show the lemma for the two dimensional case first and inductively gen-
eralize this result to higher dimensions later. Let n = 2 and choose a parametrization of Sr(x)
and Sr(y) (using Riemannian polar coordinates, for example) on S1 ⊂ R2 ' TxM , i.e. for all
f : Sr(x) → R

∫

Sr(x)

f(z)Hn−1(dz) =
∫

S1

Dx(r, ϑ)f̃(ϑ)S(dϑ) =

2π∫

0

Dx(r, s)f̃(s)ds

with a density Dx(r, ϑ) given by

Dx(t, ϑ) =
√

det (〈Yi(t, ϑ), Yj(t, ϑ)〉)ij

= tn−1
(
1− t2

6
cx(ϑ, ϑ) + o(t2)

)
, (10)

where cx is the Gaussian curvature of (M, g) in x and Yj(t, ϑ) is the Jacobi field along t →
expx(tϑ) with Ji(0) = 0 and J ′i(0) = ei for an orthonormal basis {ei | i = 1, 2} of TxM (cf.
[GHL90], for instance).

For x, y and γxy fixed let the parametrization of S1
x ⊂ TxM and S1

y ⊂ TyM on [0, 2π] be
chosen in such a way that

S1
x 3 0 ' γ̇xy(0) und S1

y 3 0 ' γ̇xy((d(xy)).

Next, we choose a function τ = τx,y
r : [0, 2π] → [0, 2π] with τ(0) = 0 satisfying

1
Hn−1(Sr(x))

u∫

0

Dx(r, s)ds =
1

Hn−1(Sr(y))

τ(u)∫

0

Dy(r, s)ds (11)

for all u ∈ [0, 2π]. Identifying τ : [0, 2π] → [0, 2π] with the associated τ : S1 → S1 then (11) just
means that the induced map Ψ = Ψx,y : Sr(x) → Sr(y)

Ψ(z) := expy(rτ(
1
r

logx(z)))

transports the measure Hn−1
r,x into Hn−1

r,y . By definition of Ψx,y estimate (9) is equivalent to

sup
z∈[0,2π]

sup
y∈M

|τx,y
r (z)− z|
d(x, y)

= o(r). (12)

Denoting

Ex(r, s) :=
Dx(r, s)

Hn−1(Sr(x))
= 1 + O(r2), (13)

with E.(., s) ∈ C2(M × [0, ε]) for all s ∈ [0, 2π] and some ε > 0, (11) yields

(1 + O(r2))|τ(z)− z| =

∣∣∣∣∣∣∣

τ(z)∫

z

Ey(r, s)ds

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣

z∫

0

(Ex(r, s)−Ey(r, s)) ds

∣∣∣∣∣∣
.
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Consequently

sup
y∈M

|τx,y
r (z)− z|
d(x, y)

≤ (1 + O(r2))

z∫

0

|∇xE.(r, s)| ds.

Due to E.(0, s) ≡ 1 = const we find limr→0 |∇xE.(r, s)| = 0 and hence

lim
r→0

sup
y∈M

|τx,y
r (z)− z|
rd(x, y)

≤ lim
r→0

z∫

0

∂

∂r
|∇xE.(r, s)| ds

= lim
r→0

z∫

0

〈 ∇xE.(r, s)
|∇xE.(r, s)| ,

∂

∂r
∇xE.(r, s)〉TxMds

= lim
r→0

z∫

0

〈 ∇xE.(r, s)
|∇xE.(r, s)| ,∇x

∂

∂r
E.(r, s)〉TxMds. (14)

The right hand side of (13) yields ∂
∂r |r=0

E.(r, s) = 0 from which we see that the integral above
vanishes for r tending to 0. This establishes (12) for fixed x. By the smoothness of (M, g) the
error term is locally uniform in x ∈ M and hence it is also globally uniform since M is compact.

The case dimM = 3 will show how we can deal with arbitrary dimensions n ∈ N. Fix
x, y ∈ M as well as some segment γxy from x to y. By means of the inverse of the exponential
map we lift the measures σr,x and σr,y onto the unit spheres in TxM and TyM respectively
which we disintegrate along the γ̇xy-direction as follows. Choose an o.n. basis {e1, e2, e3} ⊂
TxM with e1 = γ̇xy and {e′1, e′2, e′3} = //γ{e1, e2, e3} ⊂ TyM and for u ∈ [−1, 1] let S⊥r,x(u) =
{expx

(
r(ue1, se2, te3)

)|u2 + s2 + t2 = 1} denote the ’orthogonal’ part of Sr(x) w.r.t. γ at ue1.
Define a probability measure cr,x(u)(du) on [−1, 1] ⊂ e1R ⊂ TxM by

cr,x(u)(du) =
1

Hn−1(Sr(x))
Hn−2

(
S⊥r,x(u)

)
du

=
1∫

S2 Dx(r, ϑ)S2(dϑ)

∫

S1√
1−u2

Dx(r, (u, η))S1(dη)du

with the Riemannian volume density

Dx(t, ϑ) = tn−1

(
1− t2

6
Ricx(ϑ, ϑ) + o(t2)

)
(15)

and cr,y(u) analogously. Let τ1 : [−1, 1]e1 → [−1, 1]e′1 be the function defined by

s∫

0

cr,x(u)du =

τ1(s)∫

0

cr,y(u)du ∀ s ∈ [−1, 1]. (16)

For each s ∈ [−1, 1] define a transport

τ⊥s : S⊥r,x(s) → S⊥r,y(τ1(s)),
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analogously to (11) which preserves the probability measures σ⊥r,x(s)(.) and σ⊥r,y(τ(s))(.) that are
obtained from conditioning σr,x and σr,y on S⊥r,x(s) and S⊥r,y(τ1(s)) respectively. Hence the map
Ψx,y : Sr(x) → Sr(y), Ψx,y(z) := expy(rτ(1

r logx(z))) induced from

τ = τx,y
r : TxM ⊃ S2(x) → S2(y) ⊂ TyM

τ(u) :=
(
τ1(u1), τ⊥u1

((u2, u3))
)

will push forward σr(x) into σr(y) and it remains to prove the asymptotic estimate (12). Since
the distance |τx,y

r (u)− u|2 is Euclidean we may use the estimate (12) from the two dimensional
case for the |τx,y

r ((u2, u3)) − (u2, u3)| part which persists also in this situation. Indeed, it is
sufficient to note that the expression (14) and hence the error estimate

sup
z∈[0,2π]

sup
y∈M

|τ⊥x,y((u2, u3))− (u2, u3)|
d(x, y)

= o(r)

holds true also for the embedded orthogonal spheres S⊥r,x(u), S⊥r,y(u) since they are parallel
translates of one another and that by triangle inequality this also generalizes to the situation
τ⊥x,y : S⊥r1

(x) → S⊥r2
(y) with r1, r2 ≤ r. Thus it remains to prove

sup
u1∈[−1,1]

sup
y∈M

|τ1u1 − u1|
d(x, y)

= o(r),

which follows from (16) by similar arguments which established (12) in the 2D-case. This
completes the proof in three dimensions. For arbitrary n ∈ N one proceeds in a similar fashion
by inductively reducing the problem to lower dimensions.
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