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Abstract

The nonlinear Dirichlet problem is considered for maps from a two dimensional domain into
trees with one branch point. The Dirichlet energy is defined using a semigroup approach based
on Markov kernels. The problem is discretized using a suitable finite element approach and
convergence of a corresponding iterative numerical method is proved. The presented approach
integrates stochastic methods on discrete lattices and finite element projection techniques.
Finally, a couple of numerical results are presented.

Introduction

A smooth map f : M → N between Riemannian manifolds is called harmonic if its tension field
τ(f) := trace∇(df) vanishes [Jos95]. Well known examples are harmonic functions (N = IR),
geodesics (M ⊂ IR) and minimal surfaces. Harmonic maps play an important role in many areas
of mathematics, see Eells, Lemaire (1978, 1988) for a survey. In the last decade, it was devel-
oped the study of maps into more general target spaces, e.g. [GS92], [JY93].
Korevaar, Schoen (1993, 1997) and Jost (1994, 1997) independently began to develop a theory
of harmonic maps into metric spaces of nonpositive curvature in the sense of Alexandrov (briefly:
NPC spaces). These developments are based on the fact that a canonical extension of the energy
functional can be defined for maps with values in NPC spaces. In the approach by Korevaar,
Schoen, the domain space is still a Riemannian manifold. In Jost’s approach, the domain space
is a locally compact metric space equipped with an abstract Dirichlet form, replacing the Rieman-
nian manifold equipped with the classical Dirichlet form. Eells, Fuglede (2001) study harmonic
maps between Riemannian polyhedra.

In this work we will study the nonlinear Dirichlet problem for harmonic maps f : M → N from a
measure space (M, m) with a local Dirichlet form on it into trees with one branch point (“spiders”).
Besides Riemannian manifolds the most simple NPC spaces are metric trees and in particular spi-
ders. To study and understand the nonlinear effects (e.g. on regularity and stability of harmonic
maps) arising from negative curvature one may restrict oneself to these prototypes of NPC spaces.
Moreover, the study of the nonlinear Dirichlet problem for maps into spiders yields the main mod-
ule for the analysis of the Dirichlet problem for maps into graphs. A further step might be then
to use harmonic maps into graphs to approximate harmonic maps into Riemannian manifolds or
more general spaces.

Let (M,m) be a measure space with a local Dirichlet form E on it with generator A and semigroup
eAt given by a semigroup of Markov kernels pt. Let N be a tree with one branch point and a finite
number of edges. Following the approach by Jost (1997), we will define a canonical extension EN

of the energy E for maps v : M → N using the semigroup pt

EN (v) := lim sup
t→0

1
2t

∫

M

∫

M

d2(v(x), v(y))pt(x, dy)m(dx).
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This definition yields the identity
∑

E(vi) = EN (v),

whereby vi : M → IR is the projection of v on the i-th edge [He03]. If the operator A is the Laplace
operator ∆ on IRn then one has

EN (v) =
∑ ∫

IRn

|∇vi|2.

The nonlinear Dirichlet problem for a given map g with EN (g) < ∞ and a subset D ⊂ M is to
find a map u with u = g on M\D which minimizes the nonlinear energy EN (either on M or,
equivalently, on D). Such a map is called harmonic on D.
For the proof of existence and uniqueness of a solution to the nonlinear Dirichlet problem see
[He03]. It turns out that the solution u depends only on g|∂D.

In the special case M = IR2, E being the classical Dirichlet form on IR2, D being a polygonal
set we will define a numerical algorithm to solve the nonlinear Dirichlet problem.
Within this case we fix suitable triangulations Th of D and define a discrete nonlinear energy Eh

N

for maps v̄h : Nh → N , whereby Nh denotes the set of vertices of the triangulation Th. This yields
a discrete nonlinear Dirichlet problem, i.e., for a map g : IR2 → N with EN (g) < ∞ one searches
a map ūh : Nh → N with ū = g on ∂D ∩ Nh minimizing the discrete nonlinear energy Eh

N . For
the construction of the algorithm solving this problem we mainly use the fact that the maps which
minimize the discrete energy can be obtained by iteration of nonlinear Markov operators. The
latter are defined as barycenters of discrete probability distributions on the n-spider.
Furthermore we define a prolongation operator Jh which extends maps defined on the vertices to
maps defined on the whole domain D in such a way that

EN (Jh(ūh)) ≤ Eh
N (ūh) → EN (u) h → 0.

From this the L2-convergence of Jh(ūh) to the solution u of the nonlinear Dirichlet problem follows
as a straightforward consequence.

1 Nonlinear Dirichlet problem

Throughout this paper we fix a σ-finite measure space (M, m) and a Dirichlet form (E ,D(E))
on L2(M,m), that is, E is a closed bilinear form on L2(M, m) with dense domain D(E) with
E(u+ ∧ 1, u+ ∧ 1) ≤ E(u, u). Moreover, we assume

(A1) (E ,D(E)) is local, that is, v, w ∈ D(E), v · w = 0 a.e. ⇒ E(v, w) = 0.

(A2) The semigroup (Tt)t≥0 corresponding to the Dirichlet form (E ,D(E)) is given by a semigroup
of Markov kernels pt(x, dy).

Remark 1.1 Assumption (A2) is always fulfilled if M is a locally compact separable metric space,
and the Dirichlet form (E ,D(E)) is regular and conservative. In particular, this assumption is
fulfilled for M = IR2 with m being the Lebesgue measure λ on IR2, and (E ,D(E)) being the classical
Dirichlet form. i.e. E(u) =

∫
IR2 |∇u|2dλ. This special case will be further developed along this

work.

For I = IN or I = {1, . . . , n} we define the I-spider as the metric space (N, d) where

N := {(i, t) : i ∈ I, t ∈ IR+
0 }/ ∼
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with (i, 0) ∼ (j, 0) for every i, j ∈ I. A distance d is defined on N by

d((i, s), (j, t)) =
{ |s− t|, if i = j

s + t, otherwise.
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Figure 1: The 5-spider

Additionally, we consider the following functions defined on N by

c : N → I ∪ {0}, (i, t) 7→
{

i, if t 6= 0
0, otherwise,

π : N → IR+
0 , (i, t) 7→ t

and

πj : N → IR+
0 , (i, t) 7→ δij · t.

In the sequel we use the decomposition
⋃

i∈I∪{0}Ni of N , with N0 := o := {(1, 0)} and Ni :=
{(i, t) : t ∈ IR+

0 }, i ∈ I. In this way, to each measurable map v : M → N one may associate a
family of functions vi : M → IR (i ∈ I) defined by

vi := πi ◦ v.

The number π(x) plays the role of the modulus of x and c(x) is a generalization of sgn(x) and
interpreted as colour of x.

Remark 1.2 If I = {1, 2} then N,N1 and N2 can be identified with IR, IR+
0 and IR−0 , resp. Then

the functions c(x), π(x), π1(x), π2(x) coincide with sgn(x), |x|, x+, x−, resp. and v1(x), v2(x) coin-
cide with v+(x), v−(x).

Given a measurable map v : M → N we define the energy function EN by

EN (v) := lim sup
t→0

1
2t

∫

M

∫

M

d2(v(x), v(y))pt(x, dy)m(dx) (1)

with D(EN ) := {v : M → N measurable: EN (v) < ∞ and vi ∈ L2(M,m), ∀i ∈ I}.
Theorem 1.3 For all measurable maps v : M → N the condition v ∈ D(EN ) is equivalent to

vi ∈ D(E), ∀i ∈ I and
∑

i∈I

E(vi) < ∞.
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In this situation, for each v ∈ D(EN ) the following equalities hold

EN (v) = lim
t→0

1
2t

∫

M

∫

M

d2(v(x), v(y))pt(x, dy)m(dx) (2)

=
∑

i∈I

E(vi) (3)

with

E(vi) = lim
t→0

1
2t

∫

M

∫

M

|vi(x)− vi(y)|2pt(x, dy)m(dx).

For a detailed proof see [He03].

Corollary 1.4 On IRk with the Lebesgue measure λ, let (E ,D(E)) be the classical Dirichlet form
and I = {1, . . . , n}. For all v ∈ D(EN ) one has

EN (v) =
∑

i∈I

∫

IRk

|∇vi|2dλ. (4)

Remark 1.5 In the situation from above, our notion of the nonlinear energy EN coincides with
the notion of energy introduced by [KS93] and [Jos94]. That is, for all measurable v : IRk → N
one has

EN (v) = lim
r→0

ck

rk+1

∫

IRk

∫

∂Br(x)

d2(v(x), v(y))σr,x(dy)λ(dx)

= lim
r→0

c′k
rk+1

∫

IRk

∫

Br(x)

d2(v(x), v(y))λ(dy)λ(dx).

For details see [He03].

Definition 1.6 (Nonlinear Dirichlet problem) Given a map g ∈ D(EN ) and a set D ⊂ M ,
let us define the class of maps

VN (g) := {v ∈ D(EN ) : v = g m-a.e. on M\D}.
A map u ∈ VN (g) is called a solution to the nonlinear Dirichlet problem for g whenever

EN (u) = min
v∈VN (g)

EN (v).

The next result states a sufficient condition for the existence (and uniqueness) of a solution to
a nonlinear Dirichlet problem in terms of the so-called linear spectral bound λD of an open set
D ⊂ M , that is,

λD := inf
{
E(v) : v ∈ L2

0(D),
∫

M

v2dm = 1
}

where L2
0(D) := {v ∈ L2(M) : v = 0 m-a.e. on M\D} and E(v) := +∞ if v 6∈ D(E).

Theorem 1.7 Given a set D ⊂ M such that λD > 0, there exists a unique solution to the non-
linear Dirichlet problem for any g ∈ D(EN ).

For a detailed proof see [He03].

Remark: A refined definition of the Dirichlet problem would require to replace the class VN (g)
by ṼN (g) := {v ∈ D(EN ) : ṽ = g̃ quasi everywhere on M\D} where ṽ, g̃ denote quasi-continuous
versions of v and g, resp. This makes sense whenever the Dirichlet form is quasi regular. However
in our application both classes coincide since D always will have a “nice” boundary.
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2 Discrete nonlinear Dirichlet problem

From now on, we confine with the special case (M,m) = (IR2, λ) with the corresponding classical
Dirichlet form E . For the sake of simplicity, we restrict to a polygonal domain D ⊂ IR2. Let us
suppose that an admissible and regular triangulation Th of D in the sense of [Cia78] is given. In
addition, we suppose the triangles to be “acute”. This, means that all interior angles of all triangles
of Th are less than or equal to π

2 . Finally, we assume that for the map g ∈ D(EN ), specifying the
boundary values for the nonlinear Dirichlet problem, π◦g is the modulus of a linear function on the
boundary faces of Th. For this special situation we define a discrete nonlinear Dirichlet problem
which unique solution is used to approximate the solution of the continuous nonlinear Dirichlet
problem.

However before we start to discuss the nonlinear case, we will have a closer look on the linear
case.

In the sequel Nh = {x1, . . . , xl} denotes the set of all vertices of the triangulation Th. We divide
Nh into two disjoint sets

N̊h := Nh\∂D and N ∂
h := Nh ∩ ∂D.

Definition 2.1 We denote by V h the standard space of piecewise affine finite elements on Th and
by {φi

h, 1 ≤ i ≤ l} the corresponding nodal basis of V h, see [Cia78]. Furthermore we define a
Markov kernel p on Nh by

∀xi, xj ∈ Nh : p(xi, xj) :=

{
− (∇φi

h,∇φj
h)

(∇φi
h,∇φi

h)
, if xi ∼ xj ,

0, otherwise,

where xi ∼ xj means that there is an edge connecting xi and xj and we define a measure µ on Nh

by

∀xi ∈ Nh : µ(xi) := (∇φi
h,∇φi

h).

Remark: Due to the assumptions on the triangulations Th one has (∇φi
h,∇φj

h) ≤ 0. Furthermore,
since ∇1 = 0, it holds

∑
xj∈Nh

p(xi, xj) = 1 (cf. [Tho97]).

Lemma 2.2 Given a function vh ∈ V h, for all 1 ≤ i ≤ l define vi
h := vh(xi). Then

∫

D

|∇vh|2 dλ =
1
2

l∑

i=1

l∑

j=1

(vi
h − vj

h)2p(xi, xj)µ(xi) (5)

and, moreover,

∫

D

|∇vh|2dλ = −
∑

T∈Th

2∑
i,j=0
i<j

(vh(xT
i )− vh(xT

j ))2
∫

T

∇φi,T
h ∇φj,T

h dλ, (6)

whereby xT
0 , xT

1 , xT
2 ∈ Nh denote the vertices of a triangle T ∈ Th and φi,T

h denote the corresponding
elements of the standard basis.
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The difference between formulas (5) and (6) is that in (5) we sum over all vertices of the triangu-
lation and in (6) we sum over all triangles.

Proof: Identity vh(x) =
∑l

i=1 vi
hφi

h(x) leads to

1
2

l∑

i=1

l∑

j=1

(vi
h − vj

h)2p(xi, xj)µ(xi)

=
1
2


2

l∑

i=1

(vi
h)2

l∑
j=1
j 6=i

[−(∇φi
h,∇φj

h)] + 2
l∑

i=1

l∑
j=1
j 6=i

vi
hvj

h(∇φi
h,∇φj

h)




=
l∑

i=1

l∑

j=1

vi
hvj

h(∇φi
h,∇φj

h)

=
∫

D

|∇vh|2dλ.

A similar procedure shows equation (6). ¤

Now we are going to extend our frame from functions v : M → IR to maps v : M → N where N is
the spider with n edges.

Definition 2.3 (Discrete nonlinear Dirichlet problem) Given a map g : ∂D → N let us
define

V̄ h
N (g) :=

{
v̄h : Nh → N : v̄h(x) = ḡh(x) ∀x ∈ N ∂

h

}

with ḡh(x) := g(x), ∀x ∈ N ∂
h . A map ūh : Nh → N is called a solution to the discrete nonlinear

Dirichlet problem for g whenever ūh fulfills the following two conditions:

1. ūh ∈ V̄ h
N (g)

2. Eh
N (ūh) = min

v̄h∈V̄ h
N (g)

Eh
N (v̄h), where

Eh
N (v̄h) :=

1
2

∑

xi,xj∈Nh

d2(v̄h(xi), v̄h(xj))p(xi, xj)µ(xi) (7)

is called the discrete energy corresponding to Th.

According to [Stu01] we have the following result.

Proposition 2.4 For each g : ∂D → N there is a unique solution to the discrete nonlinear
Dirichlet problem for g.

Given the Markov operator p from Definition 2.1 we define another Markov operator pNh
on Nh

by

pNh
(x, y) := 11N̊h

(x)p(x, y) + 11N∂
h
(x)δ{x}(y),
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where 11· denotes the indicator function of a set and δ{x} is the Dirac measure with mass at x.

In the sequel, for a given Markov operator q on Nh, we denote by qN the associated nonlinear
Markov operator acting on each map v̄ : Nh → N by

qN v̄(x) = argmin
z∈N

∑

y∈Nh

d2(z, v̄(y))q(x, y),

see [Stu01]. In other words, if (Xn, IPx) is a random walk with transition probability q then

qN v̄(x) = argmin
z∈N

IExd2(z, v̄(X1)).

Proposition 2.5 For each v̄h ∈ V̄ h
N (g) the following two conditions are equivalent:

1. pN
Nh

v̄h = v̄h

2. v̄h is a solution to the discrete nonlinear Dirichlet problem for g.

The proof follows closely the arguments used in [Stu01].

Remark:

1. In the linear case (i.e. N = IR), the matrix A with components Aij = µ(xi)(δij − p(xi, xj))
is the well–known stiffness matrix and ūh solves a corresponding linear system of equations.
Furthermore the matrix Q with entries Qij = p(xi, xj) is the iteration matrix of the Jacobi
algorithm. Thus the algorithm itself coincides with the corresponding Markov process (see
below).

2. If v̄h : Nh → N is a map such that v̄h = pN
Nh

v̄h, then on N̊h the map v̄h is given by

v̄h(x) = argmin
z∈N





∑

y∈Nh

d2(z, v̄h(y))p(x, y)



 , x ∈ N̊h.

To solve the discrete nonlinear Dirichlet problem, we construct a nonlinear Markov operator Q in
such a way that for each v̄h ∈ V̄ h

N (g) one has

lim
n→∞

Qnv̄h = ūh.

In order to define this nonlinear Markov operator Q, let us first define the following Markov
operators p1, . . . , pk, k := #N̊h, and q:

pi(x, y) :=





p(x, y), if x = xi and x ∼ y
1, if x 6= xi and x = y
0, otherwise

i = 1, . . . , k

q(x, y) := pk ◦ · · · ◦ p1(x, y).
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Lemma 2.6 There exists an exponent r ∈ IN such that

||qr||∞,∞ := sup
{||qrv||∞ : ||v||∞ = 1, v = 0 on N ∂

h

}
< 1.

Proof: At first, consider v(xi) = v+(xi) = 1 for every interior nodes xi. In each step at least
one nodal value of an interior node decreases. Indeed, this is due to the averaging effect of the
application of pi(·, ·) over neighbouring nodes. But there is only a finite number of nodes. Hence,
there exists a number of iterations r ≤ k after which the initial value 1 on every node has been
decreased. Furthermore we observe that v ≤ v+ implies qrv ≤ qrv+. Hence, we are done. ¤

Remark: Based on an ordering of the nodes x ∈ N̊h with increasing graph distance from the
boundary nodes on the edge graph of the triangulation we can achieve r = 1 in Lemma 2.6.

Definition 2.7 To each i = 1, . . . , k let pN
i be the nonlinear Markov operator associated to pi. We

define the nonlinear Markov operator Q by

Q := pN
k ◦ · · · ◦ pN

1 .

Proposition 2.8 For each map v̄h ∈ V̄ h
N (g) such that v̄h = Qv̄h, one has

v̄h(x) = argmin
z∈N





∑

y∈Nh

d2(z, v̄h(y))p(x, y)



 , ∀x ∈ N̊h.

Proof: By construction of each pi, it follows that

pN
1 v̄h(x) =

{
argminz∈N{

∑
y∈Nh

d2(z, v̄h(y))p(x, y)}, if x = x1

v̄h(x), if x 6= x1.

and

pN
i v̄h(x1) = v̄h(x1) i = 2, . . . , k

for all v̄h : Nh → N . The equation Qv̄h = v̄h leads to

pN
1 v̄h(x1) = v̄h(x1)

and the assertion follows for x1 ∈ N̊h. For xi ∈ N̊h, i > 1, the proof is analogue. ¤

Proposition 2.9 Let ūh be the solution to the discrete nonlinear Dirichlet problem for g. Then
for each v̄h ∈ V̄ h

N (g) one has

lim
n→∞

d∞(Qnv̄h, ūh) = 0, where d∞(v̄h, w̄h) := sup
x∈M

d(v̄h(x), w̄h(x)).

Proof: According to Theorem 5.2 in [Stu01] and Lemma 2.6

d∞(Qrv̄h, Qrw̄h) ≤ ||qr(d(v̄h, w̄h))||∞ ≤ ||qr||∞,∞ · d∞(v̄h, w̄h)

for all v̄h, w̄h ∈ V̄ h
N (g). Hence there exists a map w̄h ∈ V̄ h

N (g) such that w̄h = Qw̄h and for all
v̄h ∈ V̄ h

N (g) it holds

d∞(Qnv̄h, w̄h) → 0 n →∞
(cf. proof of Theorem 6.4 in [Stu01]). Therefore by Propositions 2.4, 2.5, and 2.8, one obtains
w̄h = ūh. ¤
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Remark: The previous construction combined with Proposition 2.9 yields the following algorithm:

v̄h = g|Nh

do
w̄h = v̄h

for j = 1 to k
v̄h(xj) = pN

j v̄h(xj) = argminz∈N{
∑

y∈Nh
d2(z, v̄h(y))p(xj , y)}

until (maxxj∈Nh
d(v̄h(xj), w̄h(xj)) ≤ EPS).

Here EPS is a user prescribed threshold value. This algorithm provides an approximation to the
exact solution ūh of the discrete nonlinear Dirichlet problem for the boundary value function g.

3 Extending maps on vertices to maps on the domain

By means of a proper prolongation procedure, to each map in V̄ h
N (g) we are going to associate a

map in VN (g). In other words, each map v̄h which is defined on the vertices of the triangulation
Th will be extended to a map vh, defined on the whole domain D, with almost the same energy, i.
e., for each v̄h ∈ V̄ h

N (g) we will verify that

EN (vh) ≤ Eh
N (v̄h) + Rg,D,

with a nonnegative constant Rg,D only depending on the polygonal domain D, the regularity of
the triangulation Th, and the map g.

As before let us consider the sets D, Th,Nh = {x1, . . . , xl}, and a map g ∈ D(EN ). Given a vector
v̄h ∈ N l our aim is to construct a continuous map vh : D → N , affine on each triangle T ∈ Th, such
that vi

h := vh(xi) = v̄h(xi) for all i = 1, . . . , l. Hence, we will define vh on each triangle T ∈ Th

separately. Let T ∈ Th be given with vertices a0, a1, a2. To define vh|T we have to distinguish the
following cases:

(i) #({c(v̄h(aj))}j∈{0,1,2}) = 1

(ii) #({c(v̄h(aj))}j∈{0,1,2}) = 2 and ∃j ∈ {0, 1, 2} : c(v̄h(aj)) = 0

(iii) #({c(v̄h(aj))}j∈{0,1,2}) = 2 and ∀j ∈ {0, 1, 2} : c(v̄h(aj)) > 0

(iv) #({c(v̄h(aj))}j∈{0,1,2}) = 3 and ∃j ∈ {0, 1, 2} : c(v̄h(aj)) = 0

(v) #({c(v̄h(aj))}j∈{0,1,2}) = 3 and ∀j ∈ {0, 1, 2} : c(v̄h(aj)) > 0

case (i):
We define an affine function l : T → IR with l(aj) = π(v̄h(aj)), j = 0, 1, 2 and for each x ∈ T we
set vh|T (x) := (c(v̄h(a0)), l(x)).

case (ii):
Without loss of generality we may assume that c(v̄h(a0)) > 0. Then we define an affine function
l : T → IR by l(aj) := π(v̄h(aj)), j = 0, 1, 2 and for each x ∈ T we set vh|T (x) := (c(v̄h(a0)), l(x)).
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case (iii):
Without loss of generality we may assume that c(v̄h(a0)) = c(v̄h(a2)). Then we define the points
a0,1 and a1,2 by

ai−1,i = γi−1,iai + (1− γi−1,i)ai−1 where γi−1,i =
π(v̄h(ai−1))

π(v̄h(ai)) + π(v̄h(ai−1))
i ∈ {1, 2}

In addition on the triangle T1 := ∆a0,1a1a1,2 we define an affine function l : T1 → IR by l(a1) :=
π(v̄h(a1)), l(a0,1) := l(a1,2) := 0 and on R0,2 := T\T1 we define a bilinear function b : R0,2 → IR
by b(a0) := π(v̄h(a0)), b(a2) := π(v̄h(a2)), b(a0,1) := b(a1,2) := 0. Then we set

vh|T (x) :=
{

(c(v̄h(a1)), l(x)), if x ∈ T1

(c(v̄h(a0)), b(x)), if x ∈ R0,2.

case (iv):
Without loss of generality we may assume that c(v̄h(a1)) = 0. Then we define the point a0,2 by

a0,2 = γ0,2a0 + (1− γ0,2)a2 where γ0,2 =
π(v̄h(a2))

π(v̄h(a0)) + π(v̄h(a2))

and we construct on the triangles T0 := ∆a0a1a0,2 and T2 := ∆a0,2a1a2 two affine functions l0 :
T0 → IR by l(a0) := π(v̄h(a0)), l(a1) := l(a0,2) := 0 and l2 : T2 → IR by l(a2) := π(v̄h(a2)), l(a1) :=
l(a0,2) := 0. Then we define

vh|T (x) :=
{

(c(v̄h(a0)), l0(x)), if x ∈ T0

(c(v̄h(a2)), l2(x)), if x ∈ T2.

case (v):
In the sequel we interpret all the indices i as i mod (3).
We define the points ai,i+1, i ∈ {0, 1, 2} by

ai,i+1 = γi,i+1ai + (1− γi,i+1)ai+1 where γi,i+1 =
π(v̄h(ai+1))

π(v̄h(ai)) + π(v̄h(ai+1))
i ∈ {0, 1, 2}

and on the triangles Ti := ∆aiai,i+1ai,i+2, i ∈ {0, 1, 2} we define the affine functions li : Ti → IR,
li(ai) := π(v̄h(ai)), lj(ai,i+1) := lj(ai,i+2) := 0, for i ∈ {0, 1, 2}.
Moreover we define T0,1,2 := ∆a0,1a0,2a1,2 and we set

vh|T (x) :=
{

(c(v̄h(ai)), li(x)), if x ∈ Ti i ∈ {0, 1, 2}
(1, 0), if x ∈ T0,1,2.

The five cases described above are graphically summarized in the following figures. In all these
cases, points of the spider are described by a colour (∧= axis) and a height (∧= distance from origin).
The black colour describes the origin.
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Figure 2: case (i) Figure 3: case (ii) Figure 4: case (iii)

Figure 5: case (iv) Figure 6: case (v)

Definition 3.1 We define an injective mapping Jh : V̄ h
N (g) → VN (g) by

Jh(v̄h)(x) :=
{

vh(x), if x ∈ D
g(x), otherwise,

for v̄h ∈ V̄ h
N (g). In the sequel we will denote the prolongation Jh(v̄h) of v̄h just by vh.

Remark: Note that for each v̄h ∈ V̄ h
N (g) one has

∫

D

|∇(πi(vh))|2dλ < ∞, ∀i ∈ {1, . . . , n}

and

vh(x) = g(x), ∀x ∈ IR2\D.

Therefore vh is well defined as an element of the space VN (g). In fact, according to Corollary 1.4
one has

EN (vh) =
n∑

j=1

[∫

D

|∇(πj(vh))|2dλ +
∫

IR2\D
|∇(πj(g))|2dλ

]

Proposition 3.2 For every v̄h ∈ V h
N (g) one has

EN (vh) ≤ Eh
N (v̄h) + Rg,D (8)

where

Rg,D :=
n∑

i=1

∫

IR2\D
|∇(πi(g))|2dλ. (9)

Proof: Observe that due to (6) the discrete nonlinear energy Eh
N (v̄h) may be rewritten as

Eh
N (v̄h) = −1

2

∑

T∈Th

∑

xi,xj∈Nh

d2(v̄h(xi), v̄h(xj))
∫

T

∇φi,T
h ∇φj,T

h dλ.
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By the definition of Jh and Corollary 1.4,

EN (vh) =
n∑

i=1

[∫

IR2\D
|∇(πi(vh))|2 +

∑

T∈Th

∫

T

|∇(πi(vh))|2
]

= Rg,D +
∑

T∈Th

n∑

i=1

∫

T

|∇(πi(vh))|2.

Thus the rest of the proof amounts to show that for each T ∈ Th with vertices a0, a1, a2 with
vi

h := vh(ai), i ∈ {0, 1, 2}, the following inequality holds:

n∑

j=1

∫

T

|∇πj(vh)|2 dλ ≤ −d2(v0
h, v1

h)
∫

T

∇φ0,T
h ∇φ1,T

h dλ

−d2(v1
h, v2

h)
∫

T

∇φ1,T
h ∇φ2,T

h dλ − d2(v0
h, v2

h)
∫

T

∇φ0,T
h ∇φ2,T

h dλ. (10)

By the definition of Jh, to each v̄h ∈ V̄ h
N one has to prove (10) for the five different cases described

at the beginning of this section. The cases (i) − (iv) can be reduced to the well known linear
case, holding the equality in (10). Indeed if at most two colours are involved we can apply the
identification discussed in Remark 1.2. To treat the case (v), let us introduce the notation αi =
c(vi

h), i ∈ {0, 1, 2}. We obtain

n∑

j=1

∫

T

|∇πj(vh)|2 dλ =
2∑

i=0

∫

Ti

|∇παi(vh)|2 dλ.

For i = 0, 1, 2 one obtains ∇παi(vh) ≡ βi for some constant βi. Hence
∫

Ti

|∇παi(vh)|2 dλ =
λ(Ti)
λ(T )

∫

T

βi.

Furthermore βi = ∇wi
h, where wi

h is affine on T with nodal values wi
h(vi

h) = παi(v
i
h) and wi

h(vi±1
h ) =

−παi±1(v
i±1
h ), again due to the identification in Remark 1.2 on distinct edges. Hence by formula

(6) we obtain
∫

Ti

|∇παi(vh)|2 dλ =
λ(Ti)
λ(T )

∫

T

∣∣∇wi
h

∣∣2 dλ

= −
[
d2(vi

h, vi+1
h )

∫

T

∇φi,T
h ∇φi+1,T

h dλ + d2(vi+1
h , vi+2

h )
∫

T

∇φi+1,T
h ∇φi+2,T

h dλ

+d2(vi
h, vi+2

h )
∫

T

∇φi,T
h ∇φi+2,T

h dλ

]
· λ(Ti)/λ(T ), i ∈ {0, 1, 2},

which completes the proof, since λ(T0 ∪ T1 ∪ T2) ≤ λ(T ). ¤

4 Convergence

In what follows we will consider a sequence of successively refined, regular triangulations Th and
ask for the convergence of the resulting discrete harmonic maps uh ∈ VN (g) to the solution u of
the continuous problem for h → 0. For the ease of presentation we here restrict to homogeneously
refined meshes, i.e. we assume

min
T∈Th

h(T ) ≥ c max
T∈Th

h(T )
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with h(T ) = diam(T ). In our applications we generate the sequence of triangulation applying
an iterative subdivision of triangles into four congruent triangles [Bra92]. In the sequel p resp. µ
denote the Markov kernel resp. the measure defined in Section 2 corresponding to the current
triangulation Th. Furthermore we will use a generic constant C.

Theorem 4.1 Let ūh be the solution to the discrete nonlinear Dirichlet problem for a map g as
described above and let Jh : V̄ h

N (g) → VN (g) be the mapping defined in Section 3. Then

lim
h→0

EN (uh) = EN (u). (11)

For the proof of Theorem 4.1 we need a couple of preliminary definitions and lemmata.

Definition 4.2 For a triangulation Th we define the set

Si := ∪{T ∈ Th : xi ∈ T}, xi ∈ Nh

called the patch for the vertex xi.

Definition 4.3 Given a function v ∈ H1,2(D), let pi be the local L2-projection of v on Si on the
set P1(Si) of all polynomials on Si of degree ≤ 1 with real coefficients. The corresponding Clement
interpolation operator Ih is defined by

Ihv :=
l∑

i=1

pi(xi)φi
h .

In [Cle75] this interpolation operator is discussed and interpolation error estimates in are proved
in Sobolev norms. In what follows we require interpolation error estimates in Hölder norms given
in the following Lemma.

Lemma 4.4 Suppose v is a Hölder continuous function on D, i.e. for some 0 < α < 1 the estimate
|v(x) − v(y)| ≤ Cα|x − y|α holds for all x, y ∈ D, then there is a constant CI > 0 independent of
h such that

|Ihv(x)− v(x)| ≤ CI · hα, ∀x ∈ D.

Proof: At first we show that for every Si the local L2 projection pi defined above is Hölder continu-
ous with respect to the Hölder exponent α. Indeed, let us first fix a set Si and consider candidates
q ∈ P1 for the best L2 projection pi on Si. We observe that if ‖∇q‖ ≥ C maxx,y∈Si |v(x) − v(y)|
for C large enough, then the constant function q̃ := |Si|−1

∫
Si

v leads to a smaller projection error.
Hence, we immediately observe that ‖∇pi‖ ≥ Chα. Due to the regularity of the triangulation
the constant C can be chosen independent of Si and i. Next, we observe that by the mean value
theorem there is a point yi ∈ Si such that pi(yi) = v(yi). Thus, we get

|pi(x)− v(x)| ≤ |pi(x)− pi(yi)|+ |v(yi)− v(x)| ≤ C |x− yi|α ≤ C hα .

Finally on each triangle T ∈ Th the operator Ih is a convex combination of pi values. Thus, we
obtain the desired result. ¤

Due to our homogeneity assumption we obtain

Lemma 4.5 The total number nh of triangles T ∈ Th with T ∩ ∂D 6= ∅ may be bounded by

nh ≤ ch−1

with a constant c independent of the triangulations.
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Proof of Theorem 4.1:
Since g is Lipschitz continuous one has that the solution to the nonlinear Dirichlet problem u is
Hölder continuous with α > log4 3 (cf. [Ser94] and Remark 1.5). In the following we will denote
the Hölder constant of the map u by Cα. Now we define

N0 := {x ∈ D : u(x) = o}
and

Nh
0 := {y ∈ D : dist(y,N0) ≤ γ · h}

for a constant γ > 0. Then

(πi(u)− δh)+(x) = 0 ∀x ∈ Nh
0

holds for all i ∈ {1, . . . , n} with δh := Cαγα · hα.
By this construction we ensure that the black region (π ≡ 0) is a fat strip which is of the minimal
width 2γ · h. Hence, choosing γ large enough we are able to avoid an interference of the involved
local L2 projections in the construction of a comparison function.
For each i ∈ {1, . . . , n} we define Iδ

h,i(u) := Ih((πi(u)− δh)+). Due to Theorem 1.1 we have

||Iδ
h,i(u)− (πi(u)− δh)+||1,2 = ν(h) h→0−→ 0 ∀i ∈ {1, . . . , }

(cf. [Cle75], Corollary 1.4). Moreover, one has
∣∣∣∣
∫

D

|∇((πi(u)− δh)+)|2dλ−
∫

D

|∇(πi(u))|2dλ

∣∣∣∣ → 0 h → 0.

Thus, it follows
∫

D

|∇(Iδ
h,i(u))|2dλ ≤

∫

D

|∇(πi(u))|2dλ + β(h) (12)

where β(h) is converging to 0 for h → 0.

Observe that the functions (πi(u)−δh)+, 1 ≤ i ≤ n, are Hölder-continuous with the same constants
α and Cα as u. Hence, according to Lemma 4.4, the following inequalities hold for each i ∈
{1, . . . , n} :

|Iδ
h,i(u)(x)− Iδ

h,i(u)(y)| ≤ |Iδ
h,i(u)(x)− (πi(u)− δh)+(x)|

+|(πi(u)− δh)+(x)− (πi(u)− δh)+(y)|
+|(πi(u)− δh)+(y)− Iδ

h,i(u)(y)|
≤ (2CI + Cα) · hα

and

|Iδ
h,i(u)(x)− (πi(u))(y)| ≤ |Iδ

h,i(u)(x)− Iδ
h,i(u)(y)|+ |Iδ

h,i(u)(y)− (πi(u)− δh)+(y)|
+|(πi(u)− δh)+(y)− (πi(u))(y)|

≤ |Iδ
h,i(u)(x)− Iδ

h,i(u)(y)|+ (CI + Cαγα)hα

as well as

|(πi(u))(x)− (πi(u))(y)| ≤ |(πi(u))(x)− Iδ
h,i(u)(x)|+ |Iδ

h,i(u)(x)− Iδ
h,i(u)(y)|

+|Iδ
h,i(u)(y)− (πi(u))(y)|

≤ |Iδ
h,i(u)(x)− Iδ

h,i(u)(y)|+ C · hα.
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By means of Iδ
h,i(u) one can now introduce a piecewise affine function ξh

i on D, which obeys
the imposed boundary conditions on the nodes. Thus, we define its nodal values:

ξh
i (xj) :=

{ Iδ
h,i(u)(xj), if xj 6∈ ∂D

(πi(u))(xj), if xj ∈ ∂D

for all xj ∈ Nh.

To compare the energy of ξh
i with the energy of Iδ

h,i(u) it is sufficient to analyse the differences on
”boundary triangles”. For a given triangle T ∈ Th with T ∩ ∂D 6= ∅ and i ∈ {1, . . . , n}, we obtain

∫

T

|∇ξh
i |2dλ

(6)
=

2∑
s,t=0
s<t

−|ξh
i (as)− ξh

i (at)|2 ·
∫

T

∇φs,T
h ∇φt,T

h dλ

≤
2∑

s,t=0
s<t

−(|Iδ
h,i(u)(as)− Iδ

h,i(u)(at)|+ C · hα)2 ·
∫

T

∇φs,T
h ∇φt,T

h dλ

≤
2∑

s,t=0
s<t

[
−|Iδ

h,i(u)(as)− Iδ
h,i(u)(at)|2 ·

∫

T

∇φs,T
h ∇φt,T

h dλ

+2 |Iδ
h,i(u)(as)− Iδ

h,i(u)(at)|C · hα + (C · hα)2
]

≤
∫

T

|∇Iδ
h,i(u)|2 + C · h2α

where we have the scaling behavior of the local stiffness matrix in two dimensions

−
∫

T

∇φi,T
h ∇φj,T

h ≤ C,

for all triangles T ∈ Th and nodes xi, xj ∈ Nh. According to Lemma 4.5 we obtain
∫

D

|∇ξh
i |2dλ =

∑

T∈Th

∫

T

|∇ξh
i |2dλ ≤

∑

T∈Th

∫

T

|∇(Iδ
h,i(u))|2dλ + nh · C · h2α (13)

for all i ∈ {1, . . . , n}. Furthermore, we can estimate nh ≤ ch−1 and hence nh · C · h2α ≤ Ch2α−1.
Finally, we verify that 2α− 1 > 2 log4 3− 1 ≥ 0.5849.. . Hence, the effect of our correction in the
neighbour of the boundary ∂D on the energy tends to zero as h → 0.
Using the functions ξh

i our aim is now to construct a map v̄h ∈ V̄ h
N (g). For this purpose we will use

the fact that the functions Iδ
h,i(u) are not interfering with each other and that ξh

i (x) = (πi(g))(x)
for all x ∈ N ∂

h . We define the map v̄h ∈ V̄ h
N (g) by

v̄h(x) :=
{

(j, ξh
j (x)) , if ∃ j ∈ {1, . . . , n} : ξh

j (x) 6= 0
o , otherwise

for all x ∈ Nh. We observe that this definition is not ambiguous. Indeed, by construction there is
at most one j with ξh

j (x) 6= 0.
Due to (6), the discrete nonlinear energy Eh

N (w̄h) of a map w̄h ∈ V̄ h
N (g) can be written as

Eh
N (w̄h) =

∑

T∈Th

−1
2

∑

xi,xj∈Nh

d2(w̄h(xi), w̄h(xj))
∫

T

∇φi,T
h ∇φj,T

h dλ

︸ ︷︷ ︸
:=Eh

T (w̄h)

.
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To obtain an estimate of the discrete nonlinear energy of v̄h we have to investigate Eh
T (v̄h) for all

T ∈ Th. Let us denote by Hh the set of all triangles T ∈ Th with T ∩ ∂D 6= ∅ and there exist two
vertices x, y of the triangle T with x, y ∈ ∂D such that 0 6= c(g(x)) 6= c(g(y)) 6= 0 . Due to our
assumption on g we know that #Hh ≤ C independent of h. We observe

Eh
T (v̄h) ≤

{ ∑n
i=1

∫
T
|∇ξh

i |2dλ, if T ∈ Th\Hh

2 ·∑n
i=1

∫
T
|∇ξh

i |2dλ, if T ∈ Hh,

leading to

Eh
N (v̄h) ≤

n∑

i=1

∑

T∈Th

∫

T

|∇ξh
i |2dλ +

n∑

i=1

∑

T∈Hh

∫

T

|∇ξh
i |2dλ. (14)

Furthermore we observe that Eh
N (ūh) ≤ Eh

N (v̄h) because ūh is the minimizer of the discrete nonlinear
energy Eh

N . Hence, it follows

EN (uh)
(8)

≤ Eh
N (ūh) + Rg,D

≤ Eh
N (v̄h) + Rg,D

(14)

≤
n∑

i=1

∫

D

|∇ξh
i |2dλ +

n∑

i=1

∑

T∈Hh

∫

T

|∇ξh
i |2dλ + Rg,D

(13)

≤
n∑

i=1

∫

D

|∇(Iδ
h,i(u))|2dλ +

n∑

i=1

∑

T∈Hh

∫

T

|∇ξh
i |2dλ + C · h2α−1 + Rg,D

(12)

≤
n∑

i=1

∫

IR2
|∇(πi(u))|2dλ + γ(h)

(4)
= EN (u) + γ(h)

where

γ(h) :=
n∑

i=1

∑

T∈Hh

∫

T

|∇ξh
i |2dλ + C · h2α−1 + β(h).

Obviously, γ(h) → 0 as h → 0. This yields the desired result limh→0 EN (uh) = EN (u). ¤

Corollary 4.6 For h → 0 the discrete finite element solutions uh converge in L2 to the solution
u of the continuous nonlinear Dirichlet problem.

Proof: For a polygonal set D ⊂ IR2 we put L2
0(D) := {v ∈ L2(IR2) : v = 0 λ-a.e. on IR2\D}.

For measurable maps v, ṽ : IR2 → N we define the (pseudo) distance d2(v, ṽ) := ||d(v(·), ṽ(·))||L2 ,
where d(·, ·) is the distance on N . Furthermore, for a fixed measurable map g : IR2 → N we define
the space of maps L2(D, N, g) by

L2(D,N, g) := {v : IR2 → N measurable : d(v, g) ∈ L2
0(D)}.

It holds VN (g) ⊂ L2(D,N, g). For all v ∈ L2(D,N, g)\VN (g) we put EN (v) := ∞.
The n-spider (N, d) has nonpositive curvature in the sense of A. D. Alexandrov, that is, for any
two points γ0, γ1 ∈ N and any t ∈ [0, 1] there exists a point γt ∈ N such that for all z ∈ N

d2(z, γt) ≤ (1− t)d2(z, γ0) + td2(z, γ1)− (1− t)td2(γ0, γ1).
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For any two geodesics γ, ϕ : [0, 1] 7→ N and any t ∈ [0, 1], the previous inequality leads to

d2(γt, ϕt) ≤ (1− t)d2(γ0, ϕ0) + td2(γ1, ϕ1)− t(1− t)[d(γ0, γ1)− d(ϕ0, ϕ1)]2 (15)

(cf. Korevaar/Schoen [KS93], Jost [Jos94]).
The set of maps VN (g) is convex, whereby the geodesic vt connecting two maps v0, v1 ∈ VN (g) is
defined pointwise as follows: for each x ∈ IR2, t 7→ vt(x) is the (unique) geodesic (parameterized
by arc length) connecting v0(x), v1(x) ∈ N .
Now we prove that the energy EN is strictly convex on VN (g).
Given v0, v1 ∈ VN (g) let vt be the geodesic connecting v0 and v1. Inequality (15) with ϕt = vt(x)
and γt = vt(y) yields

d2(vt(x), vt(y)) ≤ (1− t)d2(v0(x), v0(y)) + td2(v1(x), v1(y))
−t(1− t)[d(v0(x), v1(x))− d(v0(y), v1(y))]2.

Integrating both sides w.r.t. ps(x, dy)λ(dx) gives

Es(vt) ≤ (1− t)Es(v0) + tEs(v1)− (1− t)tEs(d(v0, v1)) (16)

whereby for each s > 0

Es(v) :=
1
2s

∫

IR2

∫

IR2
d2(v(x), v(y))ps(x, dy)λ(dx).

Furthermore, v, ṽ ∈ VN (g) implies d(v, ṽ) ∈ D(E). Indeed,

E(d(v, ṽ)) ≤ 2EN (v) + 2EN (ṽ)

since

|d(v(x), ṽ(x))− d(v(y), ṽ(y))| ≤ d(v(x), ṽ(y)) + d(ṽ(x), ṽ(y)).

Taking lim supt→0 in (16) yields

EN (vt) ≤ (1− t)EN (v0) + tEN (v1)− (1− t)tE(d(v0, v1)), (17)

because E(d(v0, v1)) = lims→0 Es(d(v0, v1)).
On the other hand, by the spectral theory, one has

E(d(v, ṽ)) ≥ λD ·
∫

IR2
d2(v(x), ṽ(x))λ(dx)

where λD > 0 by assumption. Thus inequality (17) implies

EN (vt) ≤ (1− t)EN (v0) + tEN (v1)− (1− t)tλD · d2
2(v, ṽ) (18)

showing that EN is strictly convex on VN (g).
Let uh,t be the geodesic connecting u and uh. Then inequality (18) yields

EN (u) ≤ EN (uh, 1
2
) ≤ 1

2
EN (u) +

1
2
EN (uh)− 1

4
λDd2

2(u, uh),

and thus

1
2
λDd2

2(u, uh) ≤ EN (uh)− EN (u).

Now, the claimed convergence follows from Theorem 4.1. ¤
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5 Numerical Results

Before we present a couple of numerical results for different boundary data, let us discuss the
expected order of convergence of the numerical method. Let us consider the following explicit
harmonic map. Let (N, d) be a 3-spider and D := [−2, 2]2 ⊂ IR2. Then the map u : D → N given
by

u(x, y) =





(1, |x3 − 3xy2|/10), if − π ≤ arctan(x, y) < −4π/6 or 0 ≤ arctan(x, y) < 2π/6
(2, |x3 − 3xy2|/10), if − 4π/6 ≤ arctan(x, y) < 0 or 2π/6 ≤ arctan(x, y) < 4π/6
(3, |x3 − 3xy2|/10), otherwise

is a harmonic function on D. Now, we define the boundary data g as a Lagrangian interpolation
of u|∂D onto the piecewise linear and continuous functions on ∂D. In particular we interpolate u
at boundary nodes of the triangulations Th. Next, we have numerically solved the corresponding
discrete nonlinear Dirichlet problem and computed the norm of the error uh − u for a sequence
of successively refined grids, with grid sizes hk = 0.21, 0.10, 0.06, 0.03. Finally, we evaluate the
experimental order of convergence

EOC =
log ‖π(uhk+1)− π(u)‖ − log ‖π(uhk

)− π(u)‖
log hk+1 − log hk

,

where we either consider the L2 or the H1,2 norm evaluated via numerical quadrature. The
following tables lists the corresponding results

h ||u− uh||L2 EOC ||u− uh||H1,2 EOC
0.21 6.838e-3 2.0071 3.119e-1 0.5665
0.10 1.620e-4 2.0023 1.066e-2 1.4924
0.06 5.171e-4 2.0004 6.011e-2 1.0049
0.03 1.611e-4 1.9877 3.336e-2 1.0043

Obviously, the EOC reflects a second order convergence in the L2 norm and a first order convergence
in the H1,2 norm and thus equals the expected convergence rate of the pure interpolation error.
Hence, we observe optimal convergence in the class of piecewise linear approximations.
Figure 7 now shows the numerical results for different boundary data and Figure 8 depicts a couple
of intermediate results corresponding to different iteration steps of our numerical method.
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Figure 7: We depict various discrete harmonic maps vh ∈ VN (g) for different boundary data g

Figure 8: For different steps of our relaxation scheme we show intermediate results (from left to
right and from top to bottom the steps 0, 1, 5, 10, 50, 250 are displayed)
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[Bra92] BRAESS, D. Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie. Springer
Verlag, Berlin, 1992.

[Cia78] CIARLET, P. G. The Finite Element Method for Elliptic Problems. North-Holland, Ams-
terdam, 1978.

[Cle75] CLEMENT, PH. Approximation by finite element functions using local regularization.
Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9
(R-2) (1975), 77–84.

[EL78] EELLS, J., LEMAIRE, L. A report on harmonic maps. Bull. London Math. Soc. 10 (1)
(1978), 1–68.

[EL88] EELLS, J., LEMAIRE, L. Another report on harmonic maps. Bull. London Math. Soc. 20
(5) (1988), 385–524.

[FOT94] FUKUSHIMA, M., OSHIMA, Y., TAKEDA, M. Dirichlet Forms and Symmetrical
Markov Processes. Walter de Gruyter, Berlin, 1994.

[GS92] GROMOV, M., SCHOEN, R. M. Harmonic maps into singular spaces and p-adic super-
rigidity for lattices in groups of rank one. Inst. Hautes Études Sci. Publ. Math. (76) (1992),
165–246.

[He03] HESSE, M. Harmonic Maps into Trees and Graphs - Analytical, Numerical and Stochastic
Aspects. PhD. thesis (in preparation). Bonn, 2003.

[JY93] JOST, J., YAU, S. T. Harmonic maps and superrigidity, differential geometry: partial
differential equations on manifolds, Proc. Symp. Pure Math. 54, Part I, 1993, 245–280.

[Jos94] JOST, J. Equilibrium maps between metric spaces. Calc. Var. Partial Differential Equa-
tions 2 (2) (1994), 173–204.

[Jos95] JOST, J. Riemannian Geometry and Geometric Analysis. Springer Verlag, Berlin, 1995.

[Jos97] JOST, J. Generalized Dirichlet forms and harmonic maps. Calc. Var. Partial Differential
Equations 5 (1) (1997), 1–19.

[KS93] KOREVAAR, N. J., SCHOEN, R. M. Sobolev spaces and harmonic maps for metric space
targets. Comm. Anal. Geom. 1 (3–4) (1993), 561–659.

[KS97] KOREVAAR, N. J., SCHOEN, R. M. Global existence theorems for harmonic maps to
non-locally compact spaces. Comm. Anal. Geom. 5 (2) (1997), 333–387.
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