METRIC SPACES OF LOWER BOUNDED
CURVATURE

K. T. STURM

Abstract. We study lower curvature bounds for metric spaces. For instance,
an arbitrary metric space (N, d) is said to have curvature > —K (with K > 0)
iff :
k k 2

Z /\;/\j cosh (\/K ¢ d(y;, yj)) S (Z /\,' cosh (\/K . d(yo, y,-)))

=1 =1
for all k € IV, all yo,¥1,...,yx € N and all Ay,..., s € R,. Similarly, the
space (N, d) is said to have curvature > 0 iff

k- k
3 (i y;) <230 A d2(yo, i)

i,7=1 £,J=1

for k, y; and ); as before. Using recent results of U. LANG and V. SCHROEDER,
we prove that for complete geodesic spaces these lower curvature bounds coin-
cide with lower curvature bounds in the sense of A. D. ALEXANDROV (based
on triangle comparison) and with lower curvature bounds in the sense of
BurAaGco, GROMOV, PERELMAN (based on quadruple comparison). Note,
however, that in our approach (V,d) is neither assumed to be complete nor
to be an inner metric space.

Our main result states that any metric space (V,d) of curvature > —K
can be transformed into a metric space (NN, dk) of curvature > 0 by replacing
the metric d(z,y) by the metric

dg(z,y) = (% log cosh (\/ﬁ d(z,y)))1/2.

We also prove a partial converse, valid for Riemannian manifolds (N,d).
Namely, if the (transformed) space (N, dk) has curvature > 0 then the original
space must have curvature > —4K.




1 SPACES OF CURVATURE > K

Let (N, d) be a metric space. For any curve (= continuous map) o : [a,b] = N we define
the length by s
L(a) = supZd o(tic1),0(t))

i=1
(being a number in [0, 00]) where the supremum is taken over all kK € IN and all subdi-
visions @ =ty < t; < ... < tx = b. Obviously, one always has L(o) > d(o(a),o(b)). A
curve o : [a,b] = N is called minimizing if

L(0) = d(o(a),o(b)).

The metric space (N,d) is called (locally) geodesic space if (every point z € X has a
neighborhood U such that) for all z,y € X (or all z,y € U, respectively) there exists a
minimizing curve o : [0,1] & N with 0(0) = z,0(1) = y. In this case, we may assume
without restriction that ¢ is a minimizing geodesic which means that it is minimizing and
has constant speed in the sense that

d(a(s),0(t)) =c-|s —1|

for all s,t € [a,b] and some constant ¢ € JR. The metric space (N, d) is called inner
metric space or length space if

d(z,y) =inf {L(0) : o € C([0,1]N),0(0) = z,0(1) = y}

for all z,y € N.

In the sequel we will compare the metric sapce (NN, d) with the 2-dimensional simply
connected complete model spaces Nk of constant sectional curvature K € IR. Before
doing this let us introduce some notations. For K > 0 we put Dk = %(: and for K <0

we put Dx = co. Then diam(Nk) = Dk. Moreover, for K € IR and r > 0 we put

& sin(vKr), ifK>0
e 1, TK=0
7% - sinh(V—Kr), ifK<0

and Cxr = Skr. Finally, for any three points z,y,z € N satisfying d(z,y) + d(y, 2) +
d(z,z) < 2Dg and d(z,z) - d(2,y) > 0 we put

. e (P(Z,IE) + d2(z,y) N d2($7 y)
Rol512:4) = =55 - d(er0) - dGary)

and, if K # 0,
_ Ckd(z,y) — Ckd(z, z) - Ckd(2,y)

RK(Z; Z, y) — K. SKd(z, IB) . SKd(za y)

Note that for any such points z,y,z € N there exists an isometry f : {z,y,2} — Nk
and one can define the comparison angle /x(z;z,y) € [0, 7] to be the angle subtended by
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the two geodesic segments in Nk connecting f(z) with f(z) and f(y), respectively. It is
well-known that
RK(Z; z, y) = COoS [K(Z; z, y)

which implies that Rk(z;z,y) € [—1,+1]. In order to have everything well-defined, we
put Rk(z;z,y) = +oo whenever d(z,y) + d(y, z) + d(z,z) > 2Dk or d(z,z) - d(z,y) = 0.

1.1 DEFINITION. We say that a metric space (N, d) has locally curvature > K if any
point z € N has a neighborhood U such that for all k € IN, for all (2,y1,...,y%) € UF!
and for all (A1, ..., ) € [0,00[F

$,5=1

k ; ’
> XidiRe(z wi,95) 2 0. (11) 121

We say that (N, d) has curvature > K if this is true for U = N.

Note that (N,d) is neither assumed to be complete nor to be an inner metric space.
Actually, in order to define the notion ”curvature > K” it suffices that (N, d) is a pseudo
metric space. s

Of course, it suffices to verify (1.1) for all points z,#1,...,y% € U with d(z,3:) +
d(z, y]) + d(yi) y)]) e 2DK and d(Z, y1) ‘ d(z7 yj) > 0. :

The denominator of Rk appeats (up to its sign) only for conventional reasons. That
is, in the case K # 0, the function Rk(2;z,y) in (1.1) can equivalently be replaced by the
function Ri(z;z,y) = % [Ckd(z,y) — Ckd(2,z) - Cxd(2, y)] which amounts to

:

R > AidiCkd(yi, y5) > K(Z AiCxd(z, yi)) (1.2)

i,7=1 =1

for all k € IN, all (z,41,...,5) € UF! and all (Ay,..., M) € [0,00[F. Similarly, in
the case K = 0 the function Rk(z;,y) can be replaced by the function Rj(z;z,y) =
d*(z,z) + d*(z,y) — d*(z, y) which amounts to

k k
> A (i y5) < 23 Nid(z, %) (1.3)
e i=1

forall k € IN, all (z,41,...,u) € U¥*' and all (A, ..., \) € [0, 00[* satisfying ¥i_; A =
1.

We easily obtain the following simple, but important example.

1.2 EXAMPLE. Let (N,d) be any metric space. Then the metric space (N, Vd) has
curvature > 0.
However, (N, \/c—i) is not an inner metric space if it contains more than one point.

1.3 PROPOSITION.

(i) If a metric space (N, d) has (locally) curvature > K then so has any subspace (No, d|n,)
(for any Ny C N and d|y, being the restriction of d on No).
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(ii) If (N,d) has curvature > K for some K < 0 then it also has curvature > K' for any
K' <K.
If (N, d) has locally curvature > K for some K € IR then it also has locally curvature
> K' for any K' < K.

(iii) If (N, d) has (locally) curvature > K then for any a > 0 the rescaled space (N, a - d)
has (locally) curvature > o? - K.

(iv) Let f : M — N be any map from a set M into a (pseudo) metric space (N,d) and
define a pseudo metric d, on M by d.(z,y) = d(f(z), f(y))-
If (N,d) has curvature > K then (M,d,) has curvature > K.

Proof. (i), (iv) Obvious. ¢

(ii) This follows from the fact that K’ < K obviously unphes AK: (z, :c, y) < ZK(z z, y)
for all z,y,z € N. LhEs il s b Uy

(iii) If one replaces d by A - d then Rk becomes 7? - Ry2.x. SRR aEL s D :

If (N,d) is a (locally) geodesic space then a triangle in N is a triple A (a 02 o) of
minimizing geodesics o' : [0,1] = N whose endpoint match as usual. If A has perimeter
P(A) := ¥; L(0%) < 2Dk then there exists a comparison triangle Agx = (0%, 0%,0%) in
Nk (uniquely determined up to isometry) such that L(o*) = L(o%) for all i = 1,2, 3.

1.4 THEOREM. Let (N,d) be a locally geodesic space. Then for any K € IR the
following are equivalent: iy

(i) (NV,d) has locally curvature > K.

(ii) Ewvery point y € N has a neighborhood U C N such that all quadruples (2,1, z2,23)
of points in U satisfy the following condition:

Lx(z; 71, T2) + Lk(2; T2, 3) + Lk (273, 21) < 27
whenever all angles are defined.

(iii) Every pointy € N has a neighborhood U C N such that all triangles A = (o?, 02, 03)
with vertices in U and perimeter < 2Dg satisfy

d(o*(s), 0% (t)) > d(ok(s), ok (t))
for all s,t € [0,1] and all4,j € {1,2,3}.

Proof. The equivalence of (ii) and (iii) was proven by BURAGO, GROMOV, PERELMAN
(1992). The implication (iii) = (i) is due to LANG, SCHROEDER (1996). Let us repeat
their argument. Let us fix a point 2 € N. We make use of the tangent cone (T,N,d,)
of N at z (in the sense of LANG, SCHROEDER (1996)). Choose £k € IN and k points
Y1,...,Yx € N. Without restriction we may assume that these points are pairwise disjoint
and that d(z,y;) + d(z,y; + d(vi,¥;) < 2Dk for all 4,5 = 1,...,k. Fori=1,...,k let
o; : [0,t] — M be a unit speed geodesic connecting z = 0;(0) and y; = o;(¢;) and let
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v; = 6;(0) € T,N. Then d(z,y;) = t; and ||lv;|| = d,(0,v;) = 1. According to LANG,
SCHROEDER (1996), Prop. 3.2, the matrix ((v;,v;)), ; satisfies

zk: A;x\j(vi,vj) Z 0 (14)

ij=1
for all Aj,... A\ € [0,00[. (Note that by definition this means that at the origin the
space (T,N,d,) has curvature > 0 in the sense of our Definition 1.1.) Now we use the
assumption (iii). It implies that
(vi, vj) < R(2; %, Yj)-
Together with (1.4) this yields the assertion (i)

Now let us prove the implication (i) = (ii). Let points 2, z;,z2,23 € N be given with
comparison angles vy; = /k(2; Zit1,Zi+2) (indices mod 3). Without restriction assume -
0 <~ <mforalli=1,2,3. Now let us assume (i), i.e.

3
Z )&,‘/\j COoS ZK(Z; 12,',.’17,') 2 0
$,5=1 .

or, equivalently,

3 3 -
Z /\,2 + 2 Z Aidi1 cos Yi+2 2> 0 (15)

=1

for all (A1, A2, A3) € [0, 00[® and assume that (ii) is not satisfied, i.e.

3
> v > 2. (1.6)
i=1

Let € = Y2 v — 2m and put 7{ = 71,7 = 72 and 73 = 43 — . Then p Bl g

Hence, Euclidean geometry implies that
3 3
YA +2Y Adipicosyl, >0 (1.7)
i =1

for all (A1, A2, A3) € [0, co[* with equality in (1.7) for a one-parameter family of (A, A3, \3) €
10,00[* . (In order to see this, choose three points z},73,75 € IR? with |z}| = 1 and

7} = Lo(0; 2}, @}y,) (indices mod 3). Then the LHS of (1.7) is just (T3, A,-x,-)” which
of course is nonnegative and vanishes iff °3_; \;z; = 0.) For these \! we get

3 3
>N+ 2A5 AL, cos g < DA+ 2X0 ! cosyf, =0
F :

which is a contradiction to (1.5). O

1.5 COROLLARY. Let (N,d) be a complete geodesic space. Then for any K € R the
following are equivalent:




(i) (N,d) has locally curvature > K.
(ii) (NV,d) has curvature > K.
(iii) Al quadruples (z,z;, 2, z3) of points in N satisfy the following condition:
Lx(z; 1, T2) + Lk (2; T2, 23) + Lk (2; 23, 21) < 27
whenever all angles are defined.
(iv) All triangles A = (0,02, 0%) with vertices in N and perimeter < 2Dx satisfy
d(a*(s), 07 (t)) 2 d(ok(s), ok (t))
for all s,t € [0,1] and all 4,5 € {1,2,3}.

Proof. According to BURAGO, GROMOV, PERELMAN (1992), condmons (m) and
(iv) are equivalent to conditions (ii) and (iii) of the previous Theorem 1.4 which have
been proved to be equivalent to (i). The same proof yields now that (iii)+(iv) imply (ii).
The implication (ii) = (i) is trivial. B

1.6 COROLLARY. Let (N, h) be a Riemannian manifold and let d denote the associated
Riemannian metric. Then for any K € IR the following are equivalent:

(i) The Riemannian manifold (N, h) has sectional curvature > K.

(ii) The metric space (N,d) has locally curvaturé > K in the sense of Definition 1.1.
If in addition N is complete then (i) and (ii) are equivalent to

(iii) The metric space (N,d) has curvature > K in the sense of Definition 1.1.

1.7 PROPOSITION.  Assume that the metric space (N,d) is Polish (i.e. separable and
complete metrizable). Then for any K € IR the following are equivalent:

(i) (N,d) has curvature > K.

(ii) For all z € N and all finite measures v on N (equipped with its Borel o-field)
. > -
[, [, Rz 2,9)) v(de)v(dy) > 0 (1)
(iii) For all z € N and all probability measures v on N
1 1 2
e = :
- /N /N Crd(z, y)v(dy) v(do) > ¢ ( /N Cxd(z, 2) V(dx)) (1.9)
if K#0 and if K = 0

/N/Nd"’(a:,y)u(dy) v(dz) < 2/1;612(2, z) v(dz). (1.10)
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Proof. Let us fix z € N and put Z = {(z,y) € N x N : d(z,z) +d(z,y) +d(z,y) <
2Dy and d(z,z) - d(z,y) > 0}. Without restriction, we may assume that v is probability
measure on N with (v ® ¥)(N x N\ Z) = 0 (otherwise the LHS in (1.8) is +o0o and
the claim is trivial). Since the space (Z,d X d) is Polish, there exists, for any n € IV, a
compact set Z, C Z such that (v ® v)(Z \ Z,) < . Hence,

/ Ri(z 2, y)v(de)v(dy) F [ Re(z e, yvdv(dy) = [ Relzz,y)v(da)v(dy) < oo

Since the set Z, is compact and since the function Rk(z;.) is continuous, for any € > 0
there exist k € IN, (Ar,..:, ) € [0,00[% and (1,...,%) € Z¥ such that

/ Rk(z; z, y)v(dz)v(dy) > };1/\ ARk (z; y.,yj) el

Together with (1.1) this yields the claim. :

In order to prove (ii) => (iii), let us (for simplicity) assume that K < 0. (The other cases
are treated in essentially the same way.) Let a point 2 € N and a probablhty measure v be
given. Without restriction, we may assume [y Cxd(z,z)v(dz) < oo. (Otherwise, nothing
is to prove.) Then define another finite measure # on N by #7(dz) = Skd(z, z) v(dz) and
apply (ii) to this measure which yields

0 < [ [ Re(ziz,v) (dy) o(da)
= L[ (Gt ~ G- Cude ) i

_ %{_[ /N /N Cxd(z, y)v(dy) v(dz) — ( /N CKd(z,a:)u(dx))z].
O

1.8 PROPOSITION.  Let (N, ||.]|) be a real normed space and let d denote the associated
metric on N. Then for any K € IR the following are equivalent:

(i) (N,d) has locally curvature > K;

(ii) (N, ||lI]) is a prehilbert space (i.e. there ezists an inner product (.,.) on N which
induces the norm ||.||) and K < 0;

(iii) (N, d) has curvature > 0 and < 0 (in the sense of A.D.Alezandrov).

Moreover, if (N, d) has locally curvature > K for some K > 0 then dim(N) = 1.

Proof. If (N, d) has (locally) curvature > K for some K € IR then by scaling it follows
that it has curvature > 0. It has curvature > 0 if and only if it is a prehilbert space (see
for instance STURM (1997)) and in this case it obviously also has curvature < 0. Finally,
if (N, d) has locally curvature > K for some K > 0 then by scaling it follows that (V, d)
has locally curvature > K’ for any K’. O




2 TRANSFORMATION INTO SPACES OF CURVATURE > 0
Now let us restrict to spaces of curvature > —K for some K > 0. For K > 0 we put
Pk (r) = e log cosh (\/K . r) : (2.1)
K

Note that for K fixed & (r) ~ % for r — 0 and Pk(r) =~ g for r — co. On the other
hand, for r > 0 fixed, K — ®k(r) is decreasing on [0, oo[. Moreover, we define

dk(z,y) = /2®x(d(z,y)) (2.2)

for z,y € N. One easily verifies that dk is a metric on N which satisfies

\/%d(x,y%%log? < dk(z,y) < d(z,y)

for K > 0 and all z,y € N. Moreover, dk(z,y) ~ d(z,y) if d(z,y) < 1 and dk(z,y) ~
(4/K)4 - \Jd(z,y) if d(z,y) > 1.

If N consists of more than one point, then dyk is not an inner metric. Its associated
inner metric coincides with the inner metric associated with d. In particular, if the original
metric d is an inner metric then the inner metric associated with dy is just d itself. .

Finally, we put ®(r) = r?/2 and dy = d.

Now let (N, d) be any metric space and let K be any nonnegative number.

2.1 THEOREM.  If the metric space (N,d) has curvature > —K then the metric space
(N,dg) has curvature > 0.

Proof. In the case K = 0, nothing is to prove. Assume that K > 0. Then we have to
prove that
: C_kd(y:, ;) )
Ai)jlo etk / <0
,-J-Zﬂ e (C—Kd(z, %) - Cxd(z,95) ) ~

for all (Ay,..., M) € [0,00[F with %, X\; = 1. But Jensen’s inequality together with
property (2.1) imply

C_kd(yi, y;) )

k
AiA; ]
Z S (C—Kd(zs yt) : C-—Kd(z, y])

k
C_xd(yi, y5)
<lo X\
T (i,jz=1 : C—Kd(z, y;) s C_Kd(z, yj)

koXi-S_kd(z,1) Aj-S_xd(z,y;)
=log|1-K- : . =2 R_k(z; ¥i, ¥
‘ < ( ,',]'Zzl C—Kd(za yt) C—Kd(z’yj) K( . yJ)

<0




O

2.2 COROLLARY. Assume that the metric space (N,d) is Polish and has curvature
> —K. Then for all z € N and all probability measures v on N
[ @x(d(z,2)) v(da) > L [ [ #x(d(z, 1)) v(dz)w(dy). (2.3)
N ’ = 2J/vIn ’

Proof. Replacing ®xd by d%/2 the claim follows immediately from Theorem 2.1 and
Proposition 1.7. 0O

This result has important consequences for the approximation of energy functionals
for mappings into the metric space (N, d) ("target space”). In order to illustrate this,
let a measure space (M, M, p) ("domain space”) be given and on this space a symmetnc
Markovian semigroup (P;)i>0. See STURM (1997) for details. Moreover, we ﬁx once for
all an arbitrary number ¢y €0, oo[ and put t, = 27 "¢, for n € IN.

A map f: M — N will be called measurable if it is measurable with respect to the
given o-field M on M and the Borel o-field N on N. For each such map f : M — N,
each K > 0 and each n € IN we define the approzimated energy

R0 =1 [, [, 8@, S0Pz, dy)u(da). (24)

A detailed analysis of these functionals will be carried out in STURM (1997A). Among
others, we show that under suitable assumptions

; _
. Bl — Voo o 2
lim B(H) =lim = [ [ &(f(z), f())Pla, dy)u(da).
Here we only state the important monotonicity property of these approximations.

2.3 COROLLARY. Assume that the metric space (N,d) is Polish and has curvature

> —K. Then for any measurable map f : M — N the sequence ER(f) is increasing in
n € IN.

Proof. By definition of ®x and dk

B = 5 [, [, B @), £0)Pu,disao). (2.5)

According to the main result of STURM (1997), the RHS of (2.5) is increasing in n
provided (N, dk) has curvature > 0. This in turn follows from Theorem 2.1. a

Now let us ask for the converse to Theorem 2.1.

2.4 THEOREM. Let (N, h) be a Riemannian manifold of dimension n > 2, let d denote
the associated Riemannian metric and let K be any nonnegative number.

If the metric space (N,dx) has curvature > 0 then the the manifold N has curvature
> —4K.

Proof. Fix a point z € N, a two-dimensional plane F in the tangent space T, N and a
number K’ < —R(z, E) where R(z, E) denotes the sectional curvature at z in the plane
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E. If R(z,E) > 0 then nothing is to prove. Hence, we may assume without restriction
that R(z, F) < 0 and K' > 0. Given this K’ we can choose a neighborhood U of z in N
such that

K'< —-R(z,E)

for all z € U. Now let e;,e; be a ONB of E and define for r > 0
1 1 1 1
yi(r) = exp,(re1), wa(r) = eXPz(—§T61 + 5\/37”62), ya(r) = eXPz(—§T€1 + 5\/57'32)-
Then by classical comparison theorems of Riemannian geometry
cosh (VE - d(i(r), yy(r))) > -g-coshz (VKr) - % (2.5)

for all 4,5 =1,2,3, 1 # j and all sufficiently small r > 0.

On the other hand, the assertion that the metric space (N,dk) has curvature > 0~

implies that
1

5 > logcosh (\/I-E - d(yi(r), yj(r))) < 2logcosh (\/I_(-r)

i#]
for all » > 0. In particular,

cosh (\/IZ - d(y;(r), yj(r))) < cosh® (\/ﬁr) (2.6)
for some 4,5 =1,2,3, i # j and all » > 0. Estimates (2.5) and (2.6) together imply
f(r)=0 (2.7)

for all sufficiently small r > 0 where

f(r) = ——\/I?arcosh (cosh3 (\/I—(-r)) — %arcosh (g cosh® (\/IZT) - -;—) .

- Straightforward but lengthy calcluations yield
fO=f(0)=f"(0)=0 and f"(0)=V3(K~-K'/4). (2.8)

Hence, (2.7) implies K’ < 4K. Since K’ can be chosen arbitrarily close to —R(z, E) this
implies
R(z,E) > —4K.

Finally, since the point z € N and the plane E C T,N are arbitrary this implies the
claim. O

2.5 COROLLARY. Let (N,h) be a Riemannian manifold of dimension n > 2 and let
d denote the associated Riemannian metric. Then the curvature of the manifold N is
bounded from below if and only if for some K > 0 the metric space (N, dx) has curvature
= 1§
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Finally, we want to look for consequences of the ”nonnegative curvature” of the metric
space (N, dk). In Riemannian geometry, one of the important consequences of nonnegative
curvature is that

ALY <n

(weakly on N and strongly) on N\ Cut(y) for each y € N where n denotes the dimension
of the manifold N and d?(.,y) the function z — d?(z,y). (The Laplacian operates on the
z-variable.) On the other hand, nonpositive curvature implies

-I-Adz(,y) >n

(strongly) on N \ Cut(y) for each y € N. In probabilistic language, thls can be reformu-
lated as follows: if (X})o<¢<¢ denotes Brownian motion on N with (ma.xlmal) lifetime ¢
and if ((y) = {t > 0: X; & N \ Cut(y)} denotes its lifetime in N\ Cut(y) then 5

(d2 (Xt,y) —n- )o<t<<(u)

is a local supermartingale (or submartingale) provided N has curvature > O (or <4
resp.).

2.6 PROPOSITION. Let (N,h) be a Riemannian manifold of dzmenszon n and let d
denote the associated Riemannian metric.

a) If the Ricci curvature is bounded from below by —(n — 1)K (in paf"ticular, if the
sectional curvature is bounded from below by —K) for some K > 0 then for every y € N

5Aaz (;y) < (29

weakly on N and strongly on N \ Cut(y) and for every Brownian motion (X;)o<t<¢ on N
the stochastic process

(dk(Xe,y) —n-t) (2.10)

0<t<(
s a local supermartingale.

b) If the sectional curvature is bounded from above by —K for some K > 0 then for
everyy € N

1
5Ad’f;(.,y) >n-1 (2.11)
strongly on N \ Cut(y) and for every Brownian motion (X;)o<t<¢ on N the stochastic

process
(df<(Xt, y)—(n-1)- t)ogt«(u)

(with ((y) being the lifetime within N \ Cut(y)) is a local submartingale.

(2.12)

Proof. a) The claim follows immediately from the fact that for all z,y € N (and with
r = d(z,y))

L A (z,y) < B(r) + (n — 1)VR coth(VEr) - @l (r) =

5 +(n—-1)<n.

1
cosh?(vVKr)
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b) Similarly, now the claim follows from

:

5 n-1)>2n-1

A (z,5) > BL(r) + (n — VK coth(VEr) - @ (r) = m +

for all z # Cut(y) (and with r = d(z,y)). O
It might be helpful to compare the function ®k(r) defined in (2.1) with the function

oatr)=n [ [ [ERVRD) "

(for K > 0 and n € IN) which is the (unique) solution of the following Sturm-Liouville -
equation on [0, ool:

@"(r) + (n — 1)VK - coth(VKr) - &'(r) =n,  &'(0) = &(0) = 0.

For instance, one obtains
dx) =1%/2, Pko= —I‘i—log cosh(VKr/2), ®xs= % [coth(\/ﬁr) -VKr — 1] s

One easily verifies "
(I)K(T) < <I>K,n(r) S 7—1—:—:-[‘ . QK(T).

Similarly as in (2.2) we define

dK,n(xy y) = \/2(I>K,n(d($) y))

2.7 PROPOSITION.  If in the situation of Proposition 2.5 the manifold N has constant
sectional curvature then the following are equivalent:

e the curvature is —K;
o JAd% .(,y)=n on N\ Cut(y) for every y € N;

o (di (Xt y) —n-t)oct<((y) is a local martingale for every y € N and every Brownian
motion (X¢)o<t<¢ on N.

A remarkable consequence is that for manifolds of constant curvature

2
(N,d) curv. > -K = (N,dg) curv. >0 = (N,d)curv. > — (n n 1) ‘K.
This should be compared with Theorems 2.1 and 2.4.
Another consequence of Proposition 2.7 is that by comparison the assertions of Propo-
sition 2.6 are true with dxk replaced by dk, where in (2.11) and (2.12) now the constant
n — 1 may be replaced by n.
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