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Is a Diffusion Process Determined by Its Intrinsic Metric?? 

KARL-THEODOR STURM 

Math Institut, Universitlt Erlangen-Ntirnberg, D-91054 Erlangen, Germany 

Abstract-J. R. Norris proved that the small time asymptotic lim,,,,2t. logp(t,x,y) of a symmetric 
elliptic diffusion on Iw” (or, more general, on a Lipschitz manifold) is determined by the intrinsic 
metric defined in terms of the associated Dirichlet form. Here we ask the question: Is the Dirichlet 
form (or the diffusion process) determined uniquely by its intrinsic metric (i.e. by its small time 
asymptotic)? 

The answer is NO. For any symmetric elliptic diffusion there exists another one with the same small 
time asymptotic but with strictly smaller diffusion coefficients. 

However, the answer is YES if a priori we know that the diffusion coefficients are continuous. 
0 1997 Elsevier Science Ltd 

1. INTRODUCTION 

Throughout this paper, the state space X will be a fixed Lipschitz manifold of dimension 
n 2 2 and m a Radon measure on it. In order to make the exposition more readable, we will 
concentrate on the case X = R”. However, we emphasize that all results presented in the 
sequel also hold true in the general case of X being a Lipschitz manifold (for the technical 
details we refer to Ref. [I]). 

Now assume that X = R”, YE 2 2, m(dw) = cp(x)du with a measurable function cp satisfying 
ess inf, cp >O and ess sup, cp < QZ for each compact Kc X. Let J&? denote the set of 
symmetric matrix-valued, measurable maps 

a = @2,),:X -+ R”“” 

which are elliptic in the sense that there exists a continuous function A:R-+ [l,m[ such that 

for a.e. x E X and every 5 E R” where here and henceforth 

2. THE INTRINSIC METRIC AND THE PATH METRIC 

With any diffusion matrix a E & we associate a Dirichlet form (E~,B(E~)) with core %‘{tp(X) 
(the set of Lipschitz functions f:X + R with compact support). For ,f E %yP(X) we put 

‘ Jx 
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Then it is well-known that (s,,%‘Fp(X)) is closable in L*(X,m) and its closure (E,,~(F,)) is a 
regular, strongly local Dirichlet form. One easily verifies that 9ioc(s,) = W:;:(X). See, for 
example, Fukushima-Oshima-Takeda [2], Norris [l] or Sturm [3]. 

The associated intrinsic metric d, is defined by 

d,(x,y) = sup{f(x) -f(y):f E 9,,(s) n g(X), (Vf,aVf) 5 1 a.e. on X}. (1‘) 

It is the ‘Riemannian metric’ on X associated with a E A?. Obviously, for each point x E X 
there exists a neighborhood on which the original ( = Euclidean) metric and the intrinsic 
metric d, are comparable. In particular, the topologies coincide. Given a E & we define the 
length of a Lipschitz curve y:[O,l] -+ X by 

The path metric d,* is defined by 

d,*(x,y) = inf{l,(y):y:[O,l] + X Lipschitz with y(0) = x, Y(I) = y>. 

One easily checks that d,*(x,y) 5 d,(x,y) for all x, y E X, cf. Sturm [4] and Norris [S]. In 
general, however, there will be no equality! For instance, this follows from the fact that d, 
only depends on the m-equivalence class of a (i.e. d, = d,- whenever a(x) = 8(x) for a.e. 
x E X) whereas d,* depends on the Ghoice of representative within the m-equivalence class of 
a. More precisely, we even have: 

2.1.1. Proposition 1. For every a E & there exists an d E J$ with 

d,* = 0 and Z(x) = u(x) for a.e. x E X. 

Proof Choose a countable dense set {xn}, EN c X and a countable set {ykl}k,lEN of Lipschitz 
CUWCS Y,$[O,l] -9 X Connecting xk = ykl(O) and X[ = Ykl(l). Put 

X0 = k~~Nyk,([031]) and d;j(X) = lx\x,,(X)*Uij(X) 
E 

for x E X and i, j E (1, ..*, n}. Then a”(x) = u(x) for a.e. x E X and d(x) = 0 for x E X,,. 
Hence, L,(yk,) = 0 and thus dz(x,,x,) = 0 for all k, f E N. But this already implies 
d,*(x,y) = 0 for all x, y E X since {x,},.~ is dense in X w.r.t. the d,-topology (which 
obviously coincides with the dZ-topology and is therefore finer than the dg-topology). 

Of course, the Dirichlet form (and therefore also the diffusion process as well as the heat 
kernel) associated with the diffusion matrix a only depends on the m-equivalence of class a. 
Hence, in the general case of discontinuous diffusion matrices a, the path metric dz is of no 
use. The following alternative characterization of the intrinsic metric in terms of paths is due 
to De Cecco-Palmieri [6,7]. 

2.1.2. Proposition 2. For any a E ti and all x, y E X 

d,(w) = SUP inf L(Y) (2) 
x,,cx YE r(x,y.xI)) 

m(x,))=o 

where I(x,y,X,,) denotes the set of all Lipschitz paths y:[O,l]+X with y(O) =x, y(l) =y, 
and y(t) z X0 for a.e. t E [O,l]. 
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3. THE INTRINSIC METRIC AND THE SMALL TIME ASYMPTOTIC 

Let us consider the diffusion process (X,,Pi) associated with the Dirichlet form (E,,~(E,)). 
Formally, its generator is given by the divergence form operator 

on L’(X,m(dx)) = L2(X,&)dw). The heat kernel p,(t,x,y) is defined as the density of the 
transition semigroup 

Pi[X, E dy] =pu(t,x,y)m(dy) 

or, equivalently, as the fundamental solution of the parabolic equation (A, - a/&)u = 0. 
The following fundamental relation between the heat kernel and the intrinsic metric was 

derived by Norris [l]. 
3.1.1. Theorem 1. For any a E & and all x, y E X 

&(w92 = - f\y 2t. logp,W,y). (3) 

This result is the solution to a famous problem in analysis which was open since 30 years. 
Namely, Varadhan [8] proved 

&(x,y)2 = - Ky 2t. logP,(t,w) (4) 

for any a E d and all x, y E X. Here & and d, is defined as before but pJt,x,y) is associated 
with the non-divergence form operator 

Aronson [9] derived uniform upper and lower Gaussian estimates for the heat kernel 
p,(t,x,y) associated with a divergence form operator (V,aV) on L2(X&) with a E &. This 
result can easily be extended to divergence form operators A, = l/rp(V,cpaV) on 
L*(X,cp(x)&) as considered before. These estimates immediately imply 

f. lim-;up 2t logp,(t,x,y) 5 - dE(x,y) 5 C. lim+pf 2t logp,(t,x,y) (5) 

uniformly in x, y (with d, as before). Since that time, it has been an open question whether 
the rough estimate (5) can be improved to get the precise assertion (3). Many people have 
tried to prove (3) for the described type of divergence form operators with non-smooth 
coefficients. Davies [lo] succeeded in proving the precise upper estimate 

liy2-q 2t logp,(wy) 5 - d%,y) 

for any divergence form operator as described above. His method also applies to more 
general operators, e.g. to the class of selfadjoint subelliptic operators studied by Fefferman 
and Phong. In particular, this includes the class of selfadjoint Hiirmander-type operators 
( = sum of squares of %‘“-vector fields). For the latter, Leandrt [ll] derived the precise 
asymptotic (3). However, concerning the precise lower estimate for the described class of 
divergence form operators with non-smooth coefficients, up to now only partial results have 
been obtained. The precise asymptotic (3) was obtained for certain subclasses: 



1858 K.-T. STURM 

-by Norris and Stroock [El, under the restriction that the aii are continuous and cp = 1; 
-by Zheng [13,14], in the case aij = id; 
-by Norris [5], in the case cp = 1. 

Now, finally, Norris [l] has presented the proof of the precise asymptotic (3) for general 
divergence form operators with measurable coefficients a and (9. 

4. NON-UNIQUENESS 

The previous Theorem 1 indicates that the intrinsic metric associated with a Dirichlet form 
is the appropriate quantity in order to describe the short time asymptotic of the associated 
diffusion process or heat kernel. Moreover, in many other estimates for heat kernels, Green 
functions, capacities, hitting probabilities, harmonic functions etc. the intrinsic metric plays a 
crucial role. See, for example, Sturm [3,4,15-171. Therefore, the question arises: Is the 
Dirichlet form determined uniquely by its intrinsic metric? Or, in other words: Is the diffusion 
process determined uniquely by its small time asymptotic? 

The answer is NO. For any symmetric elliptic diffusion there exists another one with the 
same small time asymptotic but with strictly smaller diffusion coefficients. More precisely, 
our main result states: 

4.1.1. Theorem 2. For every a E &’ there exists an d E & with 

d,=d, and Z(x)<a(x) for all x E X 

(in the sense of forms, i.e. (5,6(x)& <(,$,a(~)&) f or all 5 E R”\{O}). In particular, for any 
E > 0 and any continuous function 6:X + ]O,l[ one can choose 

ii,(X) = Y(x).aii(x) 

with a measurable function W:X -+ ]O,l[ satisfying Y 2 6 on X and 

m({Y > 6)) 5 E. 
Proqf. Let S E %(X), E > 0 and r) > 0 be given. Choose a countable dense set {x,}, EN c X 

and a countable set {Y~,}~,~~~ of Lipschitz maps ~~,:[0,1] +X connecting xk = ~~~(0) and 
x, = ~~~(1) and having length La(yk,) I (1 + v).d,(xk,x,). Note that m(y,,([O,l])) = 0. Now 
choose, for each k, 1 E N, a continuous function I&,:X + [OJ] with&, = 1 on ~~,([0,1]) and 

m({&, > a}) 5 (1 - a).2- ‘-‘.t: 

for any (Y E [OJ]. Then define 

y” = sup (clkl 
k.1 

which is a lower semicontinuous function X+ [O,l] satisfying m({$ > a}) 5 (1 - LY).E for any 
(Y E [OJ], in particular, m({$ > 0)) - -= E and m({$? 1)) = 0. Finally, put Ys = 6 + (1 - 6).Y0 
as well as Y$ = l~,,,,,<,).Ys. Then obviously, the function Y = Yg:X-+]O,l[ is measurable 
and satisfies Y 1 S on X as well as m({Y > 6)~ E. It is also obvious that d = Yea belongs to 
54. 

The main question is: why is da = d,? Note that of course d = Y$-a and Y8*a lead to the 
same metric dz. Let us consider two points x k, x1. The COIItinUity Of +k( and 6 implies that 
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is an open neighborhood of ~~,([0,1]). On this open set, a* z l/(1 + ~)2*a (in the sense of 
forms). Hence, 

But this already implies d,*(x,y) % (1 + 71)**d,(x,y) for all x, y E X since {x,,}, tN is dense in X 
w.r.t. the &-topology (which obviously coincides with the d,*-topology). In order to finish, it 
suffices to consider q--,0. 

Remarks. 
1. Let us give an intuitive description of the previous construction. Assume for simplicity 

that a,-(x) = 6,. The diffusion process associated with this diffusion matrix is just the 
Brownian motion on X = R”. Now let us consider the diffusion process associated with 
the diffusion matrix d;,(x) = ‘I’6.8,. This process can move fast (namely, as fast as 
Brownian motion) on a small, fracfal like set X1 = {YO = 1) of measure 0 which connects 
all points of a given dense subset {x,}, tN cX. On the other hand, the process moves 
slowly (namely, with velocity being 6 times the velocity of Brownian motion where 
typically 6 << 1) on a large set {W, = 0) whose complement has measure E -CC 1. 

The technically important point is, that the diffusion moves sc@ciently fast in a 
(sufficiently small) neighborhood of this fractal like set X1. More precisely, for any o < 1 
(and E > 0) there exists an open neighborhood X, of X, (with measure m(X,) I E) such 
that the diffusion process moves on X, at least with velocity (Y times the velocity of 
Brownian motion. 

2. The construction of the above diffusion matrix d = Y-a was inspired by a similar 
construction of Davies (1996, private communication). He used it to give an example of a 
diffusion with d, = m but with aij E Lp(X, m) for all p < m. 

3. Assume that the coefficients ajj are smooth. Then in the definition (1) of the intrinsic 
metric d, the set y(X) n C&,(E) obviously may be replaced by y’(X), i.e. 

d,(x,y) = sup{f(x) - f(y):f E S”(X), (Vf,aVf) 5 1 a.e. on X}. (6) 

However, this equality will ltot be true in general! This was observed by Zheng [13]. In our 
context, a simple example is given by d = Y.a with a function Y as in Theorem 2. 

5. CONTINUOUS COEFFICIENTS 

Now let us consider the set .c$ consisting of those a E d for which Uij:X~ R is continuous 
for each i, j = l,..., n. From Proposition 2 one immediately obtains. 

5.1.1. Proposition 3. For any a E s&d, = d,*. 

The important point for us is that the equality of d, and d,* allows to reconstruct the 
diffusion matrix a from the metric d,. 

5.1.2. Proposition 4. For any a E &, any x E X and any [ E N” with 151= 1: 

(c,a(x)[) 2 lim sup 
4x,x + t5)  - *  ,  lim inf d(x,x + t5)  - *  - 

1-O (  t  1 1-O ( t 1 27 (56’(x)5>-’ 

with equality 

(&2(x)() = f% (d(xJxt+ lo)-’ 

if c is an eigenvector of a(x). In particular, a E S& is determined uniquely by d,. 
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Proof Fix x E X, 5 E WN” and a neighborhood B c X of x. From the definition (1) of 
the intrinsic metric & we deduce that 

for sufficiently small t > 0. (Namely, we can choose U:Z -+ (supyE&, a(y)~))-“2-(~,z).) 
On the other hand, Corollary 1 and the definition of the path metric d,* imply 

d(x,x + t5) 5 ‘.(;~g WAS))“* 

for sufficiently small t > 0. (Namely, we can choose y:s --+x + St(.) Assuming that a is 
continuous this already yields the claim. 

For details refer to Sturm [l&19]. 
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