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ANALYSIS ON LOCAL DIRICHLET SPACES
III. THE PARABOLIC HARNACK INEQUALITY

By K. T. STURM

ABSTRACT. — In the context of local Dirichlet spaces we prove that the parabolic Harnack inequality holds
true if and only if the doubling property and the Poincaré inequality hold true. An important observation is
that (under the doubling property) the weak Poincaré already implies the strong Poincaré inequality and also
the Sobolev inequality.

Using the parabolic Harnack inequality we deduce upper and lower Gaussian estimates for the heat kernel
associated with the Dirichlet form.

These results depend on the fact that the Dirichlet form itself defines in an intrinsic way a metric on the state
space and that this metric allows to construct geodesics on the state space.

1. The Dirichlet space and the intrinsic metric

A) The Dirichlet space (£, F)

The basic object for the sequel is a fixed regular Dirichlet form £ with domain
1/2
F = F(X) on a real Hilbert space L? (X, m) with norm ||u|| = (/ u? dm) oF is
X
again a real Hilbert space with norm ||u||z := /€ (u, u) + ||ul|.

The underlying topological space X is a locally compact separable Hausdorff space and

m is a positive Radon measure with supp [m] = X. The initial Dirichlet form £ is always

assumed to be symmetric (i.e. £ (u, v) = £ (v, u)) and strongly local (i.e. € (u, v) = 0

—whenever u € F is constant on a neighborhood of the support of v € F or, in other words,

€ has no killing measure and no jumping measure). The selfadjoint negative semidefinite
operator associated with the initial form £ is denoted by L.

B) The enérgy measure I’
Any such form can be written as

£(4, v):/X dT (u, v)
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274 K. T. STURM

where I is a positive semidefinite, symmetric bilinear form on F with values in the signed
Radon measures on X (the so-called energy measure). It can be defined by the formulae

[(qbdr(u, w) = £ (u, $u) - 2 £ (w2, §)
= lim Q/ / $(2) - [u(@) - u Q)P T, (=, dy) m.(dz)

for every u € F (X)NL> (X, m) and every ¢ € F (X)NCo (X). Since € is assumed to
be strongly local, the energy measure I is local and satisfies the Leibniz rule as well as the
chain rule, cf. [Fu], [Le], [M], [St1]. As usual we extend the quadratic forms u — & (u, u)
and u — T (u, u) to the whole spaces L? (X, m) resp. L2 _(X, m) in such a way that
F(X)={ueL*(X,m): € (u, u) < oo} and Fioc(X) = {u € LE_(X, m) : T (u, u)
is a Radon measure}.

C) The intrinsic metric p

The energy measure I' defines in an intrinsic way a pseudo metric p on X by

(L)  p(z,y)=sup{u(z) —u(y):u € Fioc (X)NC(X), I'(u, u) <m on X},

called intrinsic metric or Carathéodory metric (c¢f. [BM1, 2], [Da], [VSC]). The condition
I'(u, u) < m in (1.1) means that the energy measure I' (u, u) is absolutely continuous

w.r.t. the reference measure m with Radon-Nikodym derivative e E(uhuw) < 1l The
m

d
density e I" (u, u) (z) should be interpreted as the square of the (length of the) gradient
of u at z € X. In general, p may be degenerate (i.e. p(z, y) = oo or p(z, y) = 0 for
some z # y).

D) Strong regularity

In addition to the assumptions from section A) we assume from now on that the Dirichlet
form & is strongly regular in the sense of the following

Definition. — A strongly local, symmetric Dirichlet form £ with domain F C L? (X, m)
is called strongly regular if it is regular and if p (defined by (1.1)) is a metric on X whose
topology coincides with the original one.

The strong regularity in particular implies that p is non-degenerate, that X is connected
and that for any y € X the function = +— p (z, y) is continuous on X. Note that due to the
strong regularity any ball B, (z) = {y € X : p(z, y) < r} is connected and its boundary
always coincides with the sphere S, (z) = {y € X : p(z, y) = r} ([St3], Proposition 1).
Moreover, for fixed z € X and sufficiently small v > 0 the closed balls B, () are compact
and thus complete. Here and in the sequel, completeness always means completeness with
respect to the metric p. That is, a subset Y C X is called complete if and only if the
metric space (Y, p) is complete.
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ANALYSIS ON LOCAL DIRICHLET SPACES 27>

LemMA 1.1. — (i) A closed ball B, (xz) C X is complete if and only if it is compact.
(ii) The whole space X is complete if and only if all closed balls B, (x) are compact in X.

Proof. — Assertion (ii) was already proved as Theorem 2 in [St3]. The first assertion
can be proved with the same argument using the following Lemma 1.3 (which is the
appropriate generalization of Theorem 1 in [St3]). O

LemMA 1.2. — (i) If a closed ball B, (z) C X is complete then any point y € B, ()
can be joined with the center x by a minimal geodesic in B, (z). That is, there exists a
continuous map v : [0, 1] — Y with v(0) = z, v(1) = y and

(12) p(Y(M)Y@®)=p(r(r), v(s)) + p(v(s), 7 (¢))

Jorall) < in < s i< 1

(ii) If the whole space X is complete then (X, p) is a geodesic space, i.e. any two points
z,y € X can be joined by a minimal geodesic in X.

Proof. — [St3], Theorem 1 and Remark thereafter.

Note, however, that assertion (i) of the above Lemma does not imply that the complete
ball B, (z) is convex, that is, it does not imply that any two points y, z € B, (z) can be
joined by a minimal geodesic in B, (z).

The proof of both preceding Lemmata essentially depends on the following basic property
of the distance function which was derived as Lemma 1.1 in [St1].

LemMA 1.3. — For every y € X the distance function p, : = — p(z,y) satisfies
Py € Froc (X)NC(X) and ‘

(1.3) I (py, py) < m.

Hence, the distance function p, can be used to construct cut-off functions on intrinsic
balls B, (y) of the form p, , : z — (r — p(z, y))4.

2. The Poincaré inequality

Throughout this chapter, we fix an arbitrary subset Y C X . We state and discuss several
properties of the Dirichlet form £ on this set Y.

A) Completeness and doubling properties

ProperTY (Ia) (Completeness property). — For all balls B,, () C Y the closed balls
B, (z) are complete (or, equivalently, compact).

Of course, Property (la) is satisfied if Y is complete. Note that due to the strong regularity,
each point z € X has a neighborhood Y = Y (z) with this property, and that even each
set Y C X has this property if X is complete. Let us also mention that (Ia) obviously
implies that a closed ball B, (z) is complete as soon as B., (z) C Y for some v > 1.
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276 K. T. STURM

ProperTY (Ib) (Doubling property). — There exists a constant N = N (Y') such that for
all balls By, (z) C Y

2.1) m (Bzr (z)) < 2V - m (B, (z)).

Note that (2.1) implies m (B, (z)) < (27//r)Y -m (B, (z)) for all B, (z) C By (z) CY
and m (B (z')) < (47'/r)N - m (B, (z)) for all B, (z) C B, (z') C Y.

The number N plays the role of the dimension of the space Y. Note, however, that it
may be a fractional number. Let us mention that without restriction this number N in (2.1)
can always be chosen to satisfy N > 2.

With properties (Ia) and (Ib) at hand, one is already in a position to estimate the
following spectral bounds

2.2) )\D"'(B)zinf{%zu—):ué]—',u;éO,ﬁ:Oq.e.onX\B}
and
/dT‘(u, u)
(2.3) AU (D) — il B———:ue}',u;éo,/ udm =0
: S ,

/ u?dm
B

for the operator — L with suitable boundary conditions on 9B where B is some ball in X.
ADir (B) js the bottom of the spectrum of the operator —L on L? (B, m) with “Dirichlet”
boundary conditions on 9B and AN" (B) is the spectral gap (between zero and the first
non-zero spectral value) for the operator —L on L? (B, m) with “Neumann” boundary
conditions on 0B.

PROPOSITION 2.1. — Assume (la) and (Ib). Then for all balls B = B, (z) C Y of radius r

o gN+2
2.4) (B =
and if OB, (z) # 0 and Bs, (z) C Y then
. gN+2
@2.5) A (B) S =

Proof. — In order to estimate AP (B) consider the function u(y) = p (y, X\B: (z)).
From Lemma 1.3 it follows that T (u, u) < 1p_(;)m and thus & (u, u) < m (B, (z)).
2
On the other hand, |ju|? > % (B2 (z)) > 272N - 12 . m(B, (). This yields the
first claim.
For the proof of the second claim, we consider the function v = u — C' where u as above

and C = / wdm/m (B, (z)). Of course, / dl (v, v) = € (u, u) < m (B, (x)).
B, (x) B, ()
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In order to estimate ||u — C||* we distinguish two cases: either C < 3/4r or C > 3/4r.
In the first case,

: 2
/ |u — C|?dm > / (g) dm > 82N .¢2. m (B, (z)).
B, (z) B, /s (z)

In the second case, we make use of the assumption 9B, (z) # (. It implies that there
exists a point y with p (z, y) = 3/4r. Using the assumption C > 3/4r we get

2
/ |lu — C|?dm > / (g) dm > 2_4'T2‘m(3r/4 (v))
B, (z) B, ()\B,/2 (x)

287N r? em(By, (9)) 2 872 P m(B(z)). O

Property (Ib) implies that the metric space (Y, p) is a homogeneous space in the sense
of Coifman and Weiss [CW] which in turn implies that several covering properties hold
true. The most important for us is the Whitney covering property below. We use the
following notations. For a ball B = B, (z), we denote B’ = Bs, (z), B” = By, (z) and
B* = Bio, (z) and we write p(B) for the radius 7 of B.

LEMMA 2.2. — Assume (la) and (Ib) and fix Z = By (2) C Y. There is a pairwise disjoint
family G of balls (“Whitney family”) and a constant f (N) depending only on the doubling

@z =1{)B;
Beg
(i) 102 p(B) < p(B, X\Z) < 10*p(B) forallB € G

(i) f{Be€ G:z € B*} < f(N)uniformly forallz € Z.

Here and below, f {-} denotes the number of elements in the set {-}. The proof of this
Lemma is well known and straightforward (cf. [Je]). More sophisticated is the estimate
for the number of balls in this Whitney family which are needed to join a point close to
the boundary of Bg (z) with the center z. To this end, we recall that by assumption (Ia)
each ball B, (z) with 7 < R is relatively compact which allows to connect points in Z
with the center z by geodesics.

For B € G, define yp as a minimal geodesic from the center of B to the center z of
Z = Bgr(z) and denote the graph of vp also by vyg. The length of this path vp is then
< R and the whole path lies inside of Z (i.e. yg C Z). Of course, this path need not to
be unique but exactly one will be associated to every ball B € G.

Following [Je] and [SaS], we denote G (B) = {A € G: A’ N~yp # B} for any B € G
and G*(B) = {A € G:BeG(A4)}

LEMMA 2.3. — Assume (la) and (Ib) and let B belong to G. Then:
(i) p(A) > 1072 p(B) for every A € G(B);
(ii) there exists a constant f (N) only depending on the doubling constant N such that

2
2B S 4G4 ma) < F(V) - R2

s (B) A€gG* (B)
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278 K. T. STURM

The proof of this Lemma is entirely analogous to the original proof of Jerison ([Je],
Lemmata 5.6-5.9, cf. also [SaS], [Lu]). Note, however, that in this argument it is not
sufficient to have any metric p which satisfies Properties (Ia) and (Ib) but it is necessary
to have a metric which allows to construct geodesics (cf. our Lemma 1.2). '

B) Weak and strong Poincaré inequalities

The basic quantitative property in the sequel will be the Poincaré or spectral gap
inequality. There are various forms of this inequality which will be shown to be equivalent
to each other.

PropPERTY (Ic) (Weak Poincaré inequality). — There exists a constant Cp = Cp (Y') such
that for all balls By, (z) C Y

(2.6) / |u — uz |2dm < Cp - 12 / dl’ (u, u)
B, () By, (x)
1
for all u € F (X) where uy,, = ———— udm.

m (B (z)) B, (x)
This property will be compared with the following stronger property (where the ball

Bs,, on the RHS of (2.6) is now replaced by the ball B,).

ProPERTY (Ic*) (Strong Poincaré inequality). — There exists a constant Cp = Cp(Y")
such that for all balls B, (z) C Y

2.7 / |u —uz,|°dm < Cp - 12 / dT’ (u, u)
B, (:E) B, (3)
for all u € F(X) where u, , = e udm.

m (B (z)) B, (z)
Using the definition (2.3), inequality (2.7) is equivalent to

1

Neu
2.38) N (B, (2) 2 -

This should be compared with the upper bound (2.5) which is of the same order. Note
that the set of assumptions used in [BM2] also contains an analogous lower bound

APE(B, (z)) 2
be true.

C 2 In our context, this will not be required and will in general not
-

THEOREM 2.4. — Assume that (la) and (Ib) hold true. Then the weak Poincaré inequality
(Ic) holds true if and only if the strong Poincaré inequality (Ic*) holds true.

The strong Poincaré constant C} can be chosen to be f(N) - Cp where f(N) is a
constant only depending on the doubling constant N from (2.1). On the other hand, the
weak Poincaré constant Cp can of course be chosen to be C%p.

Proof. — Having at hand the Whitney covering from Lemma 2.2 and the estimates from
Lemma 2.3, the proof of Jerison [Je] applies without changes (cf. also [SaS], [Lu]). O
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CoroLLARY 2.5 (Weighted Poincaré inequality). — Assume that (Ia) and (Ib) hold true.
Then the weak Poincaré inequality (Ic) holds true if and only if there exists a constant
Cp = Cp(Y) such that for all balls B, () C Y

2.9 / |u — uz, |* $*dm < Cp - 72 / $? dT (u, u)
B, (z) B (z)
forallu € F(X)wherep = (1 — p(z,-)/r)V0andu, , = / u-¢? dm/ % dm.
B, () B, (z)

The constant C'p can be chosen to be f (N)-Cp where f (N) is a constant only depending
on the doubling constant N and, conversely, Cp can be chosen to be f' (N) - Cp.

Proof. — The assertion can be proven either directly starting with the weak Poincaré
inequality (Ic) and using the arguments of [SaS] or starting already with the strong Poincaré
inequality (Ic*) and observing the following facts:

(i) the measure ¢? - m is comparable with the measure 24"‘ - 1p () - m where
k=1
B(k) = B(l—2—k)r($);
(ii) |u —u1|>dm < f, (N) - [/ Iu—uk|2dm+/ |u—u1|2dm]
B (k) B (k) B(1)
“where us =/ s i wLEE L. ’ 3
B (k)
(iii) |lu — ug|>dm < Cp - 7"2/ dT (u, u). Hence,
B (k) B (k)
/ |u—u1|2-¢2dm§4-z4_k/ lu — uy|* dm
B (o) =i B (k)
Sfl(N).[é/ |u—u1|2dm+z 4_’“/ Iu—uklzdm]
3JBq) o B (k)
<RW)-Grt Y4 [ <A@ Gt [ #dw . O
k=1 B (k) B (o0)

Remark. — The function ¢ = (1 — p(z, -)/r) V 0 in Corollary 2.5 can actually be
replaced by a more general weight function ¢ on B, (z). Sufficient conditions for ¢ can
be found in [SaS].

C) Poincaré and Sobolev inequalities

In order to prove an elliptic or parabolic Harnack inequality (e.g. for subelliptic operators
on RY or for Laplace-Beltrami operators on Riemannian manifolds) using the method of
Moser [Mol, 2], it was general knowledge since quite a long time that it suffices to
have a doubling property, a Sobolev inequality and a weighted Poincaré inequality. Only
recently, independently Grigor’yan [Gr] and Saloff-Coste [Sa2] could prove that (at least
in Riemannian geometry), a doubling property and a Poincaré inequality already imply a
Sobolev inequality. The proof of Saloff-Coste carries over to our general situation.
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THEOREM 2.6. (Sobolev inequality). — Assume that (la), (Ib) and (Ic) hold true and put
N* = sup{N, 3}. Then there exists a constant Cs = Cs(Y) such that for all balls
BQT(Z') @ Y

@.11) (/ |u| ¥ dm>
B, (z)

< ——~———/ dl (u, u) + r~2 - uldm
5 m (B, (z))*/V B (e) e

for all w € F (X)NCo (B (x)). The constant Cs can be chosen to be f (N) - Cp where

Proof. — We follow the proof of Theorem 2.1 of Saloff-Coste [Sa2]. The abstract
arguments (Theorem 2.2, Lemma 2.3) carry over line by line. The geometric argument in
Lemma 2.4 of [Sa2] follows from the fact that according to the doubling property (Ib)
the metric space (X, p) is a homogeneous space in the sense of Coifman/Weiss [CW].
In particular, the relevant “Vitali covering property” holds true ([CW], p. 69, cf. [FrS],
pp. 548-549). O

Remarks. — (i) Using the cut-off functions from Lemma 1.1 it is easy to see (¢f.
section 2.1 B in [St2]) that (2.10) implies that there exists a constant Cg = C% (Y') such
that for all balls By, (z) C Y

N*—2

(2 11) (/ | |%&d ) N* = C* ')"2
. u| V=2 dm LCs —=F~57r
Bs—s) - (2) ° m (B, (@))/N
: / dr (u, w) + (67) "2 - u® dm,
Bgr (1:)

for all u € Floc (X) and all § < 2.

(ii) The constant N* in Theorem 2.6 can actully be chosen to be any number > N
and > 2.

3. The parabolic Harnack inequality
Throughout this chapter, we again fix an arbitrary subset Y C X.

A) Parabolic equations and one-parameter families of Dirichlet forms

In the sequel we will study the behaviour of local solutions of the parabolic equation

0 i :
L; — A 0 on R x X. Here {L:}+cr is a uniformly parabolic operator in the

following sense. We assume that for every ¢ € R we are given a regular, strongly local
and symmetric Dirichlet form &; with domain D (&) = F. The negative semidefinite,
selfadjoint operator on H = L2 (X, m) associated with the Dirichlet form &; is denoted by
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L;. That is, dom (L;) C F and —(L; u, v) = & (u, v) for all uw € dom (L;) and v € F.
The one-parameter family {;}.cr of these Dirichlet forms is assumed to be uniformly
parabolic with respect to the initial Dirichlet form £ in the following sense: there exists
a constant x such that for all w € F and all ¢t € R

(3:1) 1/6+E (v, u) & (1, )k € (s, u).

Let us identify the Hilbert space H = L? (X, m) with its own dual and denote the
dual of F by F*. Then we have

FGlH @ik

with continuous and dense embeddings. We shall use the same notation (-, -) for the inner
product in H and for the pairing between F* and F.

Let I =]o, 7[C R be an open interval. We will be concerned with the following Banach
spaces (cf. [St2]):

e L?2(I — F) being the Hilbert space of functions of the form w : I — F,
1/2

t — u; = u(t, -) equipped with the norm ( || || % dt . What one has in mind
I
is that actually u : (¢, ) — R, (¢, z) — u (¢, z) is a function of space and time which
- is regarded as a one-parameter family (u;),.; of functions u; depending only on space.
Note that in ‘this paper u; always denotes the function = — wu (¢, ) and never the time
derivative of u. The latter is always denoted by 5 U
« H' (I — F*) the Sobolev space of functions v € L?(I — F*) with distributional

time derivative —u € L2 (I — F*) equipped with the norm

ot
2 1/2
(]l #) .
fﬁ

e F(Ix X):=L*({I — F)NnH'(I — F*) being a Hilbert space with norm

P 2 1/2
”“’”T(IXX) — (/”'U»t“gr'f' “ aut dt) :
I F*

Let G be an open subset of X, let I be the interval |o, 7[C R and let Q be the parabolic
cylinder I x G. Denote the measure dt ® dm on R x X by dm. We define Fio. (Q) to be
the set of all m-measurable functions on Q such that for every relatively compact, open
set G’ CC G and every open interval I’ CC I there exists a function v’ € F (I x X)
with u = u/ on I’ x G’. We say that a function u belongs to 7 (I X G) if u € F (I x X)
and if for a.e. t € I the function u, has compact support in G. Note that a function
-u € Fo(I x G) only has to vanish on the lateral boundary I x OG but neither on the
upper boundary {7} X G nor on the lower boundary {c} x G.

__ut

DEerINITION. — We say that u is a local solution of the parabolic equation
0
(Lt—gz)uzo on Q
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iff u € Floc (Q) and

(32) / gt (’Ult, ¢g) dt +/ (gut, ¢t) dt = O,
J 1\t

for all J CcC I and all ¢ € F5(Q).

In order to be precise one could call our solutions local weak solutions. Note that if for
a.e. t € R the function w (¢, -) is locally in the domain of the operator L; then (3.2) is

. ; ;i : ; 0
satisfied if and only if the functions L. u (¢,-) satisfy L, u (¢, ) = —a—ut— (t, z) for m-a.e.

(t, z) € Q.

B) The parabolic Harnack inequality

The Harnack inequality is a uniform estimate for the growth of local solutions of
certain operator equations (usually, partial differential equations). The elliptic Harnack
inequality deals with local solutions u : z +— u(z) of the equation Lu = 0 on X; the

parabolic Harnack inequality with local solutions w : (¢, z) — u(t, z) of the equation

L—a%)u:OonRxXoroftheequation (Lt—a u=0o0onRx X.

15)
PropPErTY (II) (Parabolic Harnack inequality for the operator L — a) — There exists a
constant Cyg = Cyg (Y') such that for all balls By, (z) CY and all t € R

(3.3) sup u(s,y) <Cpqx- inf wu(s,y)
(5, €@~ (s v)eQ*
. : : : ; 9
whenever u is a nonnegative local solution of the parabolic equation | L — En u:=0
on Q =t —4r?, t[xBy,(z). Here Q- =t — 3r%,t — 2r%[xB,.(z) and Qt =

It = r2, t{x B, (z).

In order to be precise, one should replace the “inf” and “sup” in (3.3) by “ess inf”
and “ess sup”. The following Proposition 3.1, however, states that all functions » under
consideration can be chosen to be continuous (more precisely: admit a continuous version).
Hence, there is no reason to use this cumbersome notation.

ot
k>1landall a, B,7,0,e ERwith0< a < <7< 8§and 0 < e < 2 there exists a

constant Cy; = Cy; (Y) such that for all balls By, () CY and all t € R

a
ProperTYy (II*) | Parabolic Harnack inequality for the operators L; — —) — For all

(34 sup u(s,y)<Cqx- 'inf wu(s,y)
(,9)€Q~ (s,y)€Q*

whenever (L), g is a uniformly parabolic operator satisfying (3.1) and u is a nonnegative
0
local solution of the parabolic equation | Ly — = |u=0o0n Q = |t — §7%, {x By, ().

ot
Here Q— =t — 1% t — Br?[x B, (z) and Q% =t — ar?, t{x B, ().
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It is a well known fact that the parabolic Harnack inequality is quite a powerful property
which has many important consequences. We will state only some of them.

ProposiTioN 3.1 (Holder continuity). — Assume (I1*). Then there exist constants o €]0, 1[
and C such that for all balls By, (z) CY and all T € R

iR 1/2 Sy a
(3.5) |u(s, y) —u(t, z)| < C-sup |u|- (|S I T+ ly z|)
Q2
: : _ ‘ P
whenever u is a local solution of the parabolic equation | L, — T = 0. on

Qs =|T — 472, T[x By, (z) and (s, y) and (t, z) are points in Q, =|T — r?, T[x B, (x).

Proof. — The proof of Moser [Mol] carries over without any essential change. [J

Of course, the precise assertion of 3.1 is that any local solution of the equation

L — Er v = 0 admits a version which satisfies (3.5). This continuous version is

uniquely determined and without restriction we will in the sequel always assume all local
solutions of that equation are chosen to be continuous.

ProposrTioN 3.2 (Elliptic Harnack inequality). — Assume (II). Then there exists a constant

3.6) sup u(y)<C- inf wu(y)
y€B, (x) Yy€B: (z)
whenever u is a nonnegative local solution of the elliptic equation Lu = 0 on B, (z).

An obvious consequence either of 3.1 or of 3.2 is the following

COROLLARY 3.3 (Holder continuity). — Assume (II). Then there exist constants « €]0, 1]
and C such that for all balls By, (z) C Y

gl [u(y) —u(2)| < C- sup |u,.(l_y;_z_l)

B, (z) T

~ whenever u is a local solution of the elliptic equation Lu = 0 on Bs, (z) and y and z
are points in B, (z).
A standard consequence of a global elliptic Harnack inequality is

CoroLLARY 3.4. (Strong Liouville property). — Assume (II) with Y. = X. Then all
nonnegative local solutions of the equation Lu = 0 on X are constant on X.

Proof. — For any nonnegative local solution » on X put ¢ = inf v and consider

u; = u — a which is again a nonnegative local solution of Lu; = 0 on X. Then
sup u; SC-iﬁful =C-(i§1{fu—a)=0.Thatis, u; =0on X and thusu =a. O
X
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C) Poincaré and parabolic Harnack inequalities

One of the main goals of this paper is the following result on the equivalence of parabolic
Harnack inequality and Poincaré inequality together with doubling property.

THEOREM 3.5. — Under the completeness assumption (la) the following are equivalent:
(i) The doubling property (Ib) and the Poincaré inequality (Ic) hold true on Y.

o 7]

(ii) The parabolic Harnack inequality (II) for the (time-independent) operator L — En
on R xY holds true.

(iii) The parabolic Harnack inequality (II*) holds true for all (time-dependent) operators

L — En on R x Y which satisfy (3.1).

The parabolic Harnack constant Cy in (iii) can be chosen as Cyz (N, Cp), i.e., only
to depend on the doubling constant N and the Poincaré constant Cp. (The constant Cj;
in addition depends on the parabolicity constant and the parameters a, 3, 7y, 6, €.) In the
converse direction, both constants N and Cp in (i) can be chosen to depend only on the

wid GO 2N s cg,).

o}
parabolic Harnack constant Cy for L— 5 eg. N=4

Proof. — For the implication (i) = (iii) we follow the second proof of Moser [Mo2]. In
[St2], Theorem 2.1, we already have deduced the relevant sub- and supersolution estimates
which follow by Moser’s iteration from the Sobolev inequality of Theorem 2.6 (more
precisely, from inequality (2.11)). These estimates are the analogue to Lemma 1 in [Mo2].

The analogue to Lemma 2 in [Mo2] follows from the weighted Poincaré inequality of
Corollary 2.5 and from the gradient estimate for the cut-off functions in our Lemma 1.1.
In order to see this, one just has to go through pp. 121-123 of [Mo1] and there one has to
replace the weight function p = 12 by the function ¢? from our Corollary 2.5 (which plays
the role of Lemma 3 in [Mol]). Due to the abstract Lemma 3 in [Mo2], these properties
already prove the Harnack inequality.

The implication (iii) = (ii) is trivial. For the implication (ii) = (i), we follow the proof
by Saloff-Coste [Sa2] which carries over line by line. The estimates for N and for Cp
follow from analysing the dependence in Saloff-Coste’s proof. [

COROLLARY 3.6. — Let (€, F) be a strongly local and symmetric Dirichlet form on a
Hilbert space L* (X, m) which is quasi-isometric to the original Dirichlet form (£, F)

on L?(X, m) in the sense that 1)k - € < € < k- € (as quadratic forms on F) and
1/6-m < m < k-m and let (£, F) satisfy (la). Then the following are equivalent:

(i) The parabolic Harnack inequality (II) holds true for L — :;zt onRxY.

(ii) The parabolic Harnack inequality (II) holds true for L — % onR x Y.

Proof. — First of all, note that the quasi-isometry implies that also (£, F) is strongly
regular. The claim follows immediately from the above Theorem as soon as one has
shown that the completeness property, the doubling property and the Poincaré inequality
are preserved (with new constants depending on «) under quasi-isometric changes. To this
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end, note that the assumptions on £ and 7 imply 1 /k-p < p < k- p and thus obviously
the completeness property (la) is preserved. Let us now assume that the doubling property
(Ib) holds for the form £ on L? (X, m). Then it also holds for £ on L? (X, m) since

Th(B2r (2)) £ k-m(Bzyr (2)) < K- (4 )Y -m (Byx (2)) < K* (4n7)Y Th(ér (2))-

Finally assume that the weak Poincaré inequality (Ic) holds for the form € on L? (X, m).

Then
/ |u — @iy |* d/ = inf / lu — a|® dm
5. ) LR )

o e o L
«€R Jp_ . (z) By - ()

Sﬂg'Cp-'I‘Z/ dI‘(u,u)Sn‘l'Cp-TZ/_ dr (u, u).

Baxv (z) By a (=)

By means of a straightforward covering argument (derived from properties (Ia) and (Ib))
this implies the weak Poincaré inequality (Ic) for the form £ on L? (X, 7n). O

Remarks. — (i) Note that the parabolic Harnack constant on Y only depends on the
doubling constant and the Poincaré constant on the same set Y and vice versa.
~(ii) For Laplace-Beltrami operators on complete Riemannian ‘manifolds the implication
(Ib) & (Ic) = (II) = (Ib) were obtained independently by A. A. Grigor’yan [Gr] and L.
Saloff-Coste [Sa2]. Saloff-Coste also derived the implication (II) = (Ic), based on an idea
of S. Kusuoka and D. W. Stroock [KS].

(iii) The elliptic Harnack inequality for local Dirichlet operators was already established
by Biroli and Mosco [BMI1, 2]. In addition to the set of assumptions (Ia), (Ib) and (Ic)
they required as a further assumption the validity of a Sobolev inequality similar to (2.10)
(which according to our Theorem 2.6 already follows from the other assumptions) but
actually even slightly stronger.

(iv) The elliptic Harnack inequality does not imply the parabolic one. Even more, it
does not imply the doubling property. This observation is due to A. A. Grigor’yan [Gr].
Namely, it is easy to construct complete two-dimensional smooth Riemannian manifolds
X with the following properties

* m (B, (z9)) < C-r? for r — o0;

* m (B2 (z,)) > n-m(By(z,)) for a sequence (z,), of points in X.

For any manifold as above satisfying the first one of these properties, the elliptic Harnack
inequality (3.6) holds true according to a result of Cheng and Yau [CY], Prop. 6. But the
second one of these conditions obviously contradicts the doubling property (Ib).

4. Gaussian estimates for the heat kernel

We say that property (I) is satisfied on a set Y C X if properties (Ia), (Ib) and (Ic) are
simultaneously satisfied on Y. According to Theorem 3.5, property (I) implies the parabolic
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Harnack inequality (II). In the sequel we will assume property (I) on an open subset
Y C X in order to get pointwise estimates on Y for the fundamental solution p (¢, y, s, z)

0
of the parabolic operator L, — 3.on R x X. We emphasize that p is the fundamental

. t .
solution on the whole space X whereas our assumptions are only stated on the subspace Y.

A) The upper bound

Using the parabolic Harnack inequality (II*) one easily derives pointwise estimates on

0
RxY for the fundamental solution p (¢, y, s, x) of the parabolic operator L; — P Rx X.

7]
Here L; — — is a time-dependent parabolic operator as introduced in section 3.A). It is
always assumed to be uniformly parabolic w.r.t. the elliptic operator L in the sense of (3.1).

On Y x Y the fundamental solution p (¢, ., s, .) is defined as the jointly continuous
density of the transition operator 7}’. That is,

7 1) = [ 23, 5,91 @) m(d)
for every f € L2 (X, m), f =0 on X\Y, and every y € Y; see [St2], sect. 2.4.

THEOREM 4.1. — Assume (I) on the open set Y C X. Then there exists a constant C
depending only on N = N (Y) and Cp = Cp (Y') such that the following estimate holds
true for all points (t1, y1) and (t2, y2) € R XY with t; < t,.

@1 p(ta, Y2, t1, 1) <C-m Y2(B 5 (1)) -m™? (B (v2))

P~ (v ) p(y1, 12)"\"?
'eXp( 4“(t2—t1)) (1+K,(t2—t2)>
exp(—A-(t2 —t1)/k)- (1 +A-(t2 — tl)/n)1+N/2,

Here t = inf {t; — t1, R?} with R = inf {p(y1, X\Y), p(y2, X\Y)} (being +oo if
X =Y). Furthermore, \ = inf {% u€eF, u# O} > 0 denotes the bottom of the

spectrum of the selfadjoint operator —L on L* (X, m).
Proof. — [St2], Theorem 2.4.

Remarks. — (i) The number ) in the estimate (4.1) can always be replaced by 0. That
is, the last two terms on the RHS of (4.1) can always be dropped.

Let us mention that the bottom of the spectrum of —L is zero if X is complete and if
the volume of balls grows subexponentially ([St1], Theorem 5). For instance, the latter is
satisfied if the doubling property (Ib) holds true globally on X (which even implies that
the volume grows at most polynomially).
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2\ N/2
(ii) The polynomial correction term (1 + M? in the above estimate (4.1) can
of course be absorbed by the Gaussian term exp (— P_(th,_y) if we replace the number 4

by some larger one. That is, for every € > 0 there exists a constant C such that

(4.2) p(t2, y2, t1, Y1)

< C-m ™2 (B4 (1)) - m™? (B (v2)) - exp (— g e)(f(’tle tl))

for all y1,yo € Y and t; < ty and with t as above.

(iii) In addition to the assumptions of Theorem 4.1 assume that there exists a geodesic
7 joining y;, and y, and that the doubling property (Ib) holds true on the neighborhood
Br(v) = {r € X : p(z, 7v) < R} of 7. Then the usual chaining argument yields

@3) m (B (1)) < © m(Bys () -exp (- 22180,

Hence, for every € > 0 there exists a constant C such that

4 p? (y1, y2)
Wape Ppltne,t, HYSER el TAB ) el g e

for all y;, y» € Y and t, < ty and with t as above.

The Gaussian estimates for the fundamental solutions have a particular nice form if the
assumption (I) holds true globally on X and if the parabolic operator is time-independent
(that is, L; = Lforallte R). In this case, without restriction we may assume that L=1L,
that is, L, = L for all t € R (and s = 1). The fundamental solution p (¢, y, s, =) satisfies
p(t,y,s,z) =p(t—s,y,0, z) and instead of the latter we simply write p (t — s, y, T)
and call it heat kernel.

COROLLARY 4.2. — If property (I) holds true globally on X and if Ly = L, then the

—following estimate holds true uniformly for all points x, y € X and all t > 0:

4.5) p(t,z,y) <C-m Y% (B 4(z) -m™ 2 (B ()

- exp (_lﬂ(zlLt’y» : (1 . -/)—(x;—y)z)N/2.

o\ *
Estimates similar to (4.5) also hold for the time derivatives (b—i) p(t, z, y) of the
heat kernel. See [St2] for details.
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B) The lower bound on the diagonal

In the sequel, we are going to deduce lower estimates on Y for the fundamental solution

0
p (t2, y2, t1, y1) of the parabolic operator L; — o on R x X. We do not require that X

is complete. Actually, we will impose no conditions on the operators L; outside of Y.
The first and most important step is to get a lower bound for the fundamental solution
P (t2, y2, t1, y1) on the diagonal {y; = y»}.

THEOREM 4.3. — Assume (I) on Y. Then there exists a constant (depending only on N
and Cp) such that

1
(4.6) Pty 7, 1, 7) > 5 -m~ (B4 (2))

forallz € Y and all t1,t; € R with 0 < ty — t; < p*(z, X\Y).

The most difficulties in proving this Theorem arise from the fact that we try to avoid
any kind of quantitative assumptions (like (Ib), (Ic) or (II)) on X\Y.

The idea is to fix a “large” ball Byr(z) C Y and to study the fundamental solution

p’ of the parabolic operator L; — — on X’ = By g (x) with “reflecting” or “Neumann”

boundary conditions on @B, g (z). In a second step, the estimates for p’ on B () will

be used to derive lower estimates on Bpg/; (z) for the fundamental solution p” of the
a

parabolic operator L; — — on X” = Bpg(z) with “absorbing” or “Dirichlet” boundary

conditions on dBpg (z). The final step consists of the simple observation that the original
fundamental solution p on X always satisfies p > p”.

To make these ideas concrete, fix R > 0 and £ € Y with Byg(z) C Y and put
AR BzR(iL'). Let

EL(hy v} /X' dI’ (u, v)

for u, v € F. Then £’ is a closable bilinear form on L? (X', m). Its closure will be

denoted by (€', F'). This form is again regular, symmetric and strongly local. Moreover, it

is also strongly regular (since the “new” intrinsic metric is just the “old” one). Analogously,

define the forms (£{, F’). Note that the constant function = 1 lies in L% (X', m) and it

is a global solution of the equation (LQ — a—) u =0 on R x X'. Hence, the associated
5

transition operators (7}°);<; are conservative.

LeEMMA 4.4. — Under the above assumptions, there exists a constant (depending only on
N and Cp) such that

2
It L
4.7) thl 1§2R ()\B- (y1) (yl) ¢ i (_m),

for all y, € Br(z) and all t1,t2, 7 € Rwith 0 < t :=t; — t; < 1?2 < R?/4.
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Proof. — We combine the integrated estimate for p’ from [St2] (Corollary 1.11) with
an application of the parabolic Harnack inequality on the cube ]ts, t3 + t[xB 4 (31) in
order to obtain

C*
e SRSl
T, len(w)\Br (y1) - t-m(B\/g (y1))

oo

to+t
It
Z /B tn) /t. T 1§2R(m)n(3(k+1)r(yl)\3kr (y1) (y) ds m(dy)
k=1 YBsi(n) Jt

t

8

< Cy -y m*2(Byg (2) N Brayr (1)) -m Y2 (B (1)) - exp (_M)
k=1

8t
2 (2(k+ 1)\ M2 (kr)? r2
<Cy- —_ . padll el Gl el
< Cy ( o ) exp 5 < C-exp 107

k=1

(]

Lemma 4.4 has two important Corollaries. The first one is

LEMMA 4.5. — Under the above assumptions, there exists a constant (depending only on
N and Cp) such that

1
438) P (t2; v2, t1 1) 2 5 -m ™! (Bys ()

forall t1, t2 € R and y1, y2 € Br () with p? (y1, y2) <t =ty — t; < R2,

Proof. — Let k be the smallest integer > 2 and > 101n (2 C) with C being the constant
from Lemma 4.4. Then

i
T3 1B, n o0\B, () 1) < 3

whenever 0 < s, — s; < r2/k. Since the transitions operators 77° are conservative on
B g (z), this is equivalent to

4.9 Tt 1, () (1) = / p' (32, y1, 81, y) m(dy) >

B (y1)

i\)ln—-ﬂ

whenever 0 < sy — 57 < r%/k.
to — 1

For givent; <tyandi=1,...,k+1puts;:=t;+(i—1) . Then s; = ¢; and
Sk+1 = t2. The adjoint version of the parabolic Harnack inequality (II*) will be applied
to the function (s, y) — p’(sk, y2, s, y) which is a solution of the adjoint equation

L+ i Sl 0 on | — oo, sg[xX. This implies
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P (Sk+1, Y2, S1, Y1) > -0’ (Sk+1, Y2, 2, Y1)

1
Ch

k-2
1 /
2 vee 2 (C* ) =P ('Sk—}-l’ Y2, Sk;, yl)
H

IV

k=1
1 i

(C* ) .m™! (B (y2)) - P (Sk+1, Y2, Sk, Y) m (dy)
H B (y2)

2 (&) B

for all y, € B ;4 (y1) where t := t; —t; < R%. O
In order to formulate the second corollary to Lemma 4.4, let

(Ptowyﬂ’ (tO S t? Xto—t))(to,yo)EE,tZO

be the diffusion process on E := R x By (z) which is associated with the family of
Dirichlet forms {&;}:cr in such a way that

E"Y [f(Xo); s> € =Ty° f (2)

for every s, t € R with s < t, for every quasi-continuous f € L?(Byg(z), m) and for

qe. y € Byg(z), see Y. Oshima [Os). Note that under the above assumptions also the
form (£’, F') has the property (I), at least on the open ball B; g (z) (where it essentially
coincides with the original form). Therefore, the process can be defined uniquely for every
starting point in Bz g (z) (and not only for g.e.).

LEMMA 4.6. — Under the above assumptions, there exists a constant (depending only on
N and Cp) such that

2
4.10 Pt2¥ ( sy X, y3) > r) < C-ex (—————T—>
(4.10) (tlSsth p(Xssy2) 271 < T

for all y; € Br(z) and dll t; < t,.

Proof. — The arguments from the proof of Lemma 3 in [SaS] apply without essential
changes. [J

for the parabolic operator L; — 5 on X" := Bpg (z) with absorbing boundary conditions

on @ Bg (z). To be precise, let (£”, F") be the Dirichlet form on L2 (Bg (), m) obtained
either from (£, F) or (equivalently!) from (&', ') by defining 7’ := {u € F : 4 =0
ge. on X\Bgr(z)} = {u € ' : i = 0 qe. on Byg(z)\Bgr(z)} (where @ denotes a
quasi-continuous version of u) and £” (u, v) := € (u, u) = &' (u, u) for all u, v € F”.
Analogously, define the forms (&', 7”) for t € R. All these Dirichlet forms are again
strongly regular, symmetric and strongly local. Denote the transition operators associated
with the family of Dirichlet forms {(&;', F”)}:cr by T/’®, s < t, and the associated
fundamental solution by p” (¢, v, s, z). Note that its existence is guaranteed since the
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original Dirichlet form (€, F) was assumed to satisfy property (I) on Y D By g (z) and
thus the new Dirichlet form (£, F"') satisfies property (I) on each set B, (z) with r < R.

LEMMA 4.7. — Under the above assumptions, there exists a constant (depending only on
N and Cp) such that

1
(4.11) Pt 1, 2) 2 5 -m~ (B (v1))

forall ty,t € Rwith0 < t := ty — t; < R2

Proof. — From the strong Markov property for the diffusion process (P**, (t—s, X;—s))
one deduces that

(4.12) vl 2 0, 2) =0 o %) " ERT (o, X 4 a) 0> 6]

where o = sup {8 < t5 : X, € Bar (2)\Br (z)} (with sup @) := —o0). The first term on
the RHS can be estimated from below by Lemma 4.5 and the second term from above
by Lemma 4.6 together with Theorem 4.1. Note that for ¢t; < o < t5 and X, € dBg (z)
the estimate from Theorem 4.1 implies:

R2
’ < 2 Rkl - il SN R
p (Ga X07 tla 1‘.) > C-m (B\/tl—O' ("1")) exp ( 5(t1 e 0’))

it (—;—2)” ™! (B ().

Hence, we get

1
p” (t2a z, tl, '7;) Z a 3 m—l (B\ﬁ ($))

= [02 e (_%)} : [Cs- (_I_%)N/z m~ (B (x))]

1 2
> 2—C'_1.m (B (=)

t
provided V2 is sufficiently small, i.e. < 1/k with a constant k& € N depending only
on N and Cp.

This yields the claim for all ¢;, t, € R with t; — t; < R?/k. The general case follows
by applying the parabolic Harnack inequality (II*) at times s; := t; + (¢ — 1) (t2 — t1)/k,
it = 1,..., k+ 1 in order to obtain
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1
p” (Sk+17 T, 51, ’IL‘) 2 C* ‘p” (Skv z, 81, .’L')
H

1 k-1
R (C’;{) 9 (8y,.%, 8 x)

kot
> . .
> (a)

A
20
A
1 1
> e et i
_(C;}) 50 m (B\/;(x)) O

v

g (B (z))

The proof of Theorem 4.3 is now complete since

p(t27 Y2, tla yl) 2 p” (t2a Y2, tl, yl)

for all Y1, Y2 € XL — Bgr (.’L‘) and all ti,to € R with t; < ty. O

C) The lower bound off the diagonal

From the on-diagonal estimate (4.6)-one easily deduces an off-diagonal estimate by the
usual chaining argument.

THEOREM 4.8. — Assume that (I) is satisfied on a set Y C X. Then there exists a constant
C (depending only on N and Cp) such that

1
@13)  p(t2, y2, 0y, 1) 25 - m ™ (Bys (1))
2
_~P (Y1, Y2) __E i
exp( C’——-——tz_t1 ) exp( o (t2 tl))

Jor ty, to € R with t, < t; and all points y, yo € Y which are joined in Y by a curve
7y of length p(yy, y2). Here t = inf {t; — t;, R?} with R = oin£1 p(v(s), X\Y) (being
+oo if X = Y). -

2
Proof. — Let t be as above, let k& be the smallest integer > &M and let [ be

to =1 o :
2R2 L. Put (s;, z;) =(t1+(—-1)-R% y))fori=1,..,01-1

and (Si4i, Zi4i) = (t2 — (k—14) - t/k, v(i/k)) for i = 0, ..., k where we assume that
7 : [0, 1] — Y is parametrized proportional to arclength and such that v (0) = y; and
7(1) = ys. Then (s1, x1) = (1, y1) and (si4x, Ti4x) = (t2, y2). Moreover,

the smallest integer >

P2 (Zix1, %:) < 8ipr ='8; < R?
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for all + = 1, ..., { + k. Hence, the parabolic Harnack inequality (II*) yields

1
D (814k> Ti4ks 81, 1) 2 = " P(314k-1, Tr4k=1, 81, T1)
Ch

I+k-2
2 (C;{) 'P(32, T2, Slaml)

Y

1 1 l+k-2

S .m~!

25 () =)
1

1\ k2
s (e)  meaE)
tg—tl+92(v1‘w2)
1 1 R : hi
b rol (C—;I) ~mi (B (m)). O

Remarks. — (i) With the same assumptions and notations as in the above Theorem we
have the estimates

-m ™" (B (y2))

- exp (-CM ~exp (“g - tl))

to — 1

el =

P (t2, Y2, t1, y1) >

and

p(t2, 2, t1, y1) > 215 -m™ (B (y1)) - m™ (B (32))

. C
- exp (—C’ E—tiyi’—tyf)) - exp <_ﬁ (t2 — t1)>

This follows immediately from Theorem 4.10 and the volume estimate (4.3).

(ii) Note that the last term on the RHS of (4.13) vanishes if Y = X. In the general
case, the last term on the RHS of (4.13) should be compared with the last term on the
RHS of (4.1). One always has

N+2
B2
due to (2.4) and the monotonicity of the Dirichlet spectral bound.

2 )\Dir (BR (y}))i 2 )‘Dir (Y) 2 ADir (X) Z 0

CoroLLARY 4.10. — If (I) is satisfied globally and if Ly = L, then there exists a constant
C (depending only on N and Cp) such that

1 2
(4.14) P(ta z;9) 2 C -m™} (B\/Z (x)) - exp (—C : p_%i’_y_)_)

forallt > 0 and all z,y € X.
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D) Application to Green function estimates
Throughout this section, let L; = L. One easily deduces from heat kernel estimates like

(4.5) and (4.14) estimates for the Green function g (z, y) = / plt, =, y)dt
0

CoROLLARY 4.11. — If (I) is satisfied globally, then there exists a constant C such that

o dr rd'r
1 / B0 e ) e /
W e it e

for all z, y € X where C can be chosen to depend only on N and Cp.
Proof. — The lower bound follows immediately from (4.14). Namely:

1@z g [ m Ba@)-ew (-0 D) a

Zé./:o m(Belx))d= 02”./:" m~! (B, (z))rdr.

% (z,9) (z,v)

The upper bound is slightly more complicated. From (4.5) it follows that:
g(z,y)<C- / m™! (B\/; (z)) - exp (—g) dt
0
= bZ )
0 8t
o p2
+C. / m™! (B (z)) - exp (——) dt
p? 8t
2 N
<C.m_1(B (1,'))~/p 2 exp _p_2 dt+C oom—l(B ($))dt
i : 0 Vit 8t 2 Vit
<C'-m7 (B, (2) "+ C / m~1 (B (z)) dt
p2

<cCc”. / m~! (B (z)) dt
pZ

where we used the abbreviation p = p(z, y) O.

This type of Green function estimate was already obtained in full generality by M. Biroli
and U. Mosco [BM1, 2]. It is well-known in more concrete situations like in Riemannian
geometry or in the theory of subelliptic operators. From the upper bound (4.4) for the
Green function we easily derive a necessary and sufficient criterion for recurrence, see
[St2]. In Riemannian geometry, this criterion was established by N. Varopoulos [Va].

COROLLARY 4.12. — Let the Dirichlet form £ be irreducible and let (I) hold true globally
on X. Moreover, fix an arbitrary point © € X. Then & is recurrent if and only if
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5. Examples

The main examples which we have in mind are:

A) Laplace-Beltrami operators

Let L be the Laplace-Beltrami operator on a smooth Riemannian manifold and m be
the Riemannian volume. In this case, p is just the Riemannian distance. Properties (Ia),
(Ib) and (Ic) are always satisfied locally on X. Property (Ia) is satisfied for all Y C X if
the manifold is complete. Properties (Ib) and (Ic) are all satisfied uniformly locally on X
(i.e. for all balls B, (z) C X with constants depending only on ) if the Ricci curvature
on X is bounded from below and they are all satisfied globally on X if the Ricci curvature
on X is nonnegative, cf. [Sa].

B) Operators with weights

=ralcett Erbey a uniformly elliptic operator with a nonnegative weight ¢ on RY, i.e.

d
(u, v)= Z / T = e ¢dz and (u, v) = / uv ¢ dx with (a;;);, ; being
sl g
a symmetric and umformly elhptlc matrix on RY and ¢ as well as ¢~ € LL _(RV, dz).
In this case, p is equivalent to the Euclidean distance and Property (Ia) is always satisfied.
If the weight ¢ even belongs to the Muckenhaupt class As, then Properties (Ib) and (Ic)
are both satisfied globally on X, cf. [BM2].

C) Subelliptic operators

o] 5}

Let L be a subelliptic operator on RY, i.e. £ (u, v) = E / aij - =— u- — vdz and
or; z;

i, 5=1 : I

(u, V)= / uv dx with (a,;) being symmetric and elliptic and such that
€ (u, u) 2 8 |lullfre — llull?

for some 4, > 0. In this case, p is equal to the metric used e.g. by
Fefferman/Phong [FeP], Fefferman/Sanchez-Calle [FeS], Jerison [Je], Jerison/Sanchez-
Calle [JS], Nagel/Stein/Wainger [NSW]; it can locally be estimated by the Euclidean

distance | - | as follows % |z —y| < p(z,y) < C - |z — y|°. Properties (Ia), (Ib) and
(Ic) are satisfied globally on X, cf. [BM2].
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