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0. Introduction

For every t e /?, let $t be a regular, local Dirichlet form with common domain
3F c: L2(X,m) on a locally compact, separable Hausdorff space X. We study the
behaviour of (global as well as local) solutions of the parabolic equation

Ltu=itu onRxX. (0.1)

The (not necessarily selfadjoint) operators Lt on L2(X,m) are supposed to be
associated with the (not necessarily symmetric) Dirichlet forms fft on L2(X,m)
according to

To simplify things, let us first of all consider the case where all the <?/s are
symmetric and strongly local. In this case, the only assumption in the whole
paper which is imposed on the forms $t is the uniform parabolicity condition

k t(u,u) < <$t(u,u) <K <ί(M, w). (0.2)

Here $ is a fixed symmetric and strongly local, regular Dirichlet form. In terms
of ^ we define the intrinsic distance p on X which is assumed to reproduce the
original topology on X. The main result of the first part of this paper is the
following integrated upper Gaussian estimate.

Theorem 0.1. The transition operators Γf, s<t, associated with (0.1) can be

estimated as follows

4K(t-s)
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for all s<t and all subsets A,B ci X of finite measure.

Here 1>0 denotes the bottom of the spectrum of the selfadjoint operator

—L. Note that if there exists a fundamental solution p(t,.,s,.) for equation (0.1)
then the LHS of (0.3) is just ίA^ί9y9s9x)m(dx)m(dy).

In order to obtain pointwise estimates we have to impose further
conditions. These are assumptions on the Dirichlet form $. Namely, in the second
part of this paper we assume that a doubling property and a scale invariant
Sobolev inequality hold true on the state space X. Under these assumptions we
carry out the Moser iteration for local sub- or supersolutions to obtain pointwise
(upper and lower) estimates in term of ZΛmeans over suitable parabolic
cylinders. We combine these subsolution estimates with the integrated Gaussian
estimate (0.3) in order to obtain pointwise estimates for the fundamental solution

Xf,.,j,.) of (0.1).

Theorem 0.2. There exist constants C and N such that

' P2(w) \•expl —ί-lJ£L|
4K(t-S) K(t-s)

uniformly for all points (s,x) and (t,y)eRxX with s<t.

Note that for every ε>0 the RHS of (0.4) can be estimated by

^̂

\ *fΛ^t S)/

with a constant C = C(ε).
For parabolic divergence form operators on RN this type of estimate is due to

E.B. Davies [6] improving previous results by D.G. Aronson [1]. For Laplace-
Beltrami operators on Riemannian manifolds it is due to P. Li and S.T. Yau [23]
(whose result was improved by E.B. Davies, L. Saloff-Coste, N. Varopoulos and
many others). Finally, for Hόrmander type and general subelliptic operators on
RN this Gaussian estimate is due to D. Jerison and A. Sanchez-Calle [18] and to

S. Kusuoka and D.W. Stroock [19].
In the particular time-independent case Lt = L, (0.4) is just an estimate for the

heat kernel for L. From this heat kernel estimate one easily deduces the following

Green function estimate:

g(χ,y)<C \ m-\B-(x))dt
Γ°°

m-\B
Jp2(x,y)
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which in this generality is due to M.Biroli and U.Mosco [2,3] (extending previous
results by many other authors).

1. Time-dependent Dirichlet spaces and parabolic equations

1.1. The initial Dirichlet space

A) The Hubert spaces Jf,^, J^*

The basic object for the sequel is a fixed regular Dirichlet form $ with domain
on a real Hubert space Jf = L2(X,m) with norm \\u\\ = ($xu

2dm)il2. &

is again a real Hubert space with norm \\u\\ & := *Jδ(u, u) + \\ u \\ 2. We identify
with its own dual; the dual of 3F is denoted by &*. Thus we have

with continuous and dense embeddings. We shall use the same notation (.,.) for
the inner product in 3? and for the pairing between ^* and 3F.

B) The Dirichlet form <?

The underlying topological space X is a locally compact separable Hausdorff
space and m is a positive Radon measure with supp [m] = X. The initial Dirichlet
form $ is always assumed to be symmetric (i.e. £'(u,v) = £>(v,u)) and strongly local
(i.e. <ί(w,v) = 0 whenever weJ^ is constant on a neighborhood of the support of
v e 3F or, in other words, $ has no killing measure and no jumping measure). The
selfadjoint operator associated with the initial form $ is denoted by L.

C) The energy measure Γ

Any such form can be written as

•ί*(κ,v) = dΓ(u9v)
Jx

where Γ is a positive semidefinite, symmetric bilinear form on J*~ with values in the
signed Radon measures on X (the so-called energy measure). It can be defined
by the formulae

φ dΓ(u, u) = S(u, φu) —S(u2, φ)
x 2

=,imiί f
^°2ίJJ;

φ(x) [φ) - u(yj]2 Tt(x,dy)m(dx)
x
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for every ue ̂ (X)r\L^(X,m) and every φe&(X)n<e0(X). Since β is assumed to
be strongly local, the energy measure Γ is local and satisfies the Leibniz rule as

well as the chain rule, cf. [13],[21],[36]. As usual we extend the quadratic forms
u\-^S(u,u) and u\-*T(u,ιi) to the whole spaces L2(X,m) resp. L2

oc(X,nί) in such a

way that ^(X) = {uEL2(X9m):^(uίu)<oo} and ^lOG(X) = {u€l^oc(X9m):Γ(u9u) is a
Radon measure}.

D) The intrinsic metric p

The energy measure Γ defines in an intrinsic way a pseudo metric p on A' by

on X}. (1.1)

The condition dΓ(u,u)<dm in (1.1) means that the energy measure Γ(w,w) is absolutely
continuous w.r.t. the reference measure m with Radon-Nikodym derivative
^Γ(t/,w)<l. The density ^Γ(H,M)(Z) should be interpreted as the square of the
(length of the) gradient of u at z e X. In general, p may be degenerate (i.e. p(x, y) = oo
or p(χ,y)=Q for some xφy\ This (pseudo) metric will be discussed again at the
end of chapter 1.

£) Examples

The main examples which we have in mind are:

• L is the Laplace-Beltrami operator on a Riemannian manifold and m is the
Riemannian volume; in this case, p is just the Riemannian distance.

• L is a uniformly elliptic operator with a nonnegative weight φ on RN, i.e.
<£'(u,v) = Σ1ϊrj=;1$aij £:U'£lV'φdx and (u,v) = \uvφdx with (a^) symmetric and
uniformly elliptic and φ as well as φ ~ * e L}OC(RN ,dx); in this case, p is equivalent
to the Euclidean distance (cf. [3],[24],[37a],[37c]).

• L is a subelliptic operator on RN, i.e. (?(w,v) = Σ^= Jfl^ ^ίr^vrfjc and
(u, v) = Jwv dx with (00 ) symmetric and elliptic and such that $(u, ύ) > δ - \\ u \\ #ε —
\\u\\2 for some d,ε>0; in this case, p is equal to the metric used e.g. by
Fefferman/Phong [11], Fefferman/Sanchez-Calle [12], Jerison/Sanchez-Calle
[18], Nagel/Stein/ Wainger [27]; it can be locally estimated by the Euclidean

distance |.| as follows

- \x-y\<p(x,y)<C'\x-y\ε.
V_χ

Further examples will be discussed in [37a] and [37c].

1.2. The Dirichlet forms £t

In the sequel we will study the behaviour of solutions of a parabolic equation
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Ltu=j-tu on (an open subset of) RxX. Here [Lt}teR is a uniformly parabolic
operator in the following sense.

A) One-parameter family of Dirichlet forms

We assume that for every teR we are given a regular, local Dirichlet form
$t with domain ®($ύ = 2F. We do not require that g t is symmetric or strongly local.

The negative semidefinite, closed and densely defined operator on jf=L2(X9m)
associated with the Dirichlet form St is denoted by Lt and Lt denotes its adjoint
operator which is associated with the adjoint form <ft:(w,v)h-»<ίt(v,w). That is, for
all u,ve^

- (Lju, v) = βfa v) = <f t( v, u)=- (/>, w).

As usual we can decompose $t into its symmetric part δt—^(δt-\-δ^ and its
antisymmetric part ^t=^t — ̂ t) such that $t = $t + $t. The symmetric part $t in
turn can be decomposed into its diffusion part $d

t

iff and its killing part <?{"".

B) The uniform parabolicity condition

The one-parameter family {<f,}t€jR of these Dirichlet forms is assumed to be
uniformly parabolic with respect to the initial Dirichlet form S in the following sense:

Assumption (UP). There exist constants K,k e ]0, oo [ and y e [0, oo [ such that

-fM^K Wurf-k ^^^ffi + y fav) (1.2)

for all teR and all u,ve^ with wv>0 and ^/ΰve^ where

<T V v) = β(Juv, v/ϊϊv) - t(u, v).

Moreover, we assume that for all u,ve^ the map t\-^$t(u,v) is measurable
and that the sector condition holds uniformly in t, that is, there exists a constant
Ce]0,oo[ such that

^(M^c NU IMU (1-3)

for all teR and all u,ve&.
Note that in the case <ff = <f, condition (1.2) is always satisfied with K=k= 1 and

γ = 0. In the general case, condition (1.2) for (ft)t is equivalent to condition (1.2)
for ((?,), (with the same constants). Analogous statements hold for condition (1.3).

Also note that according to the following Lemma 1.1 for symmetric, strongly
local Dirichlet forms £t condition (1.2) is equivalent to the condition

(u,u) (1.4)
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which in turn implies the uniform sector condition (1.3) with C = K.

REMARK. The quantity <?*(ι/,v) appearing in the condition (UP) has a particular
nice representation in the case u=e~*w and v = e*w with w,\l/G^r(X)nLco(X).
Namely,

In order to see that, write

£\e-+w9e*w) = g(w,w)-£(e-+w,e*w) = U>,w)- \dΓ(e-+w9e+w)

= \dΓ(w,w)-\ \dΓ(w,w) + \e-*wdΓ(w,e*)+ L?^w/Γ(έΓV) + w2dΓ(έΓ*,έ?*)

= w2dΓ(ψψ).
Jx

Similarly, one sees that for u,

x

From these formulae one concludes by approximation that

for all MjVeJ 5 " with wv>0 and ^/wve f. Finally, note that of course £*(u,u) = Q
for all

Lemma 1.1.

/) Condition (1.2) is equivalent to each of the following conditions:

-£t(u,uφ2)<K' I u2dΓ(φ,φ)-k'g(uφ,uφ) + r(uφ,uφ)
Jx

,uφ) (1.5)

for all teR and all u,φε^(X)nL™(X) or

w,w) (1.6)
Jx

for all teR and all w9\l/e^(X)nL(X)(X).

ii) Condition (1.2) implies



ESTIMATES FOR SOLUTIONS OF PARABOLIC EQUATIONS 281

ffautek ffaiή-γ fau) (1.7)

and

£?ff(u,u)<K £(u,u) (1.8)

(whereas condition (1.3) implies $t(u9u)<C (&(u9u) + (u9u))) for all teR and all
ue&. Here $?ff denotes the diffusion part of St (cf. sect. \.2.A).

in) Let $t be symmetric. Then condition (1.2) is equivalent to the pair of
conditions (1.7) and (1.8). Moreover, condition (1.3) is equivalent to the condition

(1-9)

for all tεR and all uε^.

Proof, i) The implications (1.2) => (1.5) and (1.2) => (1.6) are obvious from the
preceding Remark and the fact that under the stated assumptions all functions
under consideration lie in J*. For the implication (1.6) => (1.5), approximate
gt(u,uφ2) by gt(u,u(φ2 + ε)) and replace u by e~*w and φ2 + ε by e2*. For(1.5) => (1.2),
approximate $ t(u, v) by St(u + ε v, v) and replace the v in the second place by (u 4- ε v)φ2.

ii) (1.7) is obvious since (f*(M,w) = 0. To see (1.8), use the fact that (1.2) (or, more
obviously, (1.5)) for /t implies

-gt(e-*\v,e*\v)<K L^^^ + y ^w). (1.10)

Now (using the symmetry of <?f) write the LHS of (1.10) as

(1.11)

Here Γt is the energy measure associated with the strongly local, symmetric Dirichlet
form £*iff. In (1.10) and (1.11) replace ^ by n-ψ and w by £vv with n -> oo. This
yields

and thus <ίΐί

iii) If Sl is symmetric, then

- £t(e-*w,e*w) = \v2dTt(ψψ) - £t(w, w).

Using (1.7) and (1.8), the RHS can be estimated from above by K-\w2dT(\l/ψ}-
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This proves (1.6). In order to see that (1.9) implies (1.3) it
suffices to note that for symmetric St the Cauchy-Schwarz inequality yields

(v,v)1/2. Π

REMARKS, i) Let us mention that all estimates in the sequel only depend on

the constants K,k,y in (1.2) and not on the constant C in (1.3). We recall that if

the <?f's are symmetric and strongly local, then (1.2) implies (1.3).

ii) If the family (<?f)f satisfies (1.2) with constants K=K0>Q, k=Q and y = y0>0
then for any δ>0 the family ($t + δ'£\ satisfies (1.2) with constants K=KQ-\-δ9

k = δ>0 and y = y0.

iii) If the family (ft)t satisfies (1.2) with constants K,k and y = y0>0 then the

family (gt 4- y0 - ( .,. ))f satisfies (1.2) with the same constants K,k and with γ = 0. Thus

we can and will restrict ourselves in the sequel to the case

Before looking for too complicated examples of <?/s satisfying (1.2), we should

mention that the main results of this paper are new even in the case $t = $ (for all t e
R). Besides this (time-independent and symmetric) example there are two types
of examples which we want to discuss now.

C) Symmetric examples

Let for every teR the Dirichlet form $t be (just like $ itself) symmetric and

strongly local and the family [&t}teR satisfy

k g(u,u)<gt(u,u)<K g(u,u) (1.12)

for all teR and ue3F with constants Q<k<K<ao.
In the situations considered at the end of section 1.1, one might think of

(? having smooth coefficients atj (or even aij=δij) and $t being of the same type
with measurable coefficients. The classical situation is that L is the Laplace operator
on RN and (Lt}t is a second order, uniformly parabolic differential operator in

divergence form (cf. [10] including references to the pioneering contributions of
Nash, De Giorgi, Moser, Aronson, Davies).

This can be generalized by choosing L to be the Laplace-Beltrami operator

on a Riemannian manifold and {Lt}t to be a suitable "uniformly parabolic" operator

on that manifold (cf. [33] for the elliptic case).
A similar situation occurs when L is a Hormander type operator (with

#°°-coefficents) and {Lt}t is derived from L by means of bounded measurable
coefficeints (cf. [34] for the elliptic case).

The previous framework can slightly be enlarged by merely assuming that for
every teR the Dirichlet form $t is symmetric and local, i.e.



ESTIMATES FOR SOLUTIONS OF PARABOLIC EQUATIONS 283

Γ
<fί(M,v) = ̂ fI//(w,v)-f uvdμ.

Jx

where $d ίff is of the previously considered type (i.e. symmetric and strongly local and
satisfying k'£(u,u)<$d

t

iff(u,u)<K-$(u,u)) and μt is a nonnegative Radon measure
on X ("killing measure"). We emphasize that the uniform parabolicity condition
(UP) gives no condition on μt. The only restriction arises from the uniform sector
condition (1.3) (and from the assumption

D) A nonsymmetric example

We will give an example of a local Dirichlet form whose antisymmetric part
is controlled by the symmetric part in such a way that (1.2) holds true. To be
specific, let L be the Laplace operator on L2(RN,dx) (which implies that p is the
Euclidean distance) and let

N f d d N f d N f d f
<^(κ»v) = Σ \aiΓΓ-u^-vdx+ Σ \br--uv dx+ Σ ίjW— vέ& + \cuvdx

U=ιJ Sxt dXj i=ιj dxt i = ι j dXi J

with time-dependent coefficents a = (a0), b = (bt), & = (6& c e L™(R x RN,dtdx) satisfying

(i) A:0 |ξ|2<Σuflo.^</:0 |̂ |2 for allied;

(ii) \ά\:=(Σίt/ί$v2zA (where α0.=^o-^));

(iii) \b\ + \6\Z2B-,

(iv) -c<C

uniformly on RxRN with constants kθ9 K09 A, B and C. In order that $t is
Markovian we also have to assume that c— div&>0 and c — div£>0. Then for
a.e. t € /?, the form S t on CQ(RN) is closable with closure being a regular Dirichlet form
on #Γ = Hl(RN) satisfying (uniformly in t) the "sector condition" (1.3) ([24],
Π.2.d). Actually, also (1.2) is satisfied since

a . e . . vΣ β / "
wbi-wdx_2Y LάiΓ^-ψ—wdx + Σ Wbi—ψdx-Σ \

J dxt dXj J dXi J

— V H'2^- — ̂  dx — Y wί, — w dx — w2c dx
J dxt J θx, J

K0- \w2\Vψ\2dx-k0' |Vw|2ί/x + C L2rfx
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+ 2A \w\Vw\ \Vψ\dx + 2B \w2\Vψ\dx + 2B \w\Vw\dx

K- \w2\V\l/\2dx-k- |Vvv|2rfjc + r \w2dx

with

K=K0 + -+-9 k0-δΆ--, y
δ ε s

where δ and ε are arbitrary parameters with values in ]0,oo[.
Note that the constants only depend on bounds of the coefficients and not

of their derivatives. If one admits also conditions on div(ft-f-ί) then one may
replace (iii) and (iv) by

(iii') \b-S\<2B'

(iv') -c + idiv(ό + £)<C

in order to get -&t(e~*w,e*w)<K - $w2\Vψ\2dx-k' - $\Vw\2dx + γ' $w2dx with

K' = K0+- + -, k' = k0-δΆ, y
δ ε

where δ and ε are arbitrary parameters with values in ]0,oo[.

1.3. Time-dependent Dirichlet-spaces

Let /=]σ,τ[ c R be an open interval.

A) Function spaces

We will be concerned with the following Banach spaces (cf. [22],[32]):

• <#(!-> J>ίf)
being the set of continuous and bounded functions of the form u : I -» 3? ,
t\-*ut = u(t,.) equipped with the norm supt6/||Mf|| =suptel[$xu

2(t,x)m(dx)]ίl2.
What one has in mind is that actually u\(t,x) -*• /?, (t,x)t-+ u(t,x) is a function
of space and time which is regarded as a one-parameter family (ut)tel of
functions ut depending only on space. Note that in this paper ut always
denotes the function x\-m(t,x) and never the time derivative of u. The
latter is always denoted by j-tu.

• L2(I^&)
being the Hubert space of functions M:/-» 3? with norm (jVlKII|rA)1/2.
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the Sobolev space of functions uεL2(I -+^*) with distributional time
derivative |weL2(/-» J^*) equipped with the norm (J/KII^-f \\^ut\\%*di)112.

being a Hubert space with norm ||ιι||Wxj0=(J/lkll5r+||fe<t||J^//)1/2. We
mention the following important result from [32, Lemma 10.4]:

L2(I -> jη n //V -» ̂  *) <= C(7-> #e\

It implies that functions ue^(IxX) can be extended onto TxX in the
sense that / 1-> ut is continuous on the closed interval / as a map with values
in #e = L\X,m\

B) The time-dependent Dirichlet form

On ^(IxX) we define the time-dependent Dirichlet form δΊ associated with
the parabolic operator Lt— j~t by

*Λιι,v)= <ft(Mί,v()Λ+ (fei^v
J/ J/

The time-dependent Dirichlet form associated with the coparabolic operator
L, + 1 is given by J/^^v^-JX^vJ. Its domain is still ^(IxX).

We will also be concerned with the (co-) parabolic operators Lt±j-t where for
any / e 7 the elliptic operator Lt is just the adjoint operator of Lt. Of particular
importance is the coparabolic operator Lt-\-j-t- Note that (at least formally)
(L(-|)Λ =L,-f f. The time-dependent Dirichlet form associated with this operator
is given by

ftti, v) = f <f ,(vt, ut)dt - f (K vf)Λ.

Its domain is again

1.4. Parabolic equations

A) The notion of solution

DEFINITION, i) A function u is called a (global) solution of the parabolic
equation

Ltu=itu onίxX (1.13)

iff uE^(IxX) and <f7(w,</>) = 0 for all φe^(Ix X\ that is,

0. (1.14)
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It is called a subsolution of (1.13) if instead of the equality (1.14) the inequality
£Ί(u,φ)>Q holds true for all nonnegative φe^(IxX).

ii) Given a function /e ̂ , the function u is called a (global) solution of the initial
value problem

Ltu=itu on(IxX) (1.15)

uσ=f on X

ί-*σ

iff u solves (1.13) and ut ->/in 3f.

We recall that every solution u of (1.13) extends to we#([σ,τ] -> )̂.
Hence, the condition w^/in (1.15) is well-defined and equivalent to the condition

REMARKS, i) The set ^(IxX) of test functions in (1.14) can equivalently
replaced by the (larger) set L2(I -* ^] as well as by the (smaller) set [φ e &(! x X) with

Φ = Φ, = 0}.

ii) Integration by parts yields that condition (1.14) can equivalently be replaced
by

f
Jl

(1.16)

for all φ<=3F(IxX) or by fΛ(wf,ψt)rf/- ̂ 10̂  = 0 for all φe^(IxX) with
φσ = φτ = 0. Using (1.16) instead of (1.14) one can obviously weaken the a priori
assumption u e J (̂7 x X) since in this formulation no time derivative of u is used. We
will come back to this point in Proposition 1.3.

iii) Reversing the time direction, the above formalism can be used to treat
solutions of the coparabolic equation Ltu=—^tu on IxX and solutions of the
corresponding terminal value problem Ltu=—^tu on IxX, uτ=f on X.

iv) The general set-up can slightly be modified in order to treat also boundary
value problems of the form

Ltu = jϊU on /x G

u = Q on IxdG (1.17)

u=f on {σ} xG

on a cylinder /x G with an open set G a X. For this purpose, we replace ̂  =
by

:M=0 q.e. on X\G}
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where ύ denotes a quasi-continuous version of u. With 3?(G) in the place of
we define «^(/x G) and we say that u is a solution of the boundary value problem
(1.17) iff we ̂ (7 xG) and gj(u,φ) = Q for all φe^(IxG). Actually, however, this
is no extension of our general set-up since (S^(G)) and (St,^(G)) are again
Dirichlet spaces of the previously considered type.

B) Existence and uniqueness

Taking φ = u in the definition (1.14) and in (1.16), we immediately obtain that
every solution u of (1.13) satisfies the following basic inequality

\\ut\\2=\\us\\2-2^r(unur)dr (1.18)
Js

for all σ<s<t<τ. This identity implies that for every solution u of (1.13) the
function

t h- > || ut || is continuous and decreasing on I. -(1-19)

The fact that \\u\\ decays is sometimes called integrated maximum principle. In
particular, we get ||M f||<|[/l| for every solution u of the initial value problem
(1.15). This of course implies uniqueness of the solution of (1.15).

More sophisticated is the proof of the existence of a solution of (1.15). From
[22] (Chap. Ill, Thm 4.1 and Rem. 4.3) we quote

Proposition 1.2. For every feJjf there exists a unique solution uG^(IxX) of
the initial value problem (1.15).

We recall that every solution of the parabolic equation (1.13) is by definition
in ^(IxX) and every function in &(IxX) is already in #(7-> )̂.

Now we give another definition of solution of (1.13) where a priori no condition
on the time derivative %u is imposed. The function space under consideration is
L2(/-» jηn<ίί(7->^) which is a proper superset of 3?(IxX). The remarkable
fact is that any function weL2(/-» ̂ n^/-* tf) which solves the equation Ltu=j-tu
on IxX (in the sense of the following Proposition 1.3) already lies in
which in particular means that

Proposition 1.3. A function u is a solution of the parabolic equation (1.13)
if and only if

and

t = -(uτ,φτ)+(uσ,φσ) (1.20)\
J σ
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for all Γe]σ,τ[ and all

Proof. The "only if '-part is obvious. Therefore, let u e L2(I -> 3?) n
satisfy (1.20) and let w = u — v where ve^(IxX) is the solution of the initial value
problem on Ltv=j-tv on IxX, vσ = uσ on X. Then

I gfaφjdt- I
«/ <r •/

,φσ) (1.21)

for all Γ and φ as above. Now choose φe^(IxX) to be the solution of the
terminal value problem Ltφ=—jj-tφ on ~\φ,T[xX, φτ = wτ on A" (which exists
according to a suitable modification of Proposition 1.2). Then the LHS of (1.21)
vanishes since Ltφ=—j-tφ. Thus (wT9φτ)=(wσ9φσ). But wτ = φτ and wσ = 0.
Hence, wr = 0. Since Γe]σ,τ[ was arbitrary this yields the claim. Q

With a slightly modified argument one actually can relax the a priori assumption
u G L\I -> JO n #(/-> ̂ f ) and replace it by u e L2(I -+3r)n L°°(7-> ̂  ), cf. [22], [20].

C) Contraction properties

From Proposition 1.2 we deduce that for every t>σ there exists a uniquely
determined operator Tΐ'.Jtf -+ Jtf with the property that for every /e Jf the unique
solution u ε 3 f ( I x X ) of (1.15) is given by u:t\-^T?f. The operator 77 is called
transition operator from σ to / associated with the parabolic operator Lt—j-t.

The family (77)s<, satisfies

• ίi— > Γf is strongly continuous on [ ,̂oo[;

• II 7?ll 2,2^1 whenever s<t;

• Tt = Ts

toTs whenever r<s<t.

Here and in the sequel, || . \\pfp denotes the norm of an operator from Lp(X,ni) into itself

(/76[l,oo]). In particular, ||.||2,2 denotes the operator norm on 3tf.

Lemma 1.4. For allfe tf, alls<t and allfe Jtf: ϊ/0 </< 1 then 0 < TSJ< 1 .

Proof. For ue^(IxX) put w* = ( w V O ) Λ l . Then (according to the Markov
property of the Dirichlet forms $ and <ft) i/eJ^/x X) and $t(u»ut — u*)>Q for all

f e 1 ([28],[24]). Moreover, (Mί,|(Wί-M?)) = 0 if Mte[0,l] and =Mll" ίll
2 if "

Hence, if u is a solution of (1.13) then (w,,^(wt — w?))<0 for all / e / and thus

(Mf,wf-w?)-(ws,ws-Ms*)=- (Tr(Mr,wr-wΓVr4- (wr,^(Mr-Mί
Js J s
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This implies

But if we now assume that 0<w s<l then ut — w? = 0, that is Q<ut<l. This proves
the claim since for any feJί? the function u:(t,x)t-+T?f(x) is a solution of (1.13).

D

REMARK. Reversing the time direction we deduce from Proposition 1.2 that
for every feJίf there exists a unique solution ue^(IxX) of the terminal value
problem Ltu= -|w on IxX, wτ=/ on X. This solution is given by u:t\-*Sτ

tf
where the family (Sf)s>t satisfies properties analogous to that of (77)s<,. Sf is
called transition operator from s to t associated with the coparabolic operator
Lt + j-t. Similarly, we define the transition operators ff and Sf associated with the

operators A^fe

Lemma 1.5. For a l l f , g e J t f , all s<t

That is, (T?)*=St

s where §1 denotes the transition operator from t to s associated
with the coparabolic operator Lt + j-t.

Proof. Let ur = Ts

rf and vr = S*rg with /,g e J^ and s < r < t. Then

(ut,vt)-(uS9vs)=-\ £r(ur,vr)dr+ Kjvr)rfr = 0
J s J s

where the first equality comes from the fact that Ltu=^u and the second equality from
Ltv= ~itv. Together with the fact that Ts

s=Id=&t this already yields

Proposition 1.6. For 0///?e[l,oo] and all s<t, the operator T? extends to a
contraction operator on Lp(X,m\ that is,

\\TS\\ <\II λ t Hp,p— A

Proof. The Markov property (Lemma 1.4) implies that Γf extends to a
contraction operator on L^(X,m\ The same argument applies to Sl

s. According
to Lemma 1.5 the latter implies that Tf extends to a contraction operator on
Ll(X,m). The rest follows by interpolation. D

REMARK. The extension of Ts

t to Lp(X,m) is unique by density for 1 <p < oo
and it is unique for p = oo if one imposes the extra condition of weak* continuity
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which will be done henceforth.

1.5. Integrated Gaussian estimates ("The Method of Davies")

A) Integrated maximum principle

The basic step in order to obtain Gaussian estimates for Tf consists in an
estimate for the norm of the operator /-> e "^ T?(e* f ) on ̂ . In the "classical"

context of uniformly elliptic operators on Riemannian manifolds, this type of
estimate was used e.g. by Gaffney [14], Davies [9] and Grigor'yan [15]. The
latter called it (weighted) integrated maximum principle. We recall that
λ = mf{^ffi:ue^,u^Q} denotes the bottom of the selfadjoint operator — L. Note
that always λ>Q.

Lemma 1.7. Let \l/e^'r\Lcc(X,m) with dΓ(\l/,ψ)<y2 dm and let u be a solution
of the parabolic equation Ltu = j-tu on IxX. Then for all t>s>σ

Proof.

||Λj2-||ΛιJ2 = 2 t\ξ-ur,e
2+ur)dr= -2 f

L Sr J s

<2K\ e2+u2dΓ(ψ9\l/)-2k \ g(e*ur

Js Js

<2(Kγ2-kλ) P||ΛJ2<Λ .
Js

From this inequality, the claim follows by GronwalΓs Lemma

B) Integrated Gaussian estimate

For subsets A and B of X we define

where ψ(A,B):=mf{\l/(x)-ψ(y): xeA9yεB}. Note that always p(A,B)<p(A,E):=
inϊ{p(x,y): xeA,yeB} and in the next section we shall see that equality holds true
under a weak assumption on (X,ρ).

Theorem 1.8. For any measurable subsets A,B c: X of finite measure and any s < t
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Proof. For y>0 and \l/e^loc(X)nL^(X)n^(X) with dΓ(ψ,ψ)<dm the
preceding integrated maximum principle yields

Taking the supremum over all such ψ and choosing y = /^-l) yields the claim.

D

C) The metric p and Assumption (A)

Here and henceforth we make the

Assumption (A). The topology induced by p is equivalent to the original
topology on X.

This assumption in particular implies that p is non-degenerate and that for any

yeX the function ci— >ρ(x,y) is continuous on X.
It is discussed in more details in the paper [36]. Note that it does not

necessarily imply that all balls Br(x) = {y e X: ρ(x,y)<r] are relatively compact in
X. The latter is true if and only if the metric space (X,ρ) is complete.

In [36] we proved that under (A) for every yeX the distance function
py:x\-*p(x,y) on X satisfies pye ^loc(X)r\<£(X) and

dΓ(py9py)<dm. (1.22)

Hence, the distance function ρx can be used to construct cut-off functions on
intrinsic balls Br(x) of the form

(i 23)

Obviously, pXtre^loc(X)n^(X) and dΓ(pXtf,pXfr)<dm. Moreover, pXtf

r\y>Q(X) if (and only if) Br(x) is relatively compact.
In the sequel we shall need the following generalization.

Lemma 1.9. For every relatively compact set Y a X the distance function

pγ:x\-*ρ(x,Y):=mf{ρ(x,y): yeY} satisfies pYe^loc(X)n^(X) and

dΓ(pY9pγ)<dm. (1.24)

Proof. Note that for any x e X the function y h-> p(x,y) is continuous. Hence,
, Y) = p(χ9 Ϋ). Now let Y be compact and fix ε>0. There exists a finite number
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of points {>>;};= !,..,„ such that Y ^(Jn

i=ί B&ύ. Let .̂ = p(,y.)-ε and Ψ =

ι,...,« Then n and with dT(^/b\l/^<dm ([36],
Lemma 1.1). Hence, Ψ < 0 in 7 and Ψ e &J(X) n #(Jr) with </Γ(Ψ,Ψ) < </m. The
latter implies *¥(x)<p(x,y) for all teΎ and >>e Y. That is, Ψ<ρy. On the other
hand,

Pγ = mϊ{p(.9y): yε Y}<mi{p(.9yl): ι= !,-..,«} =ψ + e.

Following the argumentation in [36, proof of Lemma Γ] one concludes that
with dT(\l/ψ)<dm.

REMARK. If in addition to Assumption (A) we assume that (X,ρ) is complete
then the assertion of Lemma 1.9 holds true for all subsets Fez X. In order to see
that, let x0eX and consider ργ in B^XQ). For that purpose, let r = p(x0, Y) and
70=70^+2(^0)- Then Y0 is relatively compact and pγ = pYo on #ι(jc0).

Lemma 1.10. For all compact sets K,L ci X

Proof. We recall the trivial inequality ρ(K,L)<p(K,L). From Lemma 1.9 we
conclude that ψ0 = p(.,L) belongs to the class Ψ of functions which were used to
define /£, hence, p(K,L) = supll/ev\l/(K9L)>ψ0(K9L). But ψ0(K,L) = mfX€Kψ0(x)-

LiAoίy) = inf*eκP(*> L)-0= p(K, L). D

Corollary 1.11. For any measurable subsets A, B c: X of finite measure and any
s<t

Proof. Let K and L be compact subsets of A and B, respectively. Then
according to Theorem 1.8 together with Lemma 1.10

4K(t-s)/

Now let Kn\A and Ln\B such that !Kn->lA and lLn-+lB

 in ^- τhen

) and thus

4K(ί-s)
D
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REMARKS, i) If there exists a fundamental solution p(t,y,s,x) for Lt—j-t then for
any s<t and any measurable subsets A, B of X

ίlJAJI
<JntA) ^/m(B) exp( -E^l?L )-exp(-kλ(t-s)\

AJB V 4K(t — s)J

(1.25)

The existence of a fundamental solution is guaranteed under certain assumptions
which will be discussed in the next chapter. (But it is also satisfied in much more
general situations.)

ii) In the next chapter we will combine (1.25) with subsolution estimates of
the form

m(A) m(B)

in order to obtain pointwise Gaussian estimates of the form

where A=Br(x\ B = Br(y) and r = ^/t—s.

2. Sobolev inequality and pointwise Gaussian estimates

Our aim is to derive certain regularity and smoothness properties for local
solutions of the equation Ltu = ̂ u on an open set Q<^RxX. To this end, we
introduce certain assumptions which will be discussed in the following sections.

2.1. The Assumptions on $

We always assume that Assumption (A) holds true on X.
In order to derive pointwise estimates for the density of the transition operator

Γf we assume from now on that in addition a doubling property and a scale
invariant Sobolev inequality holds true on X or at least on sufficiently many open
sets Y c: X. These assumptions will be formulated in terms of the initial Dirichlet

form $ on L2(X9m).

A) The doubling property

Assumption (B). There exists a constant N=N(Y) such that

m(B2r(x))<2N m(B,(x)) (2.1)
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("doubling property") whenever B2r(x) ci Y and all these balls B2r(x) <= Y are relatively
compact in X.

We say that Assumpion (B) holds true locally on X if it is satisfied fpr every
relatively compact open set YaX or, equivalently, if every point yeX has a

neighborhood Y ci A" which satisfies (B). It is easy to see that (under (A)) Assumption

(B) holds true locally on X if and only if there exist an upper semi-continuous
function N: X^> [0,oo[ and a lower semi-continuous function R: X-+ ]0,oo] with the
property that for all x e X and all r < R(x) the balls B2r(x) are relatively compact and

m(B2r(x))<2N^-m(Br(x)) (2.2)

If these functions TV and R can be chosen to be constants, then we say that the
doubling property holds true locally uniformly on X.

Note that (2.1) implies

m(B,,(x))<(2r'/r)N m(Br(x)) (2.3)

for all xe Y and r'>r>0 with Br,(x) c Y and

m(Br,(x'))<(4r'/r)N - m(Br(x)) (2.4)

for all jc,jc'e Y and r,r'e]0,oo[ with Br(x) c: Br(x') and B2r(x) c Y.
The number N plays the role of the dimension of the space X. Note, however,

that it may be a fractional number and that it may vary on X. Let us mention
that without restriction this number N in (2.1) (and the function N in (2.2)) can
and will(!) always be chosen to satisfy

N>2.

Assumption (B) implies that the metric space (Y,ρ) is a homogeneous space
in the sense of R. Coifman and G. Weiss [5] which in turn implies that several
covering properties hold true.

B) The Sobolev inequality

Assumption (C). There exist constants CS=CS(Y) and N=N(Y)>2 such that
for all Br(x) c c Y

N <CS- dΓ(u,u) + r-2 u2dm (2.5),/' f dΓ(u,
(Br(x)) 2/ "JiM*)

for all
If Assumptions (B) and (C) both hold true on some set Y c= X then without

restriction we always assume that the constants N=N(Y) in both Assumptions
coincide (otherwise take the maximum of both).
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Using the cut-off functions p x r from section 1.5.C one can deduce from (2.5) the
following alternative form of the Sobolev inequality

2N \^ r

2 ΓM'-'Λi) <3CS> dΓ(u,u) + (δr
5<ι-*)r(*) / m(ΰr(X)) Jβr(X)

(2.6)

for all Br(x) c c Y, all δe]0,l[ and all u
Indeed, with δe]0,l[ and ^ = (^pxr)Λl we get from (2.5)

/ f .2ΛL NV1 / Γ1 1 W-Ά.J <ι i
WB(l-«5)r(x) / WB,

r2 C

~ s m(Br(x))2/NjBr(x)

<CS

Of course, (2.6) (e.g. with δ = 1/2) also implies (2.5) for all balls Br(x) satisfying
B2r(x) c: Y (with a new constant Cs being 12 x the original constant Cs). Note that
in the formulation (2.6) the functions u are not required to vanish on the boundary

of BJίx).
We say that Assumption (C)(or, in other words, a scale invariant Sobolev

inequality) holds true locally on X if every point y e X has an open neighborhood
Y d X on which Assumption (C) is satisfied. Using the formulation (2.6) one can
show that Assumption (C) holds true locally on X if and only if it is satisfied for
every relatively compact open set Y c X.

We say that a scale invariant Sobolev inequality holds true uniformly locally
on X if there exist constants Cs, # and N>2 such that property (2.5) is satisfied
with the same constants Cs and N for all Br(x) c X with r<R.

C) Examples

Let us first of all discuss these assumptions for the examples from section l.l.E.

• Let L be the Laplace-Beltrami operator on a smooth Riemannian manifold
X and let m be the Riemannian volume. Then Assumptions (B) and (C) are
always satisfied locally on X. They are both satisfied locally uniformly on AΊf
the Ricci curvature on X is bounded from below and they are both satisfied
globally on X if the Ricci curvature on X is nonnegative, cf. [33]

• Let L be a uniformly elliptic operator on RN with a nonnegative weight
φ belonging to the Muckenhaupt class A2. Then Assumptions (B) and (C)

are both satisfied globally on X, cf. [3].
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• Let L be a subelliptic operator on RN. Then Assumptions (B) and (C) are
both satisfied globally on X, cf. [3].

Besides these three (classes of ) examples there exist a huge amount of further

examples satisfying both assumptions (B) and (C) according to the following two
basic facts which are proven in [37]:

i) If a doubling property and a scale invariant Poincare inequality hold true
on an open set Y c X, then also a scale invariant Sobolev inequality holds true on Ύ.

iΐ) A doubling property and a scale invariant Poincare inequality hold true
simultaneously on an open set Y c: X if and only if a scale invariant Harnack
inequality for the parabolic operator L—j-t on RxY holds true.

Here we say that a scale invariant Poincare inequality holds true on Y if
there exists a constant P = P(Y) such that for all Br(x) c c Y

\u-uXtr\
2dm<P r2\ dΓ(u,u) (2.7)

JBr/2(x) Jflr(jc)

for all we Jφf) where uXίr=^^\Br/2(x}udm.

2.2. The assumptions on $t

We always assume that the uniform parabolicity condition (UP) holds true
with constants Q<k<K<ao and y = 0. In addition, we assume that the following
strong uniform parabolicity condition holds true on X or at least on sufficiently
many open sets Y c: X.

Assumption (SUP). There exists a constant κ = κ(Y)>\ such that

(2.8)LdΓ(φ9φ)--'(l--}2' tφ2dΓ(u*2,
J K V p) J2

for allpeR, all nonnegative ue^loc(Y) with u + u~ieLCD(Y) and all

Here &comp(Y) denotes the set of all ue&(X) which vanish ra-a.e. outside
some compact subset of Y. For a given peR, we say that the condition (SUPp)
holds true on Y if there exist a constant κ = κ(Y9p) such that (2.8) is satisfied for
all u and φ as above.

REMARKS, i) If the condition (SUP2) holds true on Y— X (with a constant κ\
then also the condition (UP) from section 1.2.B holds true (with constants K—
1-f 2/c and k = τ^).
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If conversely (UP) holds true (with constants K and k) then also (SUP2) holds
true (with κ = sup{K,l/k}).

ii) Assume that all the <ft's are symmetric. Then (SUP2) (with φ == 1) implies

<^(M,w)>άΆw>w) and (SUP0) (withφ = w) implies <ff(w,w)<2/c <f(H,w). Moreover,
(SUPp) (with M = 1) for/7 -*• — oo implies that gt has no killing (i.e. it is strongly local).

On the other hand, the condition k'$(u,u)<$t(u,u)<K $(u,ύ) together with
the fact that δt is strongly local implies (SUP) on X with κ = sup{^,l/fc}.

iii) To derive upper Gaussian estimates it actually suffices to assume that
(SUPp) holds true for all p>2 with a constant κ = κ(Y) not depending on p. For
other estimates (like Harnack's inequality), however, it is appropriate to assume
(SUPP) for all p.

In order to give examples of Dirichlet forms δt satisfying (SUP) we only have
to recall the above Remark ii). For any ί e R, let $t be a symmetric, strongly local
Dirichlet form satisfying

k - f(u9u) < ffau) <K- g(u,u\ (2.9)

Then condition (SUP) is satisfied on X with κ = sup{K,l/k}.
A nonsymmetric example for (SUP) is again given by the Dirichlet forms

^(w,v)= £ \alf—v—vdx
ij=ίj dxi dXj

of section 1.2.D with a not necessarily symmetric, time-dependent diffusion matrix
a = (aiJ)eLco(RxRN, dtdx) (and with vanishing low order coefficients fc, ί, c). Let

*0 |ίl2^Σi(/iy^^A:o |ξ|2 for all ξeRN and let \ά\:=(Σifjά$l/2<A with constants
0<kQ<K0<co and 0<^4<oo. Then obviously

2(1

2(1

AM^^

-2(1 -
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\φ2\Vupl2\2dx + K0 ίup\Vφ\2dx

- \/p\ \φtf'2W*f+ 2A\l - \/p\ \φupl2\Vup/2\ \Vφ\dx

Γ Γ2 \φ2\Vup/2\2dx + κ lit1

J J
< -^l-l/p)2 \φ2\Vup/2\2dx + κ \tf\Vφ\2dx

with * = sup {*0

In order to include low order terms (arising from non-vanishing coefficients
b, 6, c) one has to admit an additional zero order term ±(/?-l)α jΉp(/>2 dm on the
RHS of (2.8). This, however, can be reduced to the previously considered situation
if one replaces δt by ^,±α •(.,.). The following estimates will be proven for local
sub- and supersolutions of the equation (Lt±oι)u = ̂ u.

2.3. Sub- and supersolution estimates

In this section we study ZΛmean value properties for nonnegative local solutions
of the parabolic equation (Lt + a)u=jj-tu on certain subsets Q<^RxX. Some of
these properties also hold true for local sub- or supersolutions.

A) Local solutions

Let G be an open subset of X, let / be the interval ]σ,τ[ c R and let Q be the
parabolic cylinder IxG. Denote the measure dt®dm on R x X by dm. We define
^ioc(Q) to be the set of all w-measurable functions on Q such that for every relatively
compact, open set G' c: c: G and every open interval f e e / there exists a function
t/e J^(/x X) with u = u' on Γ x G. We say that a function u belongs to ^π(Ix G)
if u e J^(7 x X) and if for a.e. t e 7 the function ut has compact support in G. Note that
a function t/e^D(/xG) only has to vanish on the lateral boundary IxdG but
neither on the upper boundary {τ} x G nor on the lower boundary {σ} x G.

DEFINITION. Let αe/?. We say that u is a local subsolution (resp. local

supersolution) of the equation

(Lt + a)u=itu on Q

ifue^loc(Q) and

,(w,φ)-α w
J j x *

(2.10)
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(or $j(u,φ)— a§jχXu φdm>Q, resp.) for all / c c : / and all nonnegative
φe^D(Q). The function u is called a local solution if it is a local subsolution
and a local supersolution. In this case, (2. 10) holds true with " = " for all

In order to be precise one could call our solutions local weak solutions. Note
that if for a.e. teR the function u(t,.) is locally in the domain of the operator Lt

then (2.10) is satisfied if and only if the functions Ltu(t,.) satisfy Ltu(t9x) + <x.' u(t,x)>
f(f,x) for w-a.e. (t,x)eQ.

B) //-estimates

The main result of this section is the fact that any nonnegative local solution
u of the equation Ltu = ̂ u in a parabolic cylinder Q can be estimated from above
(and also from below) by its ZΛmean (Jwp)1/p with arbitrary/? > 0 (or p < 0, resp.).

This result partly holds true also for nonnegative local sub- or supersolutions
of the equation Ltu=^u and even for nonnegative local sub- or supersolutions of
the equation (Lt + a)u = ̂ u. Note that if we consider subsolutions then we may
restrict ourselves to the case α>0 (since for every α<0 all nonnegative local
subsolutions of the equation (Lt + a)u = j-tu are also local subsolutions of the equation
Ltu = ̂ w) and considering supersolutions we similarly may restrict oureselves to α < 0.

In the sequel, Q will always chosen to be a parabolic ball. Given a parabolic
ball Q = Qr(s,x) = ]s — r2, s 4- r\ x Br(x) and a parameter y e ]0, 1 [ we simplify notation
and use the following abbreviations: β~(y) = ]^~y r2,,s[ x By.r(x), Q*(y) = ~\s,s + y ' r2[
xBrr(x) and

Theorem 2.1. Assume that (B), (Q and (SUP) hold true on Y=BR(y) c X with
constants N=N( Y), Cs = C<£ Y) and κ = κ(Y). Then there exists a constant Q = C^N)
such that for all peR\{Q,l}, all αefl, all balls Br(x) c BR(y\ all seR, all (5e]0,l[
and with

1 δ2+N r2 m(Br(x))

we have the following estimates:

sup u"<C (^ϊY+N I u"dm (2.1 Lβ)

whenever p>\ and u is a nonnegative subsolution of the equation (Z,, + α)«=|w on

β-(i);

supn p <C u"dm (2.11.6)
βd-fl Jfld)
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whenever p / 0 and u is a nonnegative solution (!) of the equation (Lt 4- α)w = j-tu on <2(1);

sup up<C- updm (2.1 l.c)
Q-v-v Je-(i) ~~

whenever p<Q and u is a nonnegative supersolution of the equation (Lt + a)u=j-tu
on β-(l).

Note that (2.1 l.c) is actually a pointwise lower estimate for u on β~(l — δ).
The proof of the Theorem depends essentially on the following Lemma which

yields the steps for the iteration.

Lemma 2.2. Under the above assumaptions there exists a constant C2 = C2(N)
such that for all peR\{Q,l}, all αefl, all balls Br(x) c BR(y\ all sεR, all (5e]0,l[
and with

R2 .
/ _ ) 2 + 4 / N

V

(where (pα)* =/? (αVO) if p>\ and =\p\ ( — αVO) if p<\) we have the following
estimates'.

f / f
(Mp)1 + 2 / Λ Γrfw<C ί

Jβ-d-ί) VJβ-

/?>! fl«J w is a nonnegative subsolution of the equation (Lt + u)u=jj-tu

on β-(l);

/ \1 + 2/^
(2.12.6)

f / f \
(wp)1 + 2/Nrfm<C w^m

JQ + U-.5) VJβ + (l) /

whenever 0</?<1 α«rf M w α nonnegative supersolution of the equation (Lt + a)u = j-tu

on <2+(l);

f / f \ 1 + 2/^
(up)i + 2/Ndm<C ( updm\ (2Λ2.c)

jQ-d-δ) \JQ-(D /

whenever p<Q and u is a nonnegative supersolution of the equation (Lt

on β-(l).

Proof. We follow the classical proof by J. Moser [26, Lemma 1]. We begin
with an inequality which holds true for all ve^loc(IxBr(x)). From the Sobolev
inequality (2.6) we deduce that for a.e. tel
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N-2

π_i)2

2'

2 2

where B[y] = By.r(x) and v^v^,.). Following [25, Lemma 2] we derive from (2.13)
that

L-,» * m(BR(y))2>N

U t \ ( ( \2/N

dΓ(vt,vt)dt+—v2dm} lsup v2dm\

(2.14)

for any interval / c c 7 and any ball j£r(jc) cz BR(y).
Now we fix a number peR\ {0,1} and in the case p> 1 (resp. p< 1) we assume

that M is a local subsolution (or supersolution, resp.) of the equation (Lt + a)u=itu
on ρτ(l). That is,

(P-1) (- f /^^V/ί + α f (i^ΨJrf/- ί
V J j J j x X J j

for all / c z c : / and all (/^^(^(l)). We choose φ = up~1 ψ2-η2 where
^(ί,j) = ̂ (y) = (̂  pJC>(1_ί)rO))Λl and η(t,y) = η(ή. The choice of f/ depends
on p. If ^<1 we take ιj(0=l for r>5-(l-f)r2, ^/(0 = 0 for ί<j-r2 and linearly
interpolated in the remaining interval. If ^<1 we take η(t)=l for t<s + (l— |)r2,
f/(/) = 0 for t>s-\-r2 and linearly interpolated in the remaining interval.

In general, however, this function φ will not be in ^u(Q*(l)). We have to
approximate it. For instance, in the definition of φ we can replace u by un = (u Λ ri) V £
(with weTV). Also in order to apply (SUP), we have to approximate u by
MMeL00(Ar,m)nL~00(Ar,m). In the limit n -> oo we actually obtain that (2.15) holds
true with the above choice of φ = up~1 -\l/2-η2 and that we may apply the strong
uniform parabolicity condition (SUP). For details we refer to the proof of Theorem
1 in [36]. Thus, we deduce from (2.15)

-(l --Y f ί ιA2 W^O '̂+~ ί (&M2)l2dt
κ\ P) J j J x P Jj
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Π Γ ΓupdΓ(ψ, ψ)η2dt + α(/7 — 1) wf
. x JjJx

wf ψ2dmη2dt
x

and following the argumentation of [26, section 4] we conclude from the
latter that

up u* dm + - dΓ(upl2,upl2)dt
teT Jβ[l-|] KJJQ*(1-*)

ϊ ' + ' +<ef . ί „*
εδ2r2 δ2r2 4 / JQT(1) -

(2.16)

where ε =||1 — p~ l\ and (depending on whether ^< 1 or ^> 1)7 is either the interval
>-(l-f)rV[ or the interval >, y + (l-|> 2[, βτ(l) is either ζT(l) or β+(l) and
(pa)* is either /? (aVO) or |/?| (-aVO). Finally, (2.14) (applied to v = upl2) and
(2.16) together imply

L-.°
R2 Γ K/K 1 1

4
if ]̂1

UQ^D J

R2 Γ* + , Ύ + 2 / N [K 1
<C3(N)'CS' - - + (pα)ίr2 + l --f 1

^wntv)) L ε J Lε J

/ 1 \ I I I

•fe) I "̂
\(7 Γ / LJθτ(l) J

2+4/N Γ p Πl

Mpfi?m . (2.17)

D

Proof of Theorem 2.1. a), c): Now we are in a position to carry out the
Moser iteration. In the case ^<1 we choose pv = l— δ + δ 2~v and/?v=/r(l+j|)v.
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Note that the constant Cj in [26] depends linearly on cntf (with n being the

dimension which comes in via the Sobolev inequality). Hence, in our case the
iteration of (2.12.c) resp. (2.12.a) yields

sup up<C5(N) C$12'— - - •(l + (pα)±Λ2)1+JV/2 ιc1+ΛΓ.
c *d-a)

( 1 \ί+N il\N+2 f
- 1+- - — ) •- iΛftft. (2.18)

V |l-/7 V \δrj JQ±(1)

b) The case ^> 1 is a little bit more delicate. We have to make a finite

number of iterations with values /?ve]0,l] (here using estimate (2.12.b)) and then

as before an infinite number of iterations with values /?ve]l,oo] (now using estimate

(2.12.a)). Hence, we have to restrict ourselves to solutions of the equation

(Lt + a)u=j-tu and we have to consider them on cylinders of the form Q(γ) (instead

of Q±(y)). Note that the estimates in Lemma 2.1 remain true if we replace all
cylinders Q±(γ) by Q(y).

The iteration on Q(y) now yields for any

sup u*<Cβ(NγC»l2 RN •(l + \p<*\ R2)l+Ni2 κl+N (^N+2 f if dm.
d-δ) ™(Bκ(y)} \δrj JQ±(1)Q±(1)

(2.19)

Note that in the case α=0 the constant on the RHS of (2.19)(and of (2.11.b)) does

not depend on p. For p e ]0,2[ this can be seen by the argument of [26, p.739] (with

\ instead of "μ") and for peR\[Q,2] it follows from (2.18). Q

2.4. Estimates for the fundamental solution

Our goal is to derive upper estimates of Gaussian type for the fundamental

solution p(s,x,t,y) of the parabolic operator Lt—£tonIxX. The idea is to combine

the integrated Gaussian estimates from section 1.5 (which hold true globally on X)

with the subsolution estimates from the previous section (which should hold

true in suitable neighborhoods of x and y). To this end, we assume that the

(global) assumptions (A) and (UP) hold true on X and that the assumptions (B),(C)

and (SUP) hold true locally on X (or at least in suitable neighborhoods of given

points x and y).

A) The fundamental solution

Proposition 2.3. There exists a measurable function p:RxXxRx Λr-^[0,oo[

with the following properties:
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(0 for every t>s, m-a.e. x9yeX and every f€Ll(X,m)

fe) (2.20.α)
Jx

and

)= I p(t,z,s,x)f(z)m(dz)ι (2.20.6)

(2.2\.a)

-J,
i

(iί) for every s<σ<τ and m-a.e. xεX the function

is a global solution of the equation Ltu = j^u on ]σ,τ[ x X and for every t>τ>σ and
m-a.e. yeX the function

u:(s,x)\^p(t,y,s,x) (2.21.6)

is a global solution of the equation Ltu = — j-tu on ]σ,τ[ x X;

(Hi) for every s<r<t and m-a.e. x,y e X

)=
Jx

(2.22)
x

(iv) for every s<t

lι (2.23)Π x)χjχ

(v) p is locally bounded on the set {(s,x,t,y): s<t}.

Proof. (i),(v): We define p(t,y,s,x) as the density of the transition operator
Γf. Fix (*',*',ί'j/)e/x Xxlx X with s'<tf and a neighborhood W of (s',x',t',yf)

in IxXxIxX. Without restriction W= Qr(s',x')x Qr(t\y') with some r<^t'—s'.
For 5 e]y — r2,s' + r2\_ and feLi(X,m)r\L(X)(X9m) we consider the function

on Q2r(t\y'\ By definition of the operators (Tf)t (cf. section 1.4.C), it is a solution of
the equation Ltu=j-tu on Q2r(t',yf) and according to Theorem 2.1 it therefore satisfies

sup u<C
Qr(t',y')

udm
22r(t',y')

Λί' + 4r2/» Λ

<C'\ Tϊf(y)m(dy)dt<C'Zr2

Ji'-4r2JX J

f(y)m(dy)
X
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where the latter inequality follows from the contracion property of Tf on Lv(X,m)
(which in turn is a consequence of the Markov property of <£f, see Proposition
1.6). From the Theorem of Dunford-Pettis it now follows that Tf is an integral
operator with a density p(t,.,s,.) satisfying

sup sup p(t,y,s,x)<C'&r2

xeXyeBr(y')

whenever \t —1'\ and \s —s'\<r2. The claim for feL1(X9m) now follows by density
and for /e L™(X,m)) by weak* continuity. Both together imply the assertion for

An analogous argument applies to the operator §1 which also turns out to be
an integral operator with a locally bounded density, say q(s,.,t,.). According to
Lemma 1.5, we can choose p and q such that p(t9y,s,x) = q(s9x9t9y) for all t,y,s,x.

(iii) is an obvious consequence of the operator identity Ts

t = Tr

t°T
s

r (cf. section
1.4.C).

(iv) follows from the fact that $x$xp(t,y,s,x)2m(dx)m(dy)=\\T?\\2 and that
\\Tf\\ <e~kλ(t-s)<l (cf. section 1.4.C).

(ii) From (iv) we deduce that \x^xp(σ9y9s,x)2m(dx)m(dy)<\, hence, that for

m-a.e. xeX

p(σ,y,s,x)2m(dy)<co,
Jx

or, in other words, that the function/: y \-^p(σ,y,s,x) satisfies/eL2(X9m). Therefore,
there exists a unique solution of the initial value problem Ltu=j-tu on ]σ,τ[xAΓ,
u—f on {σ} xX. By definition of 7̂ , this solution is given by

Using the particular choice of/and property (iii) we get

u(t,y) = \p(t,y,σ,z)p(σ,z,s,x)m(dz) =p(t,y,s,x)

which proves that .(t,y)\-+p(t9y9s9x) is a solution of Lμ-^μ on ~]σ,τ[xX. An
analogous reasoning yields the assertion for the formally adjoint operator L f =A

D

B) Gaussian estimates

We still assume that the (global) assumptions (A) and (UP) hold true (with



306 K-T. STURM

constants 0<k<Λ:<oo) and that assumptions (B), (C) and (SUP) hold true locally
on X. The latter means that for any points yteX (ι=l,2) there exist numbers
Ri>0 such that (B), (C) and (SUP) hold true in BR.(yt) with constants Ni9 CSti and κf.

Instead of that , it would be sufficient to suppose that the estimate (2.11.a)
with p = 2 holds true for all nonnegative local solutions in BRi(yt).

Theorem 2.4. Under the above assumptions, the following estimate holds

true for all points (/I,>Ί) and (t2,y2)εIxX with tί<t2

4K(t2-tί)J \ K(t2-tl\

where N=ίί^2

Jh , Aί=C3(Nί) Cξf κί+lί' m-\Bj^yM, ^inf^^-t^Rf} and

C3(Nf) is a constant depending only on N{ (ι= 1,2).

Proof. Let us fix radii rt and r2e]0,
For ψe3rlocn<#b(X) with dΓ(ψ,(l/)<dm on X and feL2(X,m), />0, we

consider the function v,=ekλ(t ~s) Tf(e ~βφ f } (where β,s,teR,s< t). Then according
to Lemma 1.7, \\eβφ v,|| < eβ2'κ'(t~s) \\f\\ and v: (t,y) ̂  vt(y) is a solution of the equation
(Lt+kλ)v=j-,v on ]s,oo[xΛr. Applying the subsolution estimate (2.11.a) to

v on the cylinder Q2 = βr~(f2>J2) yields

f v2φι
)JQ2

^ - ί - f eW Sdm
rl miBM)}^

On the other hand,

,x)s) ί P(t2,y2,s,

Hi f
LJβπ(yι)



ESTIMATES FOR SOLUTIONS OF PARABOLIC EQUATIONS 307

Taking the supremum over Λ\ feL2(Br^(y^\m) with ||/|| = 1 we obtain

p(t2,y2,s,x)2m(dx)
ι)

(JV2) C£2

2

/2 κ\ +N2 ' (1 -h Hr2)1 +N2/2 - eW*GΊ>-ιW3>2)) ^Ifl-ίπ +Γ2)

. e2(β*κ-kλ) (t2-s) . * /2 24)

Jβ

Now we use the fact that the function w:(s,x)\-+ekλ(t2~s) p(t2,y2,s,x)
is a solution of the time reversed equation (Lt+kλ)w=— jjW on the cylinder
Qι = Q?l(tί,yι) and therefore satisfies the subsolution estimates of Theorem 2.1
with the same constants but with reversed time direction. In particular,

(2.25)

Together with (2.24) we get

(2.26)

where

We now choose

2Jh and ^e^Ί^n^JQ with ^(yι)-^(y2) arbitrarily close to — p where
p(y l5y2) and τ = f 2 - f ι Then(2.26) states that
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where

A'! = QW) C£f κ\ +Ni -(l+kλ r?)1 +N<12 ' m~ *(B,t{y$

/ Π2(v v \ \ N

< C3(Nύ ' C£f κ\ +"'• > (l+kλ τ)1 +N</2 1 +P W19™
\ Kτ /

and ii = M{KT,Rf} (ι = l,2). D

The Gaussian estimates for the fundamental solutions have a particular nice
form if the assumptions (B), (C) and (SUP) hold true globally on X.

Corollary 2.5. Under the above assumptions, there exists a constant C4(N)
only depending on N such that the following estimate holds true uniformly for
all points (t^y^) and (t2,y^eIxX with ti<t2

Note that if (SUP) hold true globally, then the constants k, K can be chosen
as functions of K as follows: K=l+2κ and k = (l+2κ)~1.

Also note that if assumption (B) holds true globally, then all balls Br(x) are
relatively compact and the volume of (concentric balls of) X grows at most
polynomially. According to [36], Theorem 5, this implies that the spectral bound

C) The time-independent, symmetric case

In the time-independent, symmetric case things are much easier. Without
restriction, we may assume that δt = <f. Then of course k = K=κ = l.

The fundamental solution p(t,y,s,x) satisfies

p(t,y,s9x) =p(t - s,y,Q9x) =p(t, - s,x9Q9y)

and instead of the latter we simply write /?(/, —s9x9y) and call it heat kernel. Since the
map t\-^>T?_s is analytic we also obtain estimates for the time derivative of the
heat kernel.

Let us assume that assumptions (A),(B) and (C) hold true locally on X. That
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is, for any points yteX (ι=l,2) there exist numbers Rt>Q such that (A), (B), (C)
hold true in BR.(y^ with constants Nt and Cs f.

Theorem 2.6. Under the above assumptions, the following estimate holds
true for all jeWu{0}, for all points y^y2εX and for all f>0

where N=*^, At-C3(Nf C^ Cκ

sf m-\B^\ τ( = inf {;,*?}, C3(N() is a

constant depending only on Nt (ί=l,2), and C4(j) is a constant depending only on

j.

Proof. In the case y=0, the result is already contained in the previous
Theorem. For the canonical Dirichlet form on a Riemannian manifold the result
is obtained by L. Saloff-Coste [33]. The general case is proven along the same
lines using the L2-analyticity of the map t\— >T?_S (see the proof of Theorem 6.3
in [33]). Π

Corollary 2.7. If the assumptions (A\ (B) and (C) hold true globally on X,
then the following estimate holds true for all ye/Vu{0} and uniformly for all points
x,yeX and all t>0

with C=C4(j)'C5(N)'Cs12 where C*(j] is a constant only depending on j and C5(N)
only depends on N.

REMARK, i) The polynomial correction term (i+fiί^yv/2*./ jn the above
estimate can of course be absorbed by the Gaussian term exp(-^^) if we replace
the number 4 by some larger one. That is, for every ε>0 there exists a constant
C= C6(ε,Nj) C£/2 such that

r '• m - i / 2 ( B x ) ) m ~ 1 / 2 ( ) ) exp -

for alljeNu{Q}9 all x,yεX and all t>0.

ii) From the doubling property it follows that
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(1 + *fflN. Hence,/0r every ε > 0 there exists a constant C= CΊ(ε,NJ) Cψ2 such that

(l)M^)<C r' m-^^^ (2.27)
\ (4 + εjt/

for alljeNv{0}, all x,yeX and all t>0.

Following the argumentation in [23] one easily deduces from a heat kernel
estimate like (2.27) an estimate for the Green function g(x9y) = $o

Corollary 2.8. If the assumptions (A), (B) and (C) hold true globally on X, then

-̂ - (2-28)
p(x,yfn(Br(X))

for all x,y e X with C= CS(N) Cs/2 where CS(N) is a constant depending only on N.

This type of Green function estimate was already obtained in full generality
by M. Biroli and U. Mosco [2,3]. It is well-known in more concrete situations
like in Riemannian geometry or in the theory of subelliptic operators. From the
upper bound (2.28) for the Green function we easily derive a necessary and sufficient
criterion for recurrence. In Riemannian geometry, this citerion was established
by N. Varopoulos [38]. See also [37a].

Corollary 2.9. Let (β^) be irreducible and let the assumptions (A\ (B) and (C)
hold true globally on X. Moreover, fix an arbitrary point xeX. Then (β^} is
recurrent if and only if

(*ao v ,}v

- = oo. (2.29)

Proof. In [36] we already proved that (2.29) is sufficient for recurrence (which
requires neither assumption (B) nor (C)). From Corollary 2.8 we now see that
(2.29) is also necessary for recurrence. Namely, if (2.29) is not satisfied for some
xe X, then first of all we deduce that X can not have finite volume, in particular,
X\Bi(x) can not be a m-zero set. Moreover, it implies that according to (2.28) the
Green function g(x,y) is finite for all y eX\B l(x). This however, implies that (S,&') is
not recurrent ([36], Theorem 3). Π
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