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Analysis on local Dirichlet spaces

I. Recurrence, conservativeness and LP-Liouville
properties

By Karl-Theodor Sturm at Erlangen

1. Dirichlet spaces and the intrinsic metric

The basic object for the sequel s a fixed regular Dirichlet form & with domain 2(§)ona
real Hilbert space H = L?(X, m). The underlying topological space X is a locally compact
separable Hausdorff space and m is a positive Radon measure with supp[m] = X. The form
& is always assumed to be strongly local (i.e. & (u, v) = 0 whenever u € 2 (&) is constant on a
neighborhood of the support of ve 2(£)) and to be irreducible (i.e. ue 2,,.(€) is constant
on X whenever & (i, u) = 0). In other words, & has no killing measure and no jumping
measure and X cannot be decomposed into (non-trivial) subsets which are invariant for &.
For notions concerning Dirichlet forms we recommend the monograph [F] of
M. Fukushima whose terminology we mostly follow. For a brief discussion of the notion or
irreducibility we refer to the Appendix at the end of this article. Let us mention one crucial
consequence of the regularity of &. Each function u € 2 (&) admits a quasi-continuous
version # (which is determined pointwise up to exceptional sets). For simplicity, we always
write again u for # and make the convention that whenever we use a pointwise version of u

(e.g. inexpressions like | du or [udy with a measure u charging no exceptional sets) then
{u>0}
without restriction this version is always chosen quasi-continuous.

Any Dirichlet form & as above can be written as

1.1 &u,v) = de(u, v)
X

where I' is a positive semidefinite, symmetric bilinear form on 2 (&) with values in the signed
Radon measures on X (the so-called energy measure). The nonnegative measure I (u, u) can
be defined by the formula

(1.2 [ @dr (u,u) = & (u, pu) — % & W §)
X
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for every u € 2(6) n L*(X, m) and every ¢ € 2(&) N 6,(X). By a straightforward approxi-
mation argument, the quadratic form u +— I' (4, u) can be extended to the whole space
L% (X, m)insucha way that {ue L% (X, m): I' (u, u) is a Radon measure} coincides with the
set 9,,. (&), being the set of all m-measurable functions u on X for which on every compact set
Y < X there exists a function v € 2 (£) with u = v m-a.e. on Y. (Similarly, & can be extended
in such a way that 2 (&) = {ue L*(X, m): & (4, u) < o0}.) By polarization, we then obtain for
arbitrary u, ve 92,,.(§) a signed Radon measure

F(u,v)=%(F(u+u,u+v)—F(u—v,u—v)).

The energy measure I' (4, v) does not charge exceptional sets. Moreover, since & is assumed
to be strongly local, the energy measure I' is local and satisfies the Leibniz rule as well as the
chain rule. For these and further properties of the energy measure we refer to M. Fukushima
[F], Y. Lejan [Le] and U. Mosco [M] as well as to the Appendix of this paper.

The energy measure I" defines in an intrinsic way a pseudo metric ¢ on X by
(1.3) o(x,y) =sup{u(x) —u(y): u€ 2,,.() N€(X), dI'(u,u) <dmon X},

called intrinsic metric or Carathéodory metric (cf. M. Biroli and U. Mosco [BM1], [BM2]

and E.B. Davies [D1]). The condition dI" (4, u) < dmin (1.3) means that the energy measure

I'(u,u) is absolutely continuous w.r.t. the reference measure m with Radon-
.. d . d .

Nikodym derivative am I'(u, u) < 1. The density I I’ (u, u)(z) should be interpreted as the

square of the (length of the) gradient of u at ze X.

In general, ¢ may be degenerate (i.e. ¢(x, y) = o or g(x,y) =0 for some x = y).
Throughout this paper we make the following basic

Assumption (A). The topology induced by g is equivalent to the original topology on X
and all balls B,(x) = {y € X: o(x, y) <r} are relatively compact in X.

This assumption in particular implies that ¢ is non-degenerate. It will be discussed in
more details in the Appendix where we also give the proof of the following fundamental
Lemma.

Lemma 1. For every x€ X the distance function g.:y +— o(x,y) on X satisfies
0x € @loc(g) N (g(X) and

(1.4) dr (e, e,) = dm.

In other words, Lemma 1 states that under Assumption (A) the distance function
0,: ¥+ 0(x, y)itself is one of the admissible functions u in the definition (1.3) of ¢ (x, .). The
intuitive interpretation of that result is that the distance function g, is “wedkly differenti-
able” with gradient of length <1 at every point of X. Note that the estimate (1.4) is of course
sharp (e.g. in the Euclidean case X = R it states that | Vg, |? < 1 which is actually an identity
on RN\ {x}).
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According to Lemma 1, the distance function ¢, can be used to construct cut-off
functions on intrinsic balls B,(x) of the form

(1.5) Qi v (r—e(x, ).

Obviously, ¢, ,€ 2(&) " %,(X) and dI (g, ,, 0, ,) < dm (for all x € X, r > 0). The existence
of these cut-off functions is the key to prove in our context a series of famous results (by Yau,
Cheng/Yau, Karp, Karp/Li, Grigor’yan) which are well-known for the canonical Dirichlet
form on complete Riemannian manifolds. Local Dirichlet forms turn out to be an
appropriate frame to unify and extend these results.

In section 2 we give a local definition for sub- and supersolutions of the equation
Lu = 0 on X and we prove that under certain global integrability conditions these solutions
must be constant. In section 3 we give sharp conditions in terms of the volume growth
r — m(B,(x)) for recurrence as well as for conservativeness and for exponential instability.

We emphasize that the scope of applications of the following results is much broader
than classical Riemannian geometry. For instance, sub-Riemannian geometry in the sense
of R.S. Stichartz [St] is included. The results also apply to uniformly elliptic operators
on Riemannian manifolds (cf. [Sa]) as well as to uniformly elliptic operators with weights,
to Hormander type operators and general subelliptic operators on R" (cf. [BM2] and
references cited therein).

2. Liouville theorems and L P-uniqueness

The classical Liouville theorem for the canonical Dirichlet form on R states that every
nonnegative harmonic function on R must be constant. S.T. Yau [Y1] proved that also
every complete Riemannian manifold with nonnegative Ricci curvature has this strong
Liouville property. However, this curvature condition is not stable under quasi-isometric
changes of the Riemannian metric. (Also the strong Liouville property is unstable under
quasi-isometric changes, cf. [Ly].) In [Y2] it was proved that (without any further
assumption) every complete Riemannian manifold has the L?-Liouville property for every
p€]1, oo which means that every harmonic function u € L? must be constant.

For various values of p € ] — 00, oo[ we consider the set of nonnegative (global) sub- or
supersolutions of the equation Lu = 0 on X which satisfy [u?dm <oo. We say that the
Lr-uniqueness for the subsolutions (resp. supersolutions) is fulfilled if every such function
must be constant. Here L denotes the unique negative semidefinite selfadjoint operator on
L?*(X, m) associated with &.

Definition. For a = 0 a function u on X is called a subsolution (resp. supersolution) of
the equation (L —a)u =0 on an open set ¥ < X if ue 9,,.(€) and

Q2.1 Eu, ) +afu-¢pdm=0

(or &,(u, ¢) =0, resp.) for all nonnegative ¢ € Z2(£) N L2, (Y, m) (i.e. ¢ € (&) with

‘comp

compact support in Y). Moreover, u is called a solution if it is a subsolution and a
supersolution. In this case (2.1) holds true with “=" for all ¢ € 2(&) n L2, (Y, m).

comp
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Let us make a (perhaps superfluous) comment on the interpretation of statements like
“u is nonnegative”, “u is bounded” or “u is constant”. For functions u € L2 (X, m) the
assertion “u is constant on Y of course means that there exists a constant C € R such that
m{xe Y:u(x)+ C} =0.If Yis open and if u € 9,,.(&) this is equivalent to the assertion

cap{xe Y:d(x) + C} = 0 where 4 is a quasi-continuous version of u.

Solutions (resp. sub-/supersolutions) of the equation Lu = 0 on X are also called
L-harmonic (or L-sub-/L-superharmonic, resp.) functions on X. A function  in the domain
2 (L) of the operator L (or in 9,,. (L)) is a subsolution (resp. supersolution) of the equation
Lu = 0 on X if and only if the inequality Lu = 0 (resp. Lu < 0) holds true on X. The set of
nonnegative subsolutions of the equation Lu = 0 is of particular interest since for every
solution # of Lu = 0 on X the function |u| is a nonnegative subsolution (Lemma 2).

Theorem 1. Let u =0 be a function on X and for pe]— 0,0 and some point
xeXletv(r)= [ uPdm (resp. v(r) = m(B,(x)) if p = 0). Assume that

By(x)

2.2) [ — dr=o0.

a) If p<1 and if u is a supersolution of the equation Lu = 0 on X then u is constant.
b) If p > 1 and if u is a subsolution of the equation Lu = 0 on X then u is constant.

Note that the condition (2.2) is for instance satisfied if [ w?dm < C-r? for a

sequence r, — o0, in particular, if | u?dm < co. Bra(x)
X

Corollary 1. a) Let pe]—oo,1[. Then every nonnegative supersolution u of the
equation Lu =0 on X with {uPdm < co is constant. In particular, if m(X)<oco then every
nonnegative supersolution u of the equation Lu = 0 on X is constant.

b) Let pe]1,o[. Then every nonnegative subsolution u of the equation Lu =0 on X
with [ uPdm < o is constant.

It is well-known that the assertions of Theorem 1 or Corollary 1 do not hold for p =1
without some additional assumptions (see the following Remark b)). We say that & (or the
heat semigroup (7), o associated with &) is conservative or that X is stochastically complete
w.r.t.(T,),»,if T,1 =1 for all # > 0. It means that the associated Markov process has infinite
life time (P*-a.s. for q.e. starting point x € X).

Theorem 2. Assume that & is conservative. Then every nonnegative supersolution u of
the equation Lu = 0 on X with j udm < oo is constant. Moreover, every nonnegative function
ue L}(X, m) which is excessive for the semigroup (T,), , or which is defective for the semi-
group (T)),. , must be constant.
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For the sake of completeness we recall the

Definition. A functionue ) LP(X,m) is called excessive (resp. defective) for the
1spsw
semigroup (7,),., if u is nonnegative and if T,u < u (or T,u = u, resp.) for all > 0. An
arbitrary m-measurable function « on X is called excessive for the semigroup (7)), , if u is
nonnegative and if ;o Suforall t>0and all ve U LP(X, m) with v L u.

1gpsw

Remarks. a) Let us consider our results for the canonical Dirichlet form on a
complete Riemannian manifold. In this situation, Corollary 1 was proved by S.T. Yau [Y2].
However, he considered only the cases p € 10,1[ and p € 11, oo[ (and he assumed in addition
that u is smooth) He also pointed out that instead of assuming j ufdm < oo it suffices to

assume lim 1nf = [ wPdm=0. The case p = 0 was considered by S.Y. Cheng and S.T. Yau

r+o F Br(x)

[CY]. They proved that hm mf — m(B,(x)) = 0 implies that the manifold X is parabolic,

thatis, all nonnegative superharmomc functions (i.e. supersolutions of the Laplace-Beltrami
equation Lu = 0) on X are constant. The results of [Y2] and [CY] have been improved by
L. Karp [K1] who derived essentially the criteria from Theorem 1 for the canonical Dirichlet
form on a complete Riemannian manifold (restricting himself to the cases p > 1 and p = 0).

b) Examples of complete Riemannian manifolds which admit nonconstant harmonic
functions u € L' were constructed by O.S. Chung (unpublished) and P. Li and R. Schoen
[LS]. In the latter example the manifold is even stochastically complete.

Conditions which ensure the triviality of the set of nonnegative subharmonic functions
ue L' have been given by P. Li [Li]. However, these conditions are in terms of the Ricci
curvature and unstable under quasi-isometric changes. A. A. Grigor’yan [G2] proved that
on a complete Riemannian manifold every nonnegative superharmonic function ue L! is
constant provided the manifold is stochastically complete.

A sharp condition on the volume growth which ensures conservativeness will be given
in the next section (Theorem 4). Also in the next section the case p = 0 (“recurrence’) which
is of particular importance will be treated again (Theorem 3).

¢) The condition (2.2) in Theorem 1 is sharp in the following sense: given a smooth
function v (with v, v’ 2 0) which does not satisfy (2.2) then there exists a complete
Riemannian manifold X, a point x € X and a nonconstant (bounded, nonnegative) harmonic
function u on X such that v(r) 2 | uPdm ([K1]).
Br(x)
Note that assertion a) of Theorem 1 together with the following Lemma imply that

every solution ue L?(X, m), pe] 1, o[, of the equation Lu = 0 on X is constant (without
restriction on the sign of u).

Lemma 2. a) Let n € 6*(R) be a convex function with bounded derivatives. Then for
every solution u of Lu = 0 on X the function n(u) is a subsolution.

b) For every solution u of Lu =0 on X the function |u| is a subsolution.
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c) For every ke R and every subsolution u of Lu =0 on X the function uv k is a
subsolution and for every supersolution u of Lu = 0 on X the function u A k is a supersolution.

d) For all supersolutions u,, u, of Lu =0 on X the function u = u, A u, is a super-
solution of Lu = 0 on X.

Proof. Let v =n(u) and for every p € D, (), p 2 0, let ¢ = n’(u) - y. Then

dr' (p,v) = n'()dl (p, u) = dI (n'(u) - v, u) — wdl (' (W), u)
=dI' (o, w) —n" () - wdl' (u,u) < dl'(¢,w).
Now by assumption the integral of the RHS is 0. This proves part a). Part b) follows from a)
by approximation. In order to see c) note that the assertion a) of Lemma 2 holds true not only

for solutions but also for supersolutions (or subsolutions) of Lu = 0 on X provided one
assumes in addition that # is decreasing (or increasing, resp.).

The proof of d) is analogous to that of c). Now we have to use the chain rule for
functions n of two variables (see [M]). Let 8 € %, (R?) be a symmetric, convex function
with | 8’| £ 1 (think of a smooth approximation of x — |x]|) and let

1
n:(xyx;) = 3 (3 +x;) — B(x; — x3)

(think of a smooth approximation of (x,, x,) — x; A x,). Moreover, let u,, u, be super-
solutions of Lu = 0 on X and let y € Z,,,(8), v 2 0, be an arbitrary test function. Then

2dI (9, n(uy, uy)) = (1 = B'(uy — u,))dl (p, uy) + (1+ B/ (uy — up)) dI (, uy)
= dF(tp (1 =By — uz))’ ul) + dT(w ) (1 + B'(uy — ”2))» ”2)
- wdF(ﬁ’(u1 —Uy), Uy — “2)
=dI(p- (1= B'(uy —up), uy) +dl (w - (1 + B (uy — uy)), u)
=y Al (uy — uy, uy — uy)
2dl(y- (1 =B —up),u) +dl (- (1+ B (uy — uy)), uy).
Now by the assumptions on #, and u,, each of the integrals on the RHS is nonnegative.
(Note that v - (1 + B'(u, — u,)) is a nonnegative test function by the assumption on f.)

This proves that the function n(u,, u,) is a supersolution. The claim thus follows by
approximation. 0O

Lemma 3. a) Every nonnegative supersolution u of the equation Lu=0 on X is
excessive for the semigroup (T,), -

b) Every function ue Ly, (X, m) which is excessive for the semigroup (T,),, is a
supersolution of the equation Lu = 0 on X.

Remark. We emphasize that the analogous statement for subsolutions of the
equation Lu = 0 and for defective functions for the semigroup (7}), , is wrong. This can be
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seen by combining Theorem 2 and the example from [LS] mentioned in the previous
Remark b).

Proof. a) Since increasing limits of excessive functions are again excessive we may
restrict ourselves to bounded functions u, say u £ 1. If in addition we would know that
ue 9(&) then the assertion is essentially contained in {F], Theorem 3.2.1. In the general
case, we have to make several approximations.

If u =0 is a supersolution of the equation Lu = 0 on X then for every relatively
compact, open subset X, — X the function u (or its restriction to X,) is also a supersolution
of the equation Lyu = 0 on X,,. The operator L, is obtained from L by putting Dirichlet
boundary conditions on 0X,. The associated Dirichlet form &, is the closure of & on
D (8) N €, (X,).

Let w e 2(6,) and put v = u A . We want to show that ve 2(&,). In order to see
this, let {y,}, be a sequence in 2(&,) with compact support in X, which satisfies
v, = v in &[.]-norm and v, —» v q.e. on X,. (Here dI[f] = dI'(, f) +f*dm and
& [f1={dI[f]) We may in addition assume y, <y and {y,} being increasing. Put
v, = u A p,. Then of course v, € Z(6,) and v, — v q.e. on X,,. Moreover,

&lv—vlsé&ly—wl+ [ dhi[u—y,)

{wn<u<y}

<28 [w—wl+ | dh[u—y]l -0

{fun<y}

for n - co. That is, ve 2(&,).

Now fix >0 and xe X and let X, = B,(x) for k>0. Let y, € 2(&,) be the
a-equilibrium potential of the ball B, , (x) in the ball B,(x) and letw, = u A y,. Then
u, € 9(8,). Moreover, u, is a supersolution of the equation (L, — a) 4, = 0in X,. This follows
from the fact that u as well as iy, are supersolutions of this equation and that the sheaf of
nonnegative supersolutions of this equation is inf-stable (which is just a trivial extension of
Lemma 2d)). We are now in a position to cite [F] (Theorem 3.2.1) which states that u, is
a-excessive for the heat semigroup (7}),. , on X, (with absorption on the complement). In
particular, u, is a-excessive for the heat semigroup (7)), , on X,. for every k' < k. It follows
(by increasing limit argument) that u = St:p u, is a-excessive for the heat semigroup (T7),.

on X,. Since this holds true for all £ > 0 and all « > 0 we finally obtain that u is excessive for
the heat semigroup (T),., on X.

" b) Now let u be a locally bounded excessive function. For a fixed relatively compact,
openset X, = X and a > 0 lety € 2(&) be the a-equilibrium potential of X, in X. Then u as
well as p are a-excessive for the semigroup (7}),. o. By assumption, « is bounded on X, say
u=1onkX,.

Let v = u A y. Then also v is a-excessive and of course v < y. Since p € 2(&8) this
implies ve 2(&) ([F], Lemma 3.3.2). We therefore may apply Theorem 3.2.1 of [F] to
conclude that v is a supersolution of the equation (L — a)v =0 on X. But on X, the
functions u and v coincide. Hence, u is a supersolution of the equation (L — o)u = 0 on X|,.
Since X, and « are arbitrary, this proves the claim. O
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For later use, we state the following minimum principle.

Lemma 4. Let Y be a compact subset of X and let u be a supersolution of the equation
Lu=0on X. Ifuz0on X\Y thenu =0 on X.

Proof. Without restriction, we may assume # < 0 and u = 0 on X'\ Y (otherwise take
u A 0). But then obviously u € 2 (&). Therefore, Theorem 3.2.1 of [F] applies which states
that u is excessive, in particular, that « is nonnegative. This proves that u =0. 0O

Proof of Theorem1. Let pe]—o0,0[, 0% p =*+1, and u = 0 satisfying (2.2). In
the case p > 1 we assume that « is a subsolution of Lu = 0 on X and in the case p <1 we
assume that u is a supersolution. Let v € Z,,,,(&) N L®(X, m) be a cut-off function with

drI’ (p, p) < dmand for ne N letu, = ((u A Rn) Vv %) and ¢, = uf~'- 2. Let Y be any closed
set such that 1y is constant on X'\ Y. Then by the chain rule and the Cauchy-Schwarz

inequality

3) (p—1)-[dr (¢, u,)
=41 —1/p)* fw?dl (uf?, uf®) + 4(1 —1/p) [y - u?*dl (y, uf'*)
2 4(1—1/p)* [ w2dl’ uE?, uf'?)
— [4uzdl (p, p)]'?- [4(1=1/p)* [ w>dl W2'?, uf'*)]">.
Y Y

Using the assumption (p — 1) | dI'(¢,, u) < 0, the LHS of (2.3) can be estimated as follows

(=1 [dr (@, u) < (p—1) [dl (¢, u,—u).

By the truncation property, it suffices to integrate on the RHS over the sets {u, — u < 0} and
{u, — u > 0}. On each of these sets, the function u, is constant. Therefore,

=D fdl (¢ ty—w)=(p—1) [ d['(@,—uw)==2(p—1) | v -w™'dl(p,u).

{uupn} fu+un}

Splitting up the last term by means of the Cauchy-Schwarz inequality (with arbitrary ¢ > 0)
finally yields

Q4 (=0 [dl($,u,) <e(p—1)*[v* uf™2dl (u, u)+1 | ubdl(p,v)

{u#up}

which for n — oo tends to e(p — 1) [ w? - uP~2dI (u, u) = 4e(1 — 1/p)* [ w*dI' (W"?, u?’?)
(for fixed but arbitrary ¢ > 0). Hence, in the limit n — oo (2.3) yields

25 [0 —1/p) [92dl @, u?)]> < [urdl (p, ) - (1 —1/p)* [ w?dl @, u?'?).
Y Y

Let us now fix a point x € X and choose

p=0,rgAR=T)
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and Y = Bg(x)\B,(x) for 0 <r< R (cf. (1.5)). Let

v()= | wPdm and F(r)=(1-1/p)?* | dI W"? u?'?)
B,.(x) Br(x)

and put
K =(1-—1/p)* | w2*dI (u"? u??).
Y

Then (2.5) implies

[(1—1/p)? [>T W% u?*)]?
(1 —1/p)* [ w*T W?? u?’?)
Y

(2.6) v(R)—v(r) 2 [ uPdl (p,p) 2

PO R=P+K _ o TEG)(R=1?
- = = [F()- (R— 1] [—E————-H]
| T_Fo _F0) F®) |
2 F()- (R—1? [F(R)_F(r)+1]fF(R)_F(r) (R— ).
That is,
o q 1 R=1?

F(  F(R) = v(R)—0()

for 0 <r< R. For fixed r > 0 take R, = 2*-r (k e N). Then from (2.7) we obtain

29 ot +"§ R? >1i R}
. F(r) = F(R,) o v(Reu)—v(R) ~ 4,5 v(R)
© 2
The assumption (2.2), however, implies Y o l’é ) =o00. Hence, (2.8) states that
k=1 k

dr (u”? u?'*) = 0 on B,(x). Since r > 0 was arbitrary this proves that
(2.9 dlr u??u??)=0 onX

and (since & was assumed to be irreducible), therefore, ¥ must be constant on X. This proves
the claim if 0 % p = 1.

The case p = O can be reduced to the case p € ] 0, 1 [ by the following consideration. Let
u be a nonnegative supersolution of the equation Lu = 0 on X and letv(r) = m (B, (x)) satisfy
(2.2). Then for every A € R also the function 4, = u A 4 is a nonnegative supersolution of the

equation Lu, = 0 on X (Lemma 2) and the function v,(r) = | ufdm < A - v(r) satisfies
) By(x)

(2.2). According to our previous results this implies that u, is constant (for every 1 € R),

hence, u is constant. O

Proof of Theorem 2. By Lemma 3 every nonnegative supersolution is excessive.
Hence, let u e L'(X, m) be either excessive or defective. Since & is conservative we have
{ udm = | T,udm for all ¢ > 0. Together with the fact that T,u < u (resp. “>"") forall >0

X

X
this implies

(2.10) T,u=u forallt>0,
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that is, u is invariant for (7}),. ,. From (2.10) it follows that also the function u;, = u A A is
excessive (for every A € R) and by the preceding we see that it is actually invariant. This in
turn implies that the function u* = u —u, is excessive (and even invariant). The sets
{u* > 0} = {u > A} are therefore invariant for & which by assumption is irreducible. Hence,
either u > A or u < A and (since A was arbitrary) finally ¥ = constant. O

3. Recurrence, conservativeness and exponential instability

We investigate three global properties of the Dirichlet form & which have to do with its
“behaviour at c0”’. For each of these properties we give a sharp sufficient condition in terms
of the volume growth r — m(B,(x)).

Theorem 3. Let v(r) = m(B,(x)) be the volume of balls centered at some point x € X
(arbitrary but fixed). If

(3.1) [ ——dr=o0

then & is recurrent. That is, the following equivalent properties hold true:
a) FEvery supersolution u = 0 of the equation Lu = 0 is constant.
b) Every supersolution u € L (X, m) of the equation Lu = 0 is constant.
¢) Every subsolution ue L*(X, m) of the equation Lu = 0 is constant.
d) Every excessive function for the semigroup (T,), , is constant.
e) Every strict potential Gf = T T,fdt with fe L*(X, m), f> 0, is somewhere + 0.
0

f) Every potential Gf = | T,fdt with f 2 0, =% 0, is identically + c.
0

Proof. The fact that (3.1) implies a) is already contained in part a) of Theorem 1
(case “p = 0”°). The equivalence of a), b) and c) follows from Lemma 2. For the equivalence
of d), e) and f) we refer to [F] and [O1]. Finally, the equivalence of a) and d) follows from
Lemma3. O

Theorem 4. Let v(r) = m(B,(x)) be the volume of balls centered at some point x € X
(arbitrary but fixed). If

@ r
(3.2 "1‘ logo () dr =

then & is conservative. That is, the following equivalent properties hold true:
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a) T,1 =1 for some t > 0.
b) T,1 =1 for all t > 0.

¢) For some o > 0 every nonnegative solution u € L* (X, m) of the equation (L — a}u = 0
is identically 0.

d) Forall a > 0 every nonnegative subsolution u € L* (X, m) of the equation (L — o)u = 0
is identically 0.

Proof. The equivalence a) <= b) and the implication d) = c) are obvious.

For the proof of the implication ¢) = b), let u=1—-0a-G,1 (that is,

0

u(x)=1—a- [ e"®T,1(x)dt or, in other words, u(x) = E*[exp — «- 7] for m-a.e. xe X

0

with 7 being the life time of the process P* assoctated with &). Then0 <u <landuisa
solution of the equation (L —a)u=0 on X. To see the latter property, note that
(L—a)1 =—aon X and that G,1 = G¥1 + HY G,1 for every relatively compact open set
Y « X (Dynkin’s formula) where the first term on the RHS is a solution of the equation
(L—o)v=—1 in Y (by definition) and the second term is a solution of the equation
(L—-o)v=01n Y ([F], Theorem 3.3.4). Hence, u is actually a solution of the equation
(L-o2)v=0o0nX.

Now let us turn to the proof of the implication b) = d). Let 7,1 =1 for all > 0 and
let 0 £ u £1 be a subsolution of (L —a)u = 0 on X for some o > 0. Let Y be a compact
subset of X and letv = H)1 be the a-reduced function of the constant 1 on the set X'\Y.
Then 0 £v<1on Xand v=1on X\Y. Moreover, v is a supersolution of the equation
(L — a)v = 0 on X. By the minimum principle (Lemma 4) we therefore obtain ¥ < v on X.
On the other hand, the assumption 7,1 =1 for all # > 0 (together with Dynkin’s formula)
implies

v=H"M1=a H'Gl=0-Gl—a GI1=1—a-G]1.

That ist,

0<ustl-—oa- -G
for all compact subsets Yo X and thus0 Su <1-—-a-G,1=0.

In order to see that (3.2) implies d), we closely follow the argumentation by
A.A. Grigor’yan [G1]. Let ue L*(X, m) be a nonnegative subsolution of the equation
(L —a)u =0 on X (for a fixed but arbitrary a > 0). That is, ue 2, () and

Eu,P)+afu-¢pdm<0

for all nonnegative ¢ € 9,,,,,(£). Now consider the function w: R — 2,,.(£) with
w(t) = u-e** —||lul|,. It obviously satisfies

12

(3.3) | [é’(w(t), o () +}j{ % w(r)- d)(t)dm] dt<0

1
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for every t,,7,eR with 7,<7, and every nonnegative continuous function
¢ : [, 72] = Deomp(€). Moreover, if for m-almost every x € X the function ¢ — ¢ (¢)(x)

0
is piecewise differentiable with derivative Y ¢ (.)(x) then (3.3) is equivalent to

T2 a T2
B4 | |:é’(w(t), d@)— [ w)- T ¢(t)dm} dt + [j w(r) - ¢(t)dm] <0.
Ty X X T
9 & R?
64 o} logv(R )
(3.2) implies that lim #, = oo, that is, for every 7> 0 there exists Ne N with ¢ty = T.
k— o0

Now letus fixr >0andforke Nlet R, = 2*- rand ¢, = . Assumption

2
Furthermore, fix x e X and let ¢, = w, - p? - g, where y, (¢, y) = <R "0y, 2xk(J’)> A 1 and
k

(Qx - Rk)%- ) .

O gy

Adding up (3.3) and (3.4) we get with the above function ¢ = ¢,

j w(ty) - Py (tr)dm — j‘ w(ty) @y (t,)dm

X X

< - 2jé”(w¢)dt+jjw ——d)dmdt jj—a—w-¢dmdt

T1 71 X nxa:

=42 j' I‘Pf g dl (wo,wy)dt—4 j I‘Pk wy g dl(wy, y)dt

2 ""2(Qx_R
-2 jw+‘wf‘gk‘7(§~__—t‘j%idr(w+,ex)dl

+t2 (Qx k)z d d
§Iwi-wi-a &(T—1,— 1) mat

T1

where we have used Leibniz and chain rules and the fact that ¢ does not depend on ¢. Each of
the integrals on the RHS containing dI"(w ., v,) or dI"(w,, 0,) can be splitted up by means
of Cauchy-Schwarz inequality into an integral + | [y? - g, dI"(w,, w,)dr and an integral
containing dI’ (y,, y,) or dI (g, 0,), respectively. This yields

RHS <4 5 jwi - & dI (g, ) dt

T1

16 2
< R2 | | wi-gdmdt

k 11 B2r;\B3/2Ry

where in the last inequality we have used that dI' (¢, 0,) £ dmon X and dI (y,, v,) < 4/ R}
on By, \B; 55, and = 0 elsewhere. Choosing now t, = T—t, and t, = T — 1, ,, we finally
obtain
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§W2+(T‘tk)dm_ j‘ wi(T — t, ) dm

Br,, Bry 41

= f Wi(T“ L) - wf ‘g (T —t)dm — j W%L(T_ Let) " wi ‘& (T =ty )dm
X X
16 T ™ >

=z | | Wi g(ndmadt

k T—ti+1 Bari\B3/2Ry + 1

16 3/2R,)? C
< fg PRIl exp ) -exp ( — 2RV ) < ©

(with C = 8||u||2) by the choice of ¢,. That is,

C
fwWiT—t)dms | wi(T—t,,)dm+ —
Bry, BRry+ 1 Rk
and thus
2 N NYCc 4 C
(3.9 fwiMdms [ wi(T—typdm+ Y —<--—
B, Bry k=o R — 3 r

since T—ty = 0 and w(r) < 0 for ¢ < 0 by definition. Letting r tend to oo, (3.5) implies
w(T) £ 0. Since T > 0 is arbitrary, we obtain that ¥ must vanish. 0O

Remarks. a) Note that the recurrence condition (3.1) is of course satisfied if
(3.6) m(B, (x)) < C-r?

(but also if m(B," (x)) £ C-r?-logr,) for a point x € X, sequence r, — oo and a constant C.
Similarly, the conservativeness condition (3.2) is satisfied whenever
3.7) m(B, (x)) < €

(or m(B,, (x)) < r$7) for a point x € X, a sequence , - oo and a constant C.

b) For general Dirichlet forms, necessary and sufficient conditions for recurrence
respectively conservativeness have been given by Y. Oshima [02]. In the diffusion case, a
sufficient condition for conservativeness (3.7) has been derived by M. Takeda [T]. Using our
Lemma 1 one can show that Takeda’s condition is essentially equivalent to (3.7). The slightly
weaker condition (3.2) has the advantage of being sharp (cf. Remark a) after Cor. 2).

For the canonical Dirichlet form on a complete Riemannian manifold, the statements
of Theorems 3 and 4 are well-known. The recurrence criteria (3.6) and (3.1) are due to
S.Y. Cheng and S.T. Yau [CY] and to L. Karp [K1]. The conservativeness criteria (3.7) and
(3.2) are due to L. Karp and P. Li [KL] and to A.A. Grigor’yan [G1]. They improve
previous conditions in terms of the (Ricci) curvature.

For recurrence or conservativeness conditions in the case of elliptic differential
operators on RY, we refer to E.B. Davies [D2], K. Ichihara [I]. Y. Oshima [O2] and
M. Takeda [T].
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c) In [S2], we prove that condition (3.1) is sufficient and necessary for recurrence
provided we require in addition that a uniform parabolic Harnack inequality holds true
for &. The latter property turns out to be equivalent to the validity of a uniform Poincaré
inequality and a doubling property (cf. [S2]). For the canonical Dirichlet form on a
complete Riemannian manifold these properties are satisfied provided the Ricci curvature
is nonnegative. In this situation, the equivalence of recurrence and property (3.1) was proved
by N. Varopoulos [V].

If & is conservative then obviously || T;|l; ; = || T;|l., = 1 for all £ > 0. According to
Theorem 4 this is for instance the case if

1
lim infﬁ logv(r) <oo.

Our next result concerns the long time behaviour of || ;|| , ,. The semigroup (7)), , is called
exponentially stable on L? (X, m)if || ;| , , — 0 for ¢ — oo or, equivalenty, if || T;|| , , < 1 for
some ¢ > (. We shall see that the condition

lim inf1 logv(r) =0

roo I
implies || T;||, , = 1 for some ¢ > 0 and hence || T;||, , = 1, for all pe[1, c0] and ¢ > 0.
Let 1 be the infimum of the spectrum of the positive semidefinite, selfadjoint operator

— L on L*(X, m). By spectral theory, || T; ||, , = exp(—A - ¢) for all #> 0. The L?-spectral
bound A can be calculated as Rayleigh-Ritz quotient by the formula

A= inf{f:;’dl:r)l: ue 2(68), [utdm + 0}.

Theorem 5. Let v, (r) = inf m(B,(x))/m(B,(x)) be the lower bound for the volume
xeX
growth of balls centered at variable points. If

3.8) lim inf 1 logv, (r) =k

r+o I

k2
then the L*-spectral bound ) satisfies 0 < A £ 7

Condition (3.8) is of course satisfied if liminf ! logv(r) £ k with v(r) = m(B,(x))
for some fixed x € X. roe T

Proof. Let v(R, x) = m(Bg(x)) be the volume of the ball Bg(x). For « > k/2 and

v(R,x) - exp(—2a- R) _ g2
v(1,x)-exp(—20) T 1—¢

Let us fix x and R and consider the function u : y +» (e * ¢ — ¢~ *'R), which (according to

¢ > 0 there exists a number R > 1 and a point x € X with
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Lemma 1) satisfies dI' (u, u) < o - e~ 2*'%<dm (and, obviously, = 0 in X \ Bz (x)) and which
therefore lies in 2 (&£). Then

| (exp(—a-g,) —exp(—a- R))*dm

1 futdm _ g
- = => R
A= Ewu) ~ o | exp(—2a-g,)dm
Br
| exp(—2a-g,)dm | exp(—2a- R)ydm
>(1—¢) 2= (1/e—1) —2=

o? [ exp(—20-g)dm a® | exp(—2a-g.)dm
BR BR

S 1—¢ 1~s.v(R,x)~exp(—2a-R)> 1—23.

= 2 e v(l,x)-exp(—20) - o

This proves the claim. 0O

Corollary 2. If the volume v(r) = m(B,(x)) of balls centered at some point x € X
(arbitrary but fixed) grows subexponentially, i.e. if

(3.9) liminf - logo(r) = 0,

r+o I

(or, more generally, if liminf v, (r) = 0 with v, (r) = inf m(B,(x))/m(B,(x))) then the semi-
r— o xeX

group (T,),- o is exponentially instable on each of the spaces L? (X, m), p € [1, 00]. That is, the
Sfollowing equivalent properties hold true:

a) ||T\l,,, =1 for some t > 0.

b) | T,ll,,=1forall t>0 and all pe[1, 0].

c) The bottom of the spectrum of —L is 0.

d) inf{€(u,u):ue 2(6), fu*dm =1} =0.

Remarks. a) The assumptions in Theorems 3, 4 and 5 are sharp in the following

sense: given a smooth function v (with v, v* = 0) which does not satisfy (3.1) (or (3.2) or (3.8))
then there exists a complete Riemannian manifold X with v(r) = m(B,(x)) for some

x € X such that the canonical heat semigroup on X satisfies jT,dt oo (or T,1z1 or
2 4]

I T;ll5,, <exp (—— kz t>, resp.). See [K1] for (3.1), [G2] for (3.2) and [B] for (3.8).

b) On Riemannian manifolds, the volume v(r) of the ball B, (x) (for a fixed point x € X)
can be estimated in terms of a lower bounded K (r) for the Ricci curvature on B, (x) according

to:
(3.10) o(r) < C-rV-exp(JY(N=1)-K(r) - r)
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where N denotes the dimension of X and C is a constant depending on x (Bishop’s
comparison theorem, cf. [Sa]). Conditions in term of the Ricci curvature, however, are not
stable under quasi-isometric changes of the Riemannian metric whereas conditions on the
volume growth are stable (cf. following remark).

c¢) Each of the conditions (3.1), (3.2) and (3.8) on the volume growth r > m (B, (x)) of
balls derived from a Dirichlet form & on L? (X, m)is satisfied if and only if the same condition
is satisfied for the volume growth (B, (x)) of balls derived from another Dirichlet form &
on L?(X, m) with the property that for some ke [1, [

(3.11) %'&(u,u)gé?(u,u)ék-é”(u,u)
(for all ue 2(&) = 2(£)) and
(3.12) k-m.

“m<m

lIA
1A

x>l =

In order to see this, let us mention that (3.11) implies % T, u) < Fu,u) k- T'(u,u)
which together with (3.12) implies B, (x) B, (x) < B,,(x) and hence

1 ~
P (B () = m(B,(x)) < k- m(B,,(x)).

For the “if’-part in the above assertion it suffices that (3.12) and the upper inequality in
(3.11) are satisfied.

d) It is worthwhile to mention that recurrence as well as exponential instability is
preserved under quasi-isometric changes (i.e. changes of & and m satisfying (3.11) and
(3.12)). In the case of exponential instability, this is immediate from the definition of 1 as a
Rayleigh-Ritz quotient. In the case of recurrence, this is an obvious corollary of Y. Oshima’s
recurrence criterion [O2].

In contrast to that, conservativeness is not preserved under quasi-isometric changes,
see T. Lyons [L2].

4. Appendix

4.1. The energy measure. In this section we will give a brief survey on properties of the
energy measure I'. Almost all of these properties have already been stated by M. Fukushima
[F1, Y. Lejan [Le] and U. Mosco [M]. Here we only give proofs of these properties which
are not stated previously.

We recall that for ue 2(8) n L*(X, m) the Radon measure I' (i, u) is defined by the
formula

J bl (1) = 8 ) — 5 86, 9)
X
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foreveryue 2(&) n L*(X, m) and every ¢p € 2(8) n b, (X). Alternatively, it can be defined
by the formula

o1
J ¢dU(u, u) = lmgz §§ o) [u(x) — u(y)]? T,(x, dy) m(dx)
X Lind XX

for every ue 2(&6) n L*(X, m) and every ¢ € €,(X). For ue 2(&) the measure I'(u, u) is
obtained as the increasing limit of the measures I' (u,, u,) with u, = (u A n) v (—n). These
are (nonnegative) finite Radon measures on X which do not charge exceptional sets (i.e. sets
of capacity zero). From the quadratic form u+— & (u, u) on 2 (&) one obtains by polarization
the symmetric bilinear form (u, v) — I'(4, v) on (&) with values in the signed Radon
measures (of finite total variation). These energy measures have the following basic
properties.

i) Locality. From the strong locality of & one obtains the strong locality of I':
1¢dI'u,w) =0

for all functions u, w € 2 (&) and all open sets G = X on which uis constant. This immediately
implies the following locality of I':

1gdl (u, w) = 15dI (v, w)

for all open sets G = X and all functions u, v, w e 2(&) with u = v on G. Both properties
extend to arbitrary measurable sets G = X. In the general case, however, one has to
emphasize that the equality u = v must hold (for the quasi-continuous versions) q.e. on G
and not only m-a.e. (In order to prove this extension, note that the truncation property stated
below implies 15dl'(u, w) —1gdl (v, w) =1gdl'(u—v,w) =15"1,,,,dI'(u—v,w) and
that the RHS vanishes if {u + v} N G is exceptional.)

The locality of I' allows to extend its definition to the set 2,,.(€) being the set
of all m-measurable functions ¥ on X for which for every compact set ¥ < X there exists
a function v’ € 2 (&) with u = ¥’ m-a.e. on Y. For u, ve 2,,.(£) the signed Radon measure
I'(u,v) will be defined via its restriction to relatively compact open sets G = X by
15dI (u,v) =15dI(u',v") where u’ and v’ are suitably chosen functions in 2(&) which
coincide on G with u and v, respectively.

ii) Cauchy-Schwarz inequality. For u,ve 2(&§) and f,ge [°(X, m) we have the
estimates

| [ fedl (u,v) < ([ f2dI (u, w)"*- ([ g*dI (v, v))*/?
X X X

<

N -

{ f2dI(u, u) + % | g%dl’ (v, v).
X X

iii) Continuity. Let (u,),.x be a sequence of functions in 2 (&) withu, - ue 2(£)in
the pseudo norm ]/2 Then

§fdr (u—u,,v) > 0

13 Journal fir Mathematik. Band 456
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for all ve 2 (&) and all fe L*(X, m) (since the modulus of the LHS can be estimated from
above by || fl - & (u — u,, u — u,)**- &(v, v)'/?). This in turn implies that (under the same
assumptions)

§ far (u, u,) - § fdr (u,u).

iv) Truncation property. A straightforward consequence of the locality is the trunca-
tion property:
dr' (u Av,w) =1y, ., dl’(u, w) + 1,5 ,dI (v, w)

for all u, v, we 2,,.(&). In particular,

loc
ar(u,,w) =1y,50dl(u,w) and dl'(uAv,unv)=1, ,dlWw,u)+1,,,dI (v, v).

(The formula for dI'(u,, w) was proved in [M]. From this one, the other two formulae
can be easily deduced in the following way:

dr(unv,w)=dlN(v— (@ —u),,w)=dl v, w)—1,.,dT (0 —u,w)
= 1(u<v)d1‘(u, w)+1{“gv)d1“(v, w)

and
dlr(u Av,u nv) =1, ,dlu,u Anv)+ 1, ,dl 0, uAv) =1, ,dl (W, u) +1,,,dl (v, ).

Note, however, that in our first formula the term 1,,_,dI’ (4, w) occurs which in a similar
formula in [BM2] was forgotten.) Obviously, the truncation property also implies the
contraction property

dr(u’, u") < dI(u, u)
where u* = (u A 1) v 0.

v) Leibniz rule. The strong locality of & (or I') can be proven to be equivalent to the
validity of the Leibniz rule:

dr(u-v,w) = udl'(v, w) + vdl (u, w)

for all u,ve 2,,.(6) N L} (X, m) and we 9D,,.(6).

vi) Chain rule. Let 5 € %, (R) with bounded derivative . Then the chain rule states
that u € 9,,.(&) implies n(v) € 2,,.(€) and

dr (n(w), ) = n' (W dI (u, ¢)

for all ¢ € 2,,.(8) N LY. (X, m). Obviously, the above formula also holds true for the
function 7 : ¢ +— | ¢|? provided we restrict ourselves to functions u with ess sup u < oo in the
case p > 1 or with ess inf u > 0 in the case p < 1. We only mention that also a chain rule for

functions n € %, (R*) of several variables holds true.
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4.2. Assumption (A) and the distance function. This section is devoted to the inves-
tigation of the distance g. Also our basic Assumption (A) will be discussed. In this section we

do not assume a priori that (A) is satisfied. Besides the distance ¢ (defined by (1.3)) we
consider the smaller distance

4.1) 0%(x,y) = sup {u(x) —u(y): ue 2(8) N 6,(X), dI'(u, u) < dm on X}

which of course also defines a pseudo metric on X. Instead of requiring (A) we make the
weaker

Assumption (A’). The topology induced by g is equivalent to the original topology on X.

Under (A'), one always has 0 < g(x, y) < oo whenever x # y. In order to see the upper
inequality, note that (under (A")) for every x € X the set X (x) = U B,(x) is open and closed.

r>0

Since & is irreducible and local, X is connected and thus X (x) =

Asssumption (A’) also implies that for every fixed x € X and sufficiently small r > 0 the
ball B, (x)is relatively compact. However, it does not necessarily imply that a/l the balls B, (x)
are relatively compact. In [S3] we prove that under (A’) the fact that all balls are relatively
compact is equivalent to the completeness of the metric space (X, ¢). For the canonical
Dirichlet form on a Riemannian manifold X, the completeness of (X, ¢) means that X
has no boundary. In [S3] it is also shown that under (A’) the boundary of the open ball
B,.(x) = {y:eo(x,y) <r} is given by the sphere S,(x) = {y:o(x, y) = r} (which in general
metric spaces might be a much bigger set than the boundary of B,(x)).

All the preceding remarks also apply to g° if we assume that (A’) is satisfied with ¢° in
the place of ¢.

Lemma 1’. a) Let ¢ satisfy (A’). Then for every xe X the distance function
0,:y > o(x,y) on X satisfies 9, € D,,.(§) N 6(X) and

4.2) dr(g,,0,)<dm onX.

Moreover, for every r >0 the cut-off function g, ,:y — (r —o(x,)), on X also satisfies
4.2) and ¢, , € D(6) "6, (X) if (and only if) B,(x) is relatively compact.

b) The same assertions as in a) hold true with @° instead of @.

Proof. a) For every ne N there exists a countable number of points y; = ye X,
ieN, such that {B,,(y):i€ N} is a covering of the space X. For every ie N there
exists a function ¢, = ¢ e P, ()€ (X) with dI'($,Pd)<dm on X and

:(x)— ¢.(y) = 0(x, ¥) — % Since @, is one of the admissible functions in the defini-

tion of the distance ¢ it also satisfies ¢;(y) = ¢,(x) —o(x, y) for all ye X as well as

é:.(») £ d.(y) + ! for all yeB,,(y;). Together with the triangle inequality
n
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1 ~ -
e(x,y) 2 e(x,y)—— for all yeB,,(y,) the latter yields ¢,(y) = ¢:(x) —e(x,») + %
for all y € By,,(y,)-

Let ¢;:y — (:(x) — $;(3)) .. Then ¢, = ¢ satisfies

(4.3) ¢.€ D,,.() n€(X) with dI'(¢;, ;) <dm onX,
4.4 0<¢;(y) Seo(x,y) forall yeX,

3
4.5) &:(») 2 e(x,y) — . for all ye By, (y)).

Properties (4.3)—(4.5) remain valid if we replace ¢; by sup ¢;- Hence, we may and will
1sjsi

assume from now on that the sequence ¢, is also increasing in i.

Now let X, = X be a relatively compact open set. Since the distance function is by
assumption (A’) a continuous function on X, it is bounded on X, say ¢(x, y) < kfory e X,.
Moreover, there exists a function p € 2(&) N %, (X) with compact support Y < X satisfying
0<yw=<1onXandy=1onX,(F], Lemma1.4.2). Let &, = ®™ = ¢™ A (k - p). Then
D,e 2(6)N%,(X)and @, = ¢, on X,.

Consider the family J = {®#™:ie N,ne N} ¢ 2(&) N 6, (X). The set & is uniformly
bounded in the norm ]/éT1 [.]:¢p+— ]/é"’ (¢, ¢) + [ $*dm according to

& (P, 9)) + [Pidm < [ dI'(¢;, ¢;) + K> & (p, ) + k> [yp>dm
Y
Sm(Y)+k* E@p,v)+k*[p*dm<oo.

Hence, for every sequence in & there exists a cluster value ® € 2(&) N [*(X, m). Let
3
@™ = lim &". Properties (4.4) and (4.5) imply that ¢, — - < ®™ <o, on X, and (4.5) implies

dr(®™, #™) < dm on X,. Both properties remain valid if we replace ™ by sup ¢%.

151ign

Hence, we may and will assume from now on that the sequence ™ is increasing in n.

The sequence {®#™}, is again uniformly &,-bounded. Hence, @ = lim #™ exists in

@ € 9(8) n [°(X, m). From the respective properties of ™ it follows that @ = ¢, on X, and
dr(®, ) < dmon X,. Thatis, dI'(g,, 9,) < dm on X, and (since X, was arbitrary) actually

(4.6) dr(e,,0,) <dm onJX.
The rest is obvious.

b) The proof runs in the same way. Now the functions ¢ are in 2 (&) N €, (X).
The functions ¢ are again in 9,,.(§) N4 (X). O

The proof of Lemma 1 is inspired by the construction of cut-off functions in [BM2].
An independent proof of Lemma 1 was found by M. Biroli (private communication).
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Proposition 1. a) The distance g satisfies (A)) if and only if ¢° satisfies (A').

b) Under (A’) for every x € X andr > 0 the ball B,(x) is relatively compact if and only if
the ball B? (x) is relatively compact and in this case B,(x) = BP(x).

¢) The distance g satisfies (A) if and only if o° satisfies (A) and in this case ¢ = °.

Proof. a) Let g satisfy (A’). Then for fixed x € X and ¢ > 0 sufficiently small the ball
B, (x) is relatively compact. Lemma 1’ implies that o, ,€ 2(&) N %,(X). Hence, g, , is an
admissible function in the definition of the distance ¢°(x, .) which proves @2 2 ¢, in B,(x).
Since the converse inequality holds true anyway, we have B,(x) = B°(x).

Now assume conversely that ¢° satisfies (A’). Then again for fixed xe X and ¢ >0
sufficiently small the ball B (x) is relatively compact. Let y = 2 . Then for every admissible
function u in the definition of g (i.e. u e 2,,.(&) N € (X) with dI'(u, u) < dm) the function
v=uA p is an admissible function in the definition of ¢° (i.e. ve 2(8) N %,(X) with
dr'(v,v) < dm) because dI'(v,v) =1, ., dl'(u, u) + 1, ,dl (v, p) < dm. Hence, 02 2o, in
BJ, (x). Since always ¢° < ¢ on X this proves that also ¢ satisfies (A").

b) If B°(x) is relatively compact then also B,(x) is relatively compact since always
B,(x) = B?(x). If B,(x) is relatively compact then as in part a) it follows that B (x) = B°(x).

¢) is obvious from a) and b). O

4.3. Irreducibility. Let us close with some comments on the assumption that & is
irreducible. Here we neither require (A) nor (A’). We recall that an m-measurable set Y < X
is called invariant for & if ue 9(&) implies 1, - ue 2(&) and

Ew,u)=EUyu, 1yu) + é”(lx\yu, Txyt).

Proposition2. Let & be a strongly local, regular Dirichlet form andlet Y = X. Then the
following statements are equivalent:

a) 1,e 9,,.(&).

b) The set Y is invariant for &.

¢) T.(1y-u) =1y T,u for all t >0 and all ue L*(X, m).

d) The function 1, is excessive for (T,), -

e) Y = {u> 0} for some excessive function u.

f) Y= {u> 0} for some function ue D,,.(8) with dI"(u, u) = 0 on X.

Moreover, in any of the above assertions one may replace Y by X\ Y (since Y is invariant
if and only if X\Y is invariant).
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Proof. We only sketch the arguments. For the equivalence of b) and ¢) we refer to
[O1]. The implications c) = d) = e) and b) = a) = f) are obvious. The implication ) = ¢)
follows from general potential theoretic principles (cf. [DM], XI1.19) applied to the
semigroup (P,),., of sub-Markovian kernels associated with the L?(X, m)-semigroup
(T),> o- It remains to prove that f) implies €). To this end, let u € 2,,.(&) with dI'(u, u) = 0
on X. Then (due to the truncation property) also u, € 9,,.(¢) and dI'(u,,u.) =0 on X.
Cauchy-Schwarz inequality implies dI'(u,,v) = 0 on X for all ve 9,,. (&), that is, u, is a
nonnegative solution of the equation Lu, =0 on X. According to Lemma 3, u, is
excessive. 0O

We also recall that & is called irreducible if for every invariant set Y < X either
m(Y)=0orm(X\Y)=0.

Remarks. a) In view of the above Proposition, it is easy to see that a strongly local,
regular Dirichlet form is irreducible if and only if for all ue 9, (&)

dl(u,u)=0 on X <> uis constant on X.

In order to see the latter property, let u, = (u — 1), for 1€ R. By the truncation property,
u; € D,,.(&) with dI'(u,, u;) = 0 on X. Hence, the set {u, > 0} = {u > A} is invariant for &.
Since & was assumed to be irreducible this means that either m{u > 1} =0orm{u <1} =0
and since this holds true for all A € R the function ¥ must be constant.

It is also well-known that & is irreducible if and only if every excessive function u is
either =0 or >0 on X.

b) If & isirreducible then X is connected. The converse is in general not true. However,
it holds true if all (locally bounded) solutions of the equation Lu = 0 on X are continuous.
This is, for instance, the case in Riemannian geometry where the irreducibility of the
canonical Dirichlet form on X is equivalent to the connectedness of the manifold X.

c) If we do not assume that & is irreducible then the assertion of Lemma 1 (and 1') is
still true with X (x) = U B, (x) instead of X. The assertions of Theorem 1 and 2 are changed

r>0

into the statement that the respective functions are constant on each subset ¥ = X on which
& is irreducible.

If we assume that X is connected instead of & being irreducible) t hen Assumption (A)
still implies that ¢ is a metric, in particular, X(x) = X for any xe X. Under these
assumptions, the first assertion of Theorem 3 is still valid, namely, condition (3.1) implies
that & is recurrent. (Note, however, that in this case “recurrence” just means that every
potential Gf with = 0 only admits the values 0 and oo, cf. [F].)

Under the same assumptions, all assertions of Theorem 4 are still valid. (In order to see
this, it suffices to consider the claim on each irreducible.subset of X.)

The assertions of Theorem 5 and Corollary 2 are even valid without assuming
connectedness of X.
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