Dozent: Karl-Theodor Sturm Assistent: Atle Hahn

Analysis I

Aufgabe 1. Setze $S_n^p := 1^p + 2^p + \cdots + n^p$ für $n \in \mathbb{N}, p \in \mathbb{N}_0$.

i) Beweise die folgende Formel:

$$(p+1)S_n^p + {p+1 \choose 2}S_n^{p-1} + \dots + {p+1 \choose p}S_n^1 + S_n^0 = (n+1)^{p+1} - 1$$

ii) Gebe mit Hilfe der Formel in Teil i) einen neuen Beweis für die beiden Aussagen in Aufgabe 1 i) und ii) auf Blatt 1 an. Berechne außerdem $1^4 + 2^4 + \cdots + n^4$ explizit.

Aufgabe 2. Zeige:

- i) $\binom{n+1}{m+1} = \sum_{k=m}^{n} \binom{k}{m}$ für alle $m, n \in \mathbb{N}$ mit $n \ge m$. ii) Zeige: Für alle $x, y \in \mathbb{R}, n \in \mathbb{N}$, gilt $\binom{x+y}{n} = \sum_{k=0}^{n} \binom{x}{n-k} \binom{y}{k}$, wobei wir $\binom{z}{k} := \prod_{j=1}^{k} \frac{z-j+1}{j}$ für $z \in \mathbb{R}, k \in \mathbb{N}_0$, gesetzt haben.

Aufgabe 3. Die Überlegungen in den folgenden beiden Teilaufgaben spielen in der Statistischen Physik eine wichtige Rolle (Stichworte: "Fermi-Statistik" bzw. "Bose-Einstein-Statistik"):

- i) Auf n Zellen sollen k nicht unterscheidbare Teilchen so verteilt werden, dass jede Zelle höchstens ein Teilchen enthält. Zeige, dass es genau $\binom{n}{k}$ verschiedene Verteilungen gibt.
- ii) Auf n Zellen sollen wieder k nicht unterscheidbare Teilchen verteilt werden. Diesmal lassen wir jedoch die Einschränkung in Teilaufgabe i) weg, d.h. eine Zelle darf diesmal beliebig viele Teilchen enthalten. Zeige, dass es jetzt genau $\binom{n+k-1}{k}$ verschiedene Verteilungen gibt.

Hinweis: Ordne jeder möglichen Zellenbelegung eine Zeichenkette bestehend aus den beiden Zeichen • und | zu (die • bzw. | symbolisieren dabei die Teilchen bzw. die Trennwände zwischen den Zellen).

Beispielsweise werde der Zellenbelegung

die Zeichenkette $\bullet \bullet \mid \bullet \bullet \mid \mid \mid \mid \bullet \bullet \bullet \mid$ zugeordnet.

Aufgabe 4. Beweise die folgende Verallgemeinerung der Binomischen Formel:

Für jedes $n \in \mathbb{N}$ und jedes $k\text{-Tupel }a_1,a_2,\ldots,a_k$ reeller Zahlen gilt

$$(a_1 + a_2 + \dots + a_k)^n = \sum_{p_1 + p_2 + \dots + p_k = n} \frac{n!}{p_1! \dots p_k!} a_1^{p_1} \dots a_k^{p_k}$$

Mit der Summe auf der rechten Seite ist dabei die Summe über alle k-Tupel nicht-negativer ganzer Zahlen p_1, p_2, \ldots, p_k mit der Zusatz-Eigenschaft $p_1 + p_2 + \cdots + p_k = n$ gemeint.