Stochastic Analysis

Exercise sheet 9 from 19/12/2008

Exercise 1 - Martingale representation (10 points)

Let B be a Brownian motion and $\left(\mathcal{F}_{t}^{B}\right)$ the (augmented) Brownian filtration. Define $\beta_{t}:=\int_{0}^{t} \operatorname{sgn}\left(B_{s}\right) d B_{s}$.
i) Show that β is also an $\left(\mathcal{F}_{t}^{B}\right)$-Brownian motion.
ii) From local time theory one knows that $\beta_{t}=\left|B_{t}\right|+L_{t}$ where L denotes an $\left(\mathcal{F}_{t}^{|B|}\right)$-adapted process (local time in 0). Deduce from this property that B has no representation of the form

$$
B_{t}=c+\int_{0}^{t} H_{s} d \beta_{s}
$$

Exercise 2-Time change (10 points)

i) Let M be a local martingale with $\langle M\rangle_{\infty}=\infty$ almost sure. Show that we have the following equation in the almost-sure-sense:

$$
\limsup _{t \rightarrow 0} \frac{M_{t}}{\sqrt{2\langle M\rangle_{t} \log \log \langle M\rangle_{t}}}=1
$$

ii) Prove the following converse to exercise 4.3: If M is a continuous local martingale vanishing at zero and if $\langle M\rangle$ is deterministic, then M is a Gaussian martingale and has independent increments.

Exercise 3-Time discrete mass transformation (10 points)

i) The ordinary random walk with drift: Consider on the space $\{-1,1\}^{\mathbb{N}}$ the product measures \mathbb{P} and \mathbb{Q} that are uniquely defined by $\mathbb{P}\left(\omega_{i}=1\right)=p \in(0,1)$ and $\mathbb{Q}\left(\omega_{i}=1\right)=q \in(0,1)$. For $n \in \mathbb{N}$ let \mathcal{F}_{n} denote the σ-Algebra generated by the first n coordinates. Show that for every n the restriction $\left.\mathbb{P}\right|_{\mathcal{F}_{n}}$ is absolutely continuous with respect to $\left.\mathbb{Q}\right|_{\mathcal{F}_{n}}$ and calculate the Radon-Nikodym density. Show that \mathbb{P} is not absolutely continuous with respect to \mathbb{Q} for $p \neq q$.
ii) Let N_{1}, \ldots, N_{n} be independent $\mathcal{N}(0,1)$-distributed random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and $\mu \in \mathbb{R}^{n}$ a constant. Define a probability measure \mathbb{Q} on (Ω, \mathcal{F}) by

$$
d \mathbb{Q}(\omega):=\exp \left(\sum_{i=1}^{n} \mu_{i} N_{i}(\omega)-\frac{1}{2} \sum_{i=1}^{n} \mu_{i}^{2}\right) d \mathbb{P}(\omega)
$$

What is the distribution of the N_{i} under \mathbb{Q} ?

Exercise 4 - An exponential martingale that is not a martingale (10 points)

Let B be a one-dimensional standard Brownian motion.
i) Show that the stopping time $T:=\inf \left\{t: B_{t}^{2}=1-t\right\}$ is almost surely finite.
ii) Define $H_{s}:=-\frac{2}{(1-s)^{2}} B_{s} 1_{\{T \geq s\}}$. Show that for every $t \in[0,1]$ we have almost surely

$$
\int_{0}^{t} H_{s}^{2} d s<\infty
$$

iii) Define $M_{t}:=\int_{0}^{t} H_{s} d B_{s}$. Show that $M_{1}-\frac{1}{2}\langle M\rangle_{1} \leq-1$ almost sure.
iv) Show that $\mathcal{E}(M)_{1}<1$ and therefore $\mathcal{E}(M)$ is not a martingale.

