Stochastic Analysis

Exercise sheet 8 from 12/12/2008

Exercise 1 - Rotations of Brownian motion (10 points)

Let B be a d-dimensional Brownian motion and $O(t)=O_{i j}(t)$ a progressively measurable process taking its values in the set of $d \times d$-orthogonal matrices. Prove that the process X defined by

$$
X_{t}^{i}:=\sum_{j=1}^{d} \int_{0}^{t} O_{i j}(s) d B^{j}(s)
$$

is again a d-dimensional Brownian motion.

Exercise 2-Lévy's characterization theorem (10 points)
Let $B=\left(B^{(1)}, B^{(2)}, B^{(3)}\right)$ be a three-dimensional standard Brownian motion and define

$$
X:=\prod_{i=1}^{3} \operatorname{sgn}\left(B_{1}^{(i)}\right)
$$

as well as the new coordinates

$$
M_{t}^{(1)}:=B_{t}^{(1)}, \quad M_{t}^{(2)}:=B_{t}^{(2)}, \quad M_{t}^{(3)}:=X B_{t}^{(3)} .
$$

Show that each of the pairs $\left(M^{(1)}, M^{(2)}\right),\left(M^{(1)}, M^{(3)}\right)$ and $\left(M^{(2)}, M^{(3)}\right)$ is a two-dimensional Brownian motion, but $\left(M^{(1)}, M^{(2)}, M^{(3)}\right)$ is not a three-dimensional Brownian motion. Explain why this does not provide a counterexample to Lévy's characterization theorem.
Hint: In the two-dimensional case show that the components constitute independent one-dimensional Brownian motions.

Exercise 3-Characterization of local martingales via exponential martingales (10 points)
Let M an A be adapted continuous processes where in addition A is of finite variation. Suppose, for every $\lambda \in \mathbb{R}$, the process

$$
\exp \left(\lambda M_{t}-\frac{\lambda^{2}}{2} A_{t}\right)
$$

is a local martingale. Show that M is a local martingale with $\langle M\rangle=A$.
Exercise 4 - Computation of exponential martingales by multiple Itô integrals (10 points)
For $n \in \mathbb{N}_{0}$ define polynomials $H_{n}(x, y)$ by

$$
H_{n}(x, y):=\left.\frac{\partial^{n}}{\partial \alpha^{n}} \exp \left(\alpha x-\frac{1}{2} \alpha^{2} y\right)\right|_{\alpha=0}, \quad x, y \in \mathbb{R}
$$

i) Show that these polynomials satisfy the recursive relations

$$
\frac{\partial}{\partial x} H_{n}(x, y)=n H_{n-1}(x, y)
$$

for all $n \in \mathbb{N}$ as well as the backward heat equation

$$
\frac{\partial}{\partial y} H_{n}(x, y)+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}=0
$$

for all $n \in \mathbb{N}_{0}$.
ii) For any continuous local martingale M verify the multiple Itô integral computation

$$
\int_{0}^{t} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{n-1}} d M_{t_{n}} \ldots d M_{t_{2}} d M_{t_{1}}=\frac{1}{n!} H_{n}\left(M_{t},\langle M\rangle_{t}\right)
$$

and the expansion

$$
\exp \left(\alpha M_{t}-\frac{\alpha^{2}}{2}\langle M\rangle_{t}\right)=\sum_{n=0}^{\infty} \frac{\alpha^{n}}{n!} H_{n}\left(M_{t},\langle M\rangle_{t}\right)
$$

