Stochastic Analysis

Exercise sheet 6 from 11/21/2008

Exercise 1 - Examples of Lebesgue-Stieltjes integrals (10 points)

Calculate explicitly the following Stieltjes integrals:

$$
\begin{aligned}
\text { i) } & \int_{0}^{T}(\sin (x) d \cos (x)+\cos (x) d \sin (x)) . \\
\text { ii) } & \int_{0}^{T} 1_{[1, y)}(x) d|x-2| . \\
\text { iii) } & \int_{0}^{T}|x-2| d_{[1, y)}(x) .
\end{aligned}
$$

Exercise 2-Simple integration by parts (10 points)

Let f and g be two real functions with finite variation on compacts. Show that the following integration-byparts formula then holds for all $t \geq 0$:

$$
f(t) g(t)=f(0) g(0)+\int_{0}^{t} f(s) d g(s)+\int_{0}^{t} g(s-) d f(s) .
$$

As usual $f(s-):=\lim _{u \uparrow s} f(u)$ denotes the left limit of the function f at point s.
Exercise 3 - Linearity of the Itô-integral operator (10 points)
Let X be a continuous semimartingale and let \mathcal{B}^{0} denote the algebra of all bounded \mathcal{F}_{0}-measurable random variables. Show that the map

$$
\mathcal{B} \rightarrow \mathcal{S}, \quad H \mapsto H \bullet X
$$

ist \mathcal{B}_{0}-linear, that is to say: For all $a, b \in \mathcal{B}_{0}$ and $H, K \in \mathcal{B}$ we have

$$
\int_{0}(a H+b K) d X=a \int_{0} H d X+b \int_{0} K d X
$$

As usual \mathcal{B} denotes the set of all adapted, left-continuous processes that are pathwise locally bounded and \mathcal{S} is the set of all continuous semimartingales.

Exercise 4 - Stochastic integrals and derivatives (10 points)
Let H be an adapted continuous process and B a Brownian motion. The aim of this exercise is the calculation of the following stochastic derivation

$$
\lim _{h \rightarrow 0} \frac{1}{B_{t+h}-B_{t}} \int_{t}^{t+h} H_{s} d B_{s}
$$

for every $t \geq 0$, where the limit is taken in probability. As we will see, the result will be similar to the Fundamental Theorem of Calculus.
Fix $t \geq 0$ and let $\epsilon>0$.
i) Show that there exists $K_{\epsilon}>0$, independent of t, such that

$$
\mathbb{P}\left(\left|\frac{1}{B_{t+h}-B_{t}} \int_{t}^{t+h}\left(H_{s}-H_{t}\right) d B_{s}\right|>\epsilon\right) \leq \mathbb{P}\left(\left|\frac{1}{\sqrt{h}} \int_{t}^{t+h}\left(H_{s}-H_{t}\right) d B_{s}\right|>\frac{\epsilon}{K_{\epsilon}}\right)+\frac{\epsilon}{2}
$$

ii) Define the stopping time

$$
T_{\delta}:=\inf \left\{s \in[t, t+\delta]:\left|H_{s}-H_{t}\right|^{2} \geq \frac{\epsilon^{3}}{4 K_{\epsilon}^{2}}\right\}
$$

Show that for every $h \leq \delta$ we have

$$
\mathbb{P}\left(\left|\frac{1}{\sqrt{h}} \int_{t}^{t+h}\left(H_{s}^{T}-H_{t}\right) d B_{s}\right|>\frac{\epsilon}{K_{\epsilon}}\right) \leq \frac{\epsilon}{4}
$$

iii) Show that there exists $\delta>0$ such that for all $h \leq \delta$ we get $\mathbb{P}\left(H^{T} \neq H\right.$ on the set $\left.[t, t+h]\right) \leq \frac{\epsilon}{4}$ and consequently

$$
\mathbb{P}\left(\left|\frac{1}{B_{t+h}-B_{t}} \int_{t}^{t+h}\left(H_{s}-H_{t}\right) d B_{s}\right|>\epsilon\right) \leq \epsilon
$$

The amount of the previous results gives rise to

$$
\mathbb{P}-\lim _{h \rightarrow 0} \frac{1}{B_{t+h}-B_{t}} \int_{t}^{t+h} H_{s} d B_{s}=H_{t} .
$$

