Stochastic Analysis

Exercise sheet 3 from 10/31/2008

Exercise 1 - Characterization of the Brownian motion (10 points)

Let B denote a one-dimensional continuous process, starting at 0 . Suppose that for all $\alpha \in \mathbb{R}$ the process M , defined by

$$
M_{t}:=\exp \left(\alpha B_{t}-\frac{\alpha^{2}}{2} t\right)
$$

for all $t \in \mathbb{R}_{+}$, is a martingale with respect to the filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$. Show that B is an $\left(\mathcal{F}_{t}\right)$-Brownian motion, i.e.

- The distribution of $B_{t}-B_{s}$ equals $\mathcal{N}(0, t-s)$.
- $B_{t}-B_{s}$ is independent from \mathcal{F}_{s}.

Since we already know that the converse is also true, this gives a characterization of the Brownian motion.
Hint: The Laplace transform of a random variable X characterizes uniquely its distribution. In particular, X is $\mathcal{N}(0,1)$ distributed iff $\mathbb{E}\left[e^{\lambda X}\right]=e^{\frac{\lambda^{2}}{2}}$ for all $\lambda \in \mathbb{R}$.

Exercise 2-Construction of a random walk (10 points)
Let $\left(M_{t}\right)_{t \geq 0}$ be a continuous martingale on a probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$ such that

$$
\mathbb{P}\left(\sup _{t \geq 0} M_{t}=+\infty, \inf _{t \geq 0} M_{t}=-\infty\right)=1
$$

Define $T(0):=0$ and $T(n):=\inf \left\{t>T(n-1):\left|M_{t}-M_{T(n-1)}\right|=1\right\}$ for $n \geq 1$. Show that the discrete process $\left(M_{T(n)}\right)_{n \in \mathbb{N}}$ constitutes an ordinary random walk, i.e. there exists an iid-sequence $\left(\xi_{i}\right)_{i \in \mathbb{N}}$, where ξ_{1} is uniformly distributed on the set $\{-1,1\}$, such that for all $n \in \mathbb{N}$

$$
M_{T(n)}=\sum_{i=1}^{n} \xi_{i}
$$

Exercise 3 - Poisson process (10 points)

Let $\left(N_{t}\right)_{t \geq 0}$ be a càdlàg version of an $\left(\mathcal{F}_{t}\right)$-Poisson process with intensity $\lambda>0$, starting at 0 . Recall that this means exactly:

- The distribution of $N_{t}-N_{s}$ equals $\mathcal{P}(\lambda(t-s))$.
- $N_{t}-N_{s}$ is independent from \mathcal{F}_{s}.

Furthermore define the process X by

$$
X_{t}:=\exp \left(i u N_{t}-\lambda t\left(e^{i u}-1\right)\right)
$$

for $u \in \mathbb{C}$ and for all $t \in \mathbb{R}_{+}$. Show:
i) The compensated Poisson process $\left(N_{t}-\lambda t\right)_{t \geq 0}$ is a martingale.
ii) The process $\left(\left(N_{t}-\lambda t\right)^{2}-\lambda t\right)_{t \geq 0}$ is a martingale.
iii) The processes $\left(\Re\left(X_{t}\right)\right)_{t \geq 0}$ and $\left(\Im\left(X_{t}\right)\right)_{t \geq 0}$ are martingales.
iv) Consider X with $u=-i$. Does this martingale converge in L^{1} ?

Exercise 4- Quadratic variation (10 points)
Let X be a centred, continuous and square integrable process that has stationary and independent increments. Prove that we have in this case:

$$
\langle X\rangle_{t}=t \mathbb{E}\left[X_{1}^{2}\right]
$$

for all $t \geq 0$, where the underlying filtration is supposed to be generated by X.

