INSTITUT FÜR ANGEWANDTE MATHEMATIK UNIVERSITÄT BONN Prof. Dr. K.-Th. Sturm Frank Miebach http://www-wt.iam.uni-bonn.de/~sturm/vorlesungWS0809/

Stochastic Analysis

2. Exercise sheet from 10/24/2008

Exercise 1 – Backward martingales (10 points)

Let $(X_n, \mathcal{F}_n)_{n \in -\mathbb{N}}$ be a so called backward submartingale, that is for all $n \leq m \leq 0$ we have $\mathcal{F}_n \subset \mathcal{F}_m$ (decreasing sequence of sub- σ -fields) and $X_n \leq \mathbb{E}[X_m | \mathcal{F}_n]$. Prove:

- i) $\lim_{n \to -\infty} X_n$ exists a.s.
- ii) Let $\sup_{n \in \mathbb{N}} \mathbb{E}[|X_n|] < \infty$. Then the family $\{X_n : n \in -\mathbb{N}\}$ is uniformly integrable. In particular $(X_n)_{n \in -\mathbb{N}}$ converges in L^1 . Moreover, for every $n \in -\mathbb{N}$ the inequality

$$\lim_{k \to -\infty} X_k \le \mathbb{E} \left[X_n | \mathcal{F}_{-\infty} \right]$$

holds, where $\mathcal{F}_{-\infty} := \bigcap_{n \in -\mathbb{N}} \mathcal{F}_n$.

Exercise 2 - Convergence theorem (10 points)

Let $(X_t, \mathcal{F}_t)_{t \in \mathbb{R}_+}$ be a nonnegative, right-continuous submartingale. Then the following conditions are equivalent:

- i) The family $\{X_t : t \in \mathbb{R}_+\}$ is uniformly integrable.
- ii) $\lim_{t\to\infty} X_t$ exists in L^1 .
- iii) There exists an integrable random variable X_{∞} such that
 - $\lim_{t\to\infty} X_t = X_\infty$ a.s.
 - $(X_t, \mathcal{F}_t)_{t \in \mathbb{R}_+ \cup \{+\infty\}}$ is a submartingale, where we define $\mathcal{F}_\infty := \sigma \left(\bigcup_{t \in \mathbb{R}_+} \mathcal{F}_t \right)$.

Exercise 3 - Exit times in one dimension (10 points)

Let $(B_t)_{t \in \mathbb{R}_+}$ be a one-dimensional standard Brownian motion. For a, b > 0 and $x \in \mathbb{R}$ define the stopping times

$$T_x := \inf\{t \in \mathbb{R}_+ : B_t = x\}$$

$$T_{a,b} := \inf\{t \in \mathbb{R}_+ : B_t = -a \lor B_t = b\} = T_{-a} \land T_b$$

Consider the process $X_t := \sinh(\theta(B_t + a)) \exp(-\frac{\theta^2}{2}t)$ for $t \in \mathbb{R}_+$.

- i) Show that $(X_t)_{t \in \mathbb{R}_+}$ is a martingale.
- ii) For all $\lambda \geq 0$ we have

$$\mathbb{E}\left[\exp(-\lambda T_{a,b})\right] = \frac{\cosh(\frac{a-b}{2}\sqrt{2\lambda})}{\cosh(\frac{a+b}{2}\sqrt{2\lambda})}$$

iii) Calculate the distribution of $\sup_{0 \le t \le T_{-1}} B_t$.

Hint: In ii) apply i) and optional sampling. Part iii) is independent of the first two results.

Exercise 4 - Exit times in n **dimensions** (10 points)

Let $(B_t)_{t \in \mathbb{R}_+}$ be an n-dimensional standard Brownian motion.

- i) Show that for every stopping time T with $\mathbb{E}[T] < \infty$ one has:
 - a) $\mathbb{E}[B_T] = 0.$
 - b) $\mathbb{E}\left[|B_T|^2\right] = n\mathbb{E}[T].$

ii) For r > 0 and $x \in \mathbb{R}^n$ define the exit time $T_{r,x} := \inf\{t \in \mathbb{R}_+ : |B_t - x| \ge r\}$. Show that

$$\mathbb{E}[T_{r,x}] = \begin{cases} \frac{r^2 - |x|^2}{n} &, |x| < r\\ 0 &, \text{otherwise} \end{cases}$$