INSTITUT FÜR ANGEWANDTE MATHEMATIK UNIVERSITÄT BONN Prof. Dr. K.-Th. Sturm Frank Miebach http://www-wt.iam.uni-bonn.de/~sturm/vorlesungWS0809/

Stochastic Analysis

Exercise sheet 12 from 01/23/2009

Exercise 1 - Khas'minskii lemma (10 points)

Let B denote a d-dimensional Brownian motion and $V: \mathbb{R}^d \to \mathbb{R}_+$ a measurable function such that

(1)
$$\lim_{t \to 0} \sup_{x \in \mathbb{R}^d} \mathbb{E}_x \left[\int_0^t V(X_s) ds \right] < 1$$

where x denotes the starting point of the Brownian motion.

i) Show that property (1) is sufficient for

$$\forall t \ge 0, \forall x \in \mathbb{R}^d : \mathbb{E}_x \left[\exp\left(\int_0^t V(X_s) ds \right) \right] < \infty.$$

ii) Suppose there exist constants $C_1, C_2 \in \mathbb{R}_+$ and an index $\alpha \in (0, 1)$ such that

$$0 \le V(x) \le C_1 + C_2 \frac{1}{\|x\|^{2\alpha}}$$

Show that this implies (1).

Exercise 2 - Scale function I (10 points)

For $-\infty \leq l < r \leq +\infty$ consider on]l, r[the one-dimensional stochastic differential equation

(2)
$$dX_t = b(X_t)dt + \sigma(X_t)dB_t, \quad X_0 = x \in]l, r[$$

which is supposed to submit a unique solution, denoted again by X. Furthermore let the coefficients b and σ as well as $\frac{1}{\sigma^2}$ be measurable and locally bounded on]l, r[. A strictly monotonically increasing function $s :]l, r[\to \mathbb{R}$ is called a *scale function* of X if the process $s(X) - s(X_0)$ is a local martingale.

i) Consider the ordinary differential equation

(3)
$$\frac{1}{2}\sigma^2 s'' + bs' = 0$$

on]l, r[. Show that every non-constant solution s of (3) is either strictly monotonically increasing or decreasing. Prove that s or -s is a scale function of X.

- ii) Let $s \in \mathcal{C}^2([l, r])$ be a scale function of X. Show that s solves the equation (3).
- iii) Show that for every $x_0 \in]l, r[$ the function

$$s(y) := \int_{x_0}^y \exp\left(-2\int_{x_0}^t \frac{b}{\sigma^2}(s)ds\right)dt, \quad y \in]l, r[$$

is a scale function of X.

Exercise 3 - Scale function II (10 points)

Let $s \in \mathcal{C}^2([l, r[))$ be a scale function for the solution X of the equation (2).

i) Show that Y := s(X) solves the equation

$$dY_t = \widetilde{\sigma}(Y)dB_t$$

where $\tilde{\sigma} := (\sigma s') \circ s^{-1}$.

ii) For l < y < x < z < r show that

$$\mathbb{P}_x \left[T_y < T_z \right] = \frac{s(z) - s(x)}{s(z) - s(y)}$$

As usual $T_y := \inf\{t \ge 0 : X_t = y\}$ denotes the hitting time of the point set $\{y\}$.

Exercise 4 - Square of δ -dimensional Bessel process (BESQ^{δ}) (10 points)

Let $\delta \ge 0$ be a nonnegative real number. Consider the one-dimensional stochastic differential equation

(4)
$$dZ_t = \delta dt + 2\sqrt{|Z_t|} dB_t, \quad Z_0 = x \ge 0.$$

One can show by uniqueness and existence results for SDE's with Hölder coefficients that this equation submits a unique strong solution (square of δ -dimensional Bessel process, abbreviated by BESQ^{δ}). Denote it by Z.

- i) Show that $Z_t \ge 0$ almost sure for every $t \ge 0$. In particular we can omit the modulus in equation (4).
- ii) Define on the positive axis $]0,\infty[$ the functions

$$s_{\nu}(x) := x^{-\nu}$$
 for $\nu < 0$, $s_{\nu}(x) := -x^{-\nu}$ for $\nu > 0$

Show that s_{ν} is a scale function for the BESQ^{δ} with $\nu = \frac{\delta}{2} - 1$. Use then exercise 3ii) to argue that

$$\tau_0 := \inf\{t \ge 0 : Z_t = 0\} \begin{cases} < +\infty & \text{a.s. for } \nu < 0 \\ = +\infty & \text{a.s. for } \nu > 0 \end{cases}$$

iii) Define $X_t := \sqrt{Z_t}$. Show that for $\delta > 2$ the process X is a strong solution of the Bessel SDE

$$dX_t = \frac{\delta - 1}{2X_t}dt + B_t, \quad X_0 = \sqrt{x}.$$

We call X Bessel process of dimension δ .