Stochastic Analysis

Exercise sheet 12 from 01/23/2009

Exercise 1 - Khas'minskii lemma (10 points)
Let B denote a d-dimensional Brownian motion and $V: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$a measurable function such that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \sup _{x \in \mathbb{R}^{d}} \mathbb{E}_{x}\left[\int_{0}^{t} V\left(X_{s}\right) d s\right]<1 \tag{1}
\end{equation*}
$$

where x denotes the starting point of the Brownian motion.
i) Show that property (1) is sufficient for

$$
\forall t \geq 0, \forall x \in \mathbb{R}^{d}: \quad \mathbb{E}_{x}\left[\exp \left(\int_{0}^{t} V\left(X_{s}\right) d s\right)\right]<\infty
$$

ii) Suppose there exist constants $C_{1}, C_{2} \in \mathbb{R}_{+}$and an index $\alpha \in(0,1)$ such that

$$
0 \leq V(x) \leq C_{1}+C_{2} \frac{1}{\|x\|^{2 \alpha}}
$$

Show that this implies (1).

Exercise 2-Scale function I (10 points)

For $-\infty \leq l<r \leq+\infty$ consider on $] l$, r [the one-dimensional stochastic differential equation

$$
\begin{equation*}
\left.d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d B_{t}, \quad X_{0}=x \in\right] l, r[\tag{2}
\end{equation*}
$$

which is supposed to submit a unique solution, denoted again by X. Furthermore let the coefficients b and σ as well as $\frac{1}{\sigma^{2}}$ be measurable and locally bounded on $] l, r[$. A strictly monotonically increasing function $s:] l, r\left[\rightarrow \mathbb{R}\right.$ is called a scale function of X if the process $s(X)-s\left(X_{0}\right)$ is a local martingale.
i) Consider the ordinary differential equation

$$
\begin{equation*}
\frac{1}{2} \sigma^{2} s^{\prime \prime}+b s^{\prime}=0 \tag{3}
\end{equation*}
$$

on $] l, r$ [. Show that every non-constant solution s of (3) is either strictly monotonically increasing or decreasing. Prove that s or $-s$ is a scale function of X.
ii) Let $s \in \mathcal{C}^{2}(] l, r[)$ be a scale function of X. Show that s solves the equation (3).
iii) Show that for every $\left.x_{0} \in\right] l, r$ [the function

$$
\left.s(y):=\int_{x_{0}}^{y} \exp \left(-2 \int_{x_{0}}^{t} \frac{b}{\sigma^{2}}(s) d s\right) d t, \quad y \in\right] l, r[
$$

is a scale function of X.

Exercise 3-Scale function II (10 points)
Let $s \in \mathcal{C}^{2}(] l, r[)$ be a scale function for the solution X of the equation (2).
i) Show that $Y:=s(X)$ solves the equation

$$
d Y_{t}=\widetilde{\sigma}(Y) d B_{t}
$$

where $\widetilde{\sigma}:=\left(\sigma s^{\prime}\right) \circ s^{-1}$.
ii) For $l<y<x<z<r$ show that

$$
\mathbb{P}_{x}\left[T_{y}<T_{z}\right]=\frac{s(z)-s(x)}{s(z)-s(y)}
$$

As usual $T_{y}:=\inf \left\{t \geq 0: X_{t}=y\right\}$ denotes the hitting time of the point set $\{y\}$.

Exercise 4 - Square of δ-dimensional Bessel process (BESQ ${ }^{\delta}$) (10 points)

Let $\delta \geq 0$ be a nonnegative real number. Consider the one-dimensional stochastic differential equation

$$
\begin{equation*}
d Z_{t}=\delta d t+2 \sqrt{\left|Z_{t}\right|} d B_{t}, \quad Z_{0}=x \geq 0 \tag{4}
\end{equation*}
$$

One can show by uniqueness and existence results for SDE's with Hölder coefficients that this equation submits a unique strong solution (square of δ-dimensional Bessel process, abbreviated by BESQ^{δ}). Denote it by Z.
i) Show that $Z_{t} \geq 0$ almost sure for every $t \geq 0$. In particular we can omit the modulus in equation (4).
ii) Define on the positive axis $] 0, \infty[$ the functions

$$
s_{\nu}(x):=x^{-\nu} \text { for } \nu<0, \quad s_{\nu}(x):=-x^{-\nu} \text { for } \nu>0 .
$$

Show that s_{ν} is a scale function for the BESQ^{δ} with $\nu=\frac{\delta}{2}-1$. Use then exercise $3 i i$) to argue that

$$
\tau_{0}:=\inf \left\{t \geq 0: Z_{t}=0\right\} \begin{cases}<+\infty & \text { a.s. for } \nu<0 \\ =+\infty & \text { a.s. for } \nu>0\end{cases}
$$

iii) Define $X_{t}:=\sqrt{Z_{t}}$. Show that for $\delta>2$ the process X is a strong solution of the Bessel SDE

$$
d X_{t}=\frac{\delta-1}{2 X_{t}} d t+B_{t}, \quad X_{0}=\sqrt{x} .
$$

We call X Bessel process of dimension δ.

