Übungen zur Stochastischen Analysis I Blatt 3

Prof. K.T. Sturm, WS 2006/2007

2. November 2006

Aufgabe 1

Sei $X = (X_n)_{n \in -\mathbb{N}_0}$ ein Martingal bezüglich einer Filtration $(\mathcal{F}_n)_{n \in -\mathbb{N}_0}$ (X wird dann auch rückläufiges Martingal genannt). Zeige:

- a) Ein rückläufiges Martingal ist stets gleichgradig integrierbar.
- b) Falls X ein rückläufiges Martingal ist, dann existiert $X_{-\infty} = \lim_{n \to \infty} X_{-n}$ fast sicher und in L^1 . Es gilt $X_{-\infty} = \mathbb{E}[X_0 \mid \mathcal{F}_{-\infty}]$, wobei $\mathcal{F}_{-\infty} = \bigcap_{n=1}^{\infty} \mathcal{F}_{-n}$.

Aufgabe 2

Seien $\xi_j,\ 0\leq j\leq n,$ unabhängig, identisch verteilte, \mathbb{N}_0 -wertige Zufallsvariablen und sei $S_k:=\sum_{i=1}^k \xi_j.$ Zeige

$$\mathbb{P}[S_i < j, 1 \le j \le n \mid S_n] = (1 - S_n/n)^+.$$

Tipp: Zeige zunächst, dass die Gleichung auf der Menge $\{S_n \geq n\}$ gilt. Betrachte dann das rückläufige Martingal $X_{-j} := S_j/j, \ j=1,\ldots,n$, bezüglich der der Filtration $\mathcal{F}_{-j} := \sigma(S_j,\ldots,S_n)$ und die Stoppzeit $T := \inf\{k \geq -n : X_k \geq 1\}$, wobei T := -1, falls die Menge leer ist.

Aufgabe 3

Sei $(M_t)_{t\geq 0}$ ein stetiges Martingal auf $(\Omega,\mathcal{F},(\mathcal{F}_t)_{t\geq 0},\mathbb{P})$ mit

$$\mathbb{P}\left(\sup_{t} M_{t} = +\infty, \inf_{t} M_{t} = -\infty\right) = 1.$$

Definiere T(0) = 0 und für $n \ge 1$ $T(n) = \inf\{t > T(n-1) : |M_t - M_{T(n-1)}| = 1\}$. Zeige dann, dass der (diskrete) Prozess $(M_{T(n)}; n \in \mathbb{N})$ ein gewöhnlicher Random Walk ist.

Aufgabe 4

a) Sei $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0})$ ein messbarer Raum mit Filtration. Seien \mathbb{P} und \mathbb{Q} Wahrscheinlichkeitsmaße auf (Ω, \mathcal{F}) derart, dass für alle t die Einschränkung von \mathbb{Q} auf \mathcal{F}_t absolutstetig bezüglich der entsprechenden Einschränkung von \mathbb{P} sei (Achtung, das ist eine echt schwächere Forderung als die Absolutstetigkeit von \mathbb{Q} bezüglich \mathbb{P}). Bezeichne mit

$$M_t = \left(\frac{d\mathbb{Q}|_{\mathcal{F}_t}}{d\mathbb{P}|_{\mathcal{F}_t}}\right)$$

die Radon-Nikodym-Dichte von \mathbb{Q} bezüglich \mathbb{P} auf \mathcal{F}_t . Zeige, dass M_t ein Martingal bezüglich $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ ist.

b) Sei jetzt $\Omega = C[0,\infty)$ der Raum der stetigen Funktionen auf der Halblinie und \mathcal{F} und \mathcal{F}_t wie üblich von den Auswertungen $X_t:\omega\mapsto\omega(t)$ erzeugt. Sei \mathbb{P} das Wienermaß, das heißt das Maß unter dem X_t eine Brownsche Bewegung mit Startwert 0 ist. Sei \mathbb{Q} die Verteilung einer Brownschen Bewegung mit Drift c. Das heißt X_t-ct ist eine Brownsche Bewegung mit Startwert 0 unter \mathbb{Q} . Zeige, dass in diesem Fall gilt

$$\left(\frac{d\mathbb{Q}|_{\mathcal{F}_t}}{d\mathbb{P}|_{\mathcal{F}_t}}\right) = \exp(cX_t - \frac{1}{2}c^2t).$$

 M_t ist also eine exponentielle Brownsche Bewegung.

c) Ist in diesem Fall $\mathbb Q$ absolut
stetig bezüglich $\mathbb P?$