Markov Processes

Exercise sheet 8 from 06/12/2009

Exercise 1: The differential operator on the space $L^{2}(\mathbb{R}, \mathcal{N}(0,1))$ (10 points)
Consider on the space $L^{2}(\mathbb{R}, \mathcal{N}(0,1))$ the operator $D u:=u^{\prime}$ and denote by H_{n} as usual the n-th Hermite polynomial.
i) Determine the adjoint operator D^{*} and show that the Ornstein-Uhlenbeck operator $A:=-D^{*} D$ fulfills

$$
(A u)(x)=u^{\prime \prime}(x)-x u^{\prime}(x) .
$$

ii) Show for every $n \in \mathbb{N}_{0}$ the identities

$$
D H_{n}=H_{n-1}, \quad D^{*} H_{n}=(n+1) H_{n+1}, \quad A H_{n}=n H_{n}
$$

Therefore we call D the annihilation operator, D^{*} the generating operator and A the number operator.
iii) Show that the functions $\left(\sqrt{n!} H_{n}\right)_{n \in \mathbb{N}_{0}}$ constitute a complete orthonormal system in $L^{2}(\mathbb{R}, \mathcal{N}(0,1))$.
iv) Show the commutator relation $D D^{*}-D^{*} D=\mathrm{Id}$.

Exercise 2: Multiple stochastic integrals (10 points)
Let (T, \mathcal{B}) be some measurable space and let $f \in L^{2}\left(T^{p}\right)$ and $g \in L^{2}\left(T^{q}\right)$ be two symmetric functions. Prove the following product rule for multiple stochastic integrals:

$$
\forall 1 \leq r \leq p \wedge q: \quad I_{p}(f) I_{q}(g)=\sum_{r=0}^{p \wedge q} r!\binom{p}{r}\binom{q}{r} I_{p+q-2 r}\left(f \otimes_{r} g\right)
$$

Exercise 3: Hermite polynomials (10 points)
For every $n \in \mathbb{N}_{0}$ define the Hermite polynomial $H_{n}(\lambda, x):=\lambda^{\frac{n}{2}} H_{n}\left(\frac{x}{\sqrt{\lambda}}\right)$ for $x \in \mathbb{R}$ and $\lambda>0$.
i) Check that $\exp \left(t x-\frac{t^{2} \lambda}{2}\right)=\sum_{n=0}^{\infty} t^{n} H_{n}(\lambda, x)$.
ii) Let W be an isonormal Gaussian process on the Hilbert space $H:=L^{2}(T, \mathcal{B}, \mu)$. Show that

$$
H_{m}\left(\|h\|_{H}^{2}, W(h)\right)=\frac{1}{m!} I_{m}\left(h^{\otimes m}\right)
$$

for any $h \in H$.
iii) The classical case. Let $\left(W_{t}\right)_{t \geq 0}$ be a one-dimensional Brownian motion. Show that the process $\left(H_{n}\left(t, W_{t}\right)\right)_{t \geq 0}$ is a martingale.

Exercise 4: Wiener chaos expansion for Brownian functionals (10 points)
By iteration of Itô's representation formula for Brownian functionals and using the connection

$$
I_{n}\left(f_{n}\right)=n!\int_{0}^{\infty} \int_{0}^{t_{n}} \cdots \int_{0}^{t_{2}} f_{n}\left(t_{1}, \ldots, t_{n}\right) d W_{t_{1}} \cdots d W_{t_{n}}
$$

between the multiple and the conventional Itô stochastic integral for symmetric square integrable functions in the classical situation $\left\{W(h)=\int_{\mathbb{R}_{+}} h_{s} d W_{s}, h \in L^{2}\left(\mathbb{R}_{+}\right)\right\}$show that any random variable $F \in L^{2}(\Omega, \mathcal{F}, \mathbb{P})$ (where \mathcal{F} is generated by W) can be expressed as an infinite sum of orthogonal multiple stochastic integrals.

