Markov Processes

Exercise sheet 7 from 05/29/2009

Exercise 1: SPDE with generator of log-normal diffusions (10 points)
Consider on \mathbb{R}^{n} the SDE

$$
d \gamma_{t}^{x}=b d t+\sigma d B_{t}, \gamma_{0}^{x}=x
$$

with $b \in \mathbb{R}^{n}, \sigma \in \mathbb{R}^{n \times d}$ and a d-dimensional Brownian motion $\left(B_{t}\right)_{t \geq 0}$.
i) Show that $\left(S_{t} u\right)(x):=\mathbb{E}\left[u\left(\gamma_{t}^{x}\right)\right]$ defines a semigroup on $L^{2}\left(\mathbb{R}^{n}\right)$.
ii) Calculate the generator A of this semigroup.
iii) Let $\left(W_{t}\right)_{t \geq 0}$ a Q-Wiener process on $L^{2}\left(\mathbb{R}^{n}\right)$ where Q is a trace class covariance operator and ζ an \mathcal{F}_{0}-measurable $L^{2}\left(\mathbb{R}^{n}\right)$-valued random variable. Show that the SPDE

$$
d X_{t}=A X_{t} d t+d W_{t}, X_{0}=\zeta
$$

admits a unique weak solution in $L^{2}\left(\mathbb{R}^{n}\right)$.
iv) Find an expression for the solution that is as explicit as possible.

Exercise 2: SPDE as scaling limit of systems of interacting Brownian particles (10 points)
Let $\left(W_{t}\right)_{t \geq 0}$ be a d-dimensional Brownian motion, $\sigma \in \mathbb{R}^{n \times d}$ a matrix and $\rho:(-1,1]^{n} \times(-1,1]^{n} \rightarrow \mathbb{R}$ a bounded measurable function.
i) Consider for every $N \in \mathbb{N}$ the following system of stochastic differential equations on \mathbb{R}^{n} :

$$
\begin{equation*}
d X_{t}^{i}=\sigma d W_{t}+\frac{1}{(2 N)^{n}} \sum_{j \in T_{N}} X_{t}^{j} \rho(i, j) d t, X_{0}^{i}=i \in T_{N} \tag{1}
\end{equation*}
$$

where $T_{N}:=\left(\frac{1}{N} \mathbb{Z} \cap(-1,1]\right)^{n}$. Show that this system admits a unique solution.
ii) In the limit $N \uparrow \infty$ equation (1) turns into the system

$$
d X_{t}^{x}=\sigma d W_{t}+\left[\int_{T_{\infty}} X_{t}^{y} \rho(x, y) d y\right] d t, X_{0}^{x}=x \in T_{\infty}
$$

where $T_{\infty}:=(-1,1]^{n}$. Rewrite this system as an SPDE in an appropriate Hilbert space and study existence and uniqueness of solutions.

Exercise 3: Stochastic wave equation (10 points)
Let $D \subset \mathbb{R}^{n}$ be open and bounded and Δ the Laplacian operator with zero boundary conditions. Denote by $\mathcal{D}\left((-\Delta)^{-\frac{1}{2}}\right)$ the domain of $(-\Delta)^{-\frac{1}{2}}$, which is the completion of $L^{2}(D)$ with respect to the norm $\|x\|_{\mathcal{D}\left((-\Delta)^{-\frac{1}{2}}\right)}:=\left\|(-\Delta)^{-\frac{1}{2}} x\right\|_{L^{2}(D)}$. Define the Hilbert space $H:=L^{2}(D) \oplus \mathcal{D}\left((-\Delta)^{-\frac{1}{2}}\right)$, provided with the scalar product $\left\langle(y, z),\left(y_{1}, z_{1}\right)\right\rangle_{H}:=\left\langle y, y_{1}\right\rangle_{L^{2}(D)}+\left\langle(-\Delta)^{-\frac{1}{2}} z,(-\Delta)^{-\frac{1}{2}} z_{1}\right\rangle_{L^{2}(D)}$. Consider on H the so called stochastic wave equation

$$
\begin{equation*}
d X_{t}=A X_{t} d t+B d W_{t}, X_{0}=\zeta \tag{2}
\end{equation*}
$$

where A is an operator on $\mathcal{D}(A):=\mathcal{D}\left((-\Delta)^{\frac{1}{2}}\right) \oplus L^{2}(D) \subset H$, defined by $A(y, z):=(z, \Delta y)$. Furthermore let $\left(W_{t}\right)_{t \geq 0}$ a Q-Wiener process on $\mathcal{D}\left((-\Delta)^{-\frac{1}{2}}\right), B u:=(0, u)$ for any $u \in \mathcal{D}\left((-\Delta)^{-\frac{1}{2}}\right)$ and ζ an \mathcal{F}_{0}-measurable H-valued random variable.
i) Justfify the name of the above SPDE (2).
ii) Show that the semigroup $\left(S_{t}\right)_{t \geq 0}$ generated by A is given by

$$
S_{t}\binom{y}{z}=\left(\begin{array}{cc}
\cos \left((-\Delta)^{\frac{1}{2}} t\right) & (-\Delta)^{-\frac{1}{2}} \sin \left((-\Delta)^{\frac{1}{2}} t\right) \\
-(-\Delta)^{\frac{1}{2}} \sin \left((-\Delta)^{\frac{1}{2}} t\right) & \cos \left((-\Delta)^{\frac{1}{2}} t\right)
\end{array}\right)\binom{y}{z} .
$$

iii) Conclude that the stochastic convolution is given by

$$
W_{A}(t)=\left((-\Delta)^{-\frac{1}{2}} \int_{0}^{t} \sin \left((-\Delta)^{\frac{1}{2}}(t-s)\right) d W_{s}, \int_{0}^{t} \cos \left((-\Delta)^{\frac{1}{2}}(t-s)\right) d W_{s}\right)
$$

iv) Under which conditions on the set D does equation (2) admit a unique weak solution in H ? Consider both the cases where Q is trace class and where $Q=\mathrm{Id}$.

Exercise 4: Retardation equation (10 points)

Consider on \mathbb{R}^{n} the so called stochastic retardation equation

$$
\begin{align*}
d z_{t} & =\left[\int_{-r}^{0} a(d \theta) z_{t+\theta}\right] d t+f_{t} d t+d W_{t} \tag{3}\\
z_{0} & =h_{0} \\
z_{\theta} & =h_{1}(\theta) \quad, \theta \in[-r, 0]
\end{align*}
$$

Herein let $r>0$ be the maximal retardation, a an $\mathbb{R}^{n \times n}$-valued finite mass on $[-r, 0], f: \mathbb{R}_{+} \rightarrow \mathbb{R}^{n}$ locally integrable, $h_{0} \in \mathbb{R}^{n}, h_{1} \in L^{2}\left([-r, 0], \mathbb{R}^{n}\right)$ and $\left(W_{t}\right)_{t \geq 0}$ an n-dimensional Brownian motion.
i) Show that equation (3) is equivalent to the following stochastic differential equation (with "finite noise") on the Hilbert space $H:=\mathbb{R}^{n} \oplus L^{2}\left([-r, 0], \mathbb{R}^{n}\right)$:

$$
\begin{equation*}
d X_{t}=A X_{t} d t+B f_{t} d t+B d W_{t}, X_{0}=\left(h_{0}, h_{1}\right) \tag{4}
\end{equation*}
$$

where $A(z, f):=\left(\int_{-r}^{0} a(d \theta) f(\theta), \frac{d f}{d \theta}\right),(z, f) \in H$ and $B z:=(z, 0), z \in \mathbb{R}^{n}$.
ii) Show that equation (4) admits a unique weak solution in H (you can use without a proof that A generates a strongly continuous semigroup on H).
iii) Calculate explicitly the solution in the case $a:=a_{0} \delta_{0}+a_{1} \delta_{-r}$ with $a_{0}, a_{1} \in \mathbb{R}^{n \times n}$.

