Markov Processes

Exercise sheet 4 from 05/08/2009

Exercise 1: Nuclear Operators (10 points)
Let X, Y be Banach spaces. A continuous linear Operator $T \in L(X, Y)$ is called nuclear iff one can find sequences $\left\{x_{n}^{*}\right\}_{n \in \mathbb{N}} \subseteq X^{*}$ and $\left\{y_{n}\right\}_{n \in \mathbb{N}} \subseteq Y$ with $\sum_{n=1}^{\infty}\left\|x_{n}^{*}\right\|\left\|y_{n}\right\|<\infty$ such that for all $x \in X$

$$
T x=\sum_{n=1}^{\infty} x_{n}^{*}(x) y_{n}<\infty
$$

Denote the set of all nuclear operators from X to Y with $L_{1}(X, Y)$, and define for $T \in L_{1}(X, Y)$ the nuclear norm by

$$
\|T\|_{L_{1}}:=\inf \left\{\sum_{n=1}^{\infty}\left\|x_{n}^{*}\right\|\left\|y_{n}\right\|: T x=\sum_{n=1}^{\infty} x_{n}^{*}(x) y_{n}\right\}
$$

i) Show that $\left(L_{1}(X, Y),\|\bullet\|_{L_{1}}\right)$ is a Banach space.
ii) Let W, Z be additional Banach spaces, $R \in L(W, X), S \in L(X, Y)$ and $T \in L(Y, Z)$. Show that $\|T S R\|_{L_{1}} \leq\|T\|\|S\|_{L_{1}}\|R\|$, hence $T S R \in L_{1}(W, Z)$. (where $\|\bullet\|$ denotes the usual operator norm.)
iii) Let $\left(H,\langle\bullet \bullet \bullet)\right.$ be a separable Hilbert space, $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ an orthonormal basis of H and $T \in L_{1}(H):=$ $L_{1}(H, H)$. Show that the series

$$
\operatorname{Tr}(T):=\sum_{n=1}^{\infty}\left\langle T e_{n}, e_{n}\right\rangle
$$

converges absolutely, that $\operatorname{Tr}(T)$ is independent of the choice of the orthonormal basis, and that

$$
|\operatorname{Tr}(T)| \leq\|T\|_{L_{1}}
$$

iv) Show that a selfadjoint, positiv semidefinit Operator $T \in L(H)$ is nuclear iff $\operatorname{Tr}(T)<\infty$. Show that in this case $|\operatorname{Tr}(T)|=\|T\|_{L_{1}}$.

Exercise 2: Quadratic Variation in Hilbert spaces (10 points)

Let $(H,\langle\bullet, \bullet\rangle)$ be a infinite dimensional, separable Hilbert space with orthonormal basis $\left\{e_{n}\right\}_{n \in \mathbb{N}}$, and $\left\{X_{t}\right\}_{t \in[0, T]}, T>0$ be an H-valued, continuous, square integrable martingale. Define the operator-valued random variable $\left\{V_{t}\right\}_{t \in[0, T]}, T>0$ by

$$
V_{t}(h):=\sum_{k, l=1}^{\infty}\left\langle\left\langle X^{k}, X^{l}\right\rangle\right\rangle_{t}\left\langle h, e_{k}\right\rangle e_{l}, h \in H, t \in[0, T],
$$

where $X_{t}^{k}:=\left\langle X_{t}, e_{k}\right\rangle$ and $\left\langle\left\langle X^{k}, X^{l}\right\rangle\right\rangle_{t}$ denotes the quadratic Variation of X_{k} and X_{l}.
i) Show that the sum in the definition of V converges a.s., that $V \in L_{1}(H)$ and that for all $u, w \in H$, $V^{u, w}:=\langle V u, w\rangle$ defines a continuous process with finite variation.
ii) Show that for all $u, w \in H$, the process $\langle X, u\rangle\langle X, w\rangle-V^{u, w}$ is a continuous martingale.

Remark: The result

$$
\langle X, u\rangle\langle X, w\rangle-V^{u, w} \text { is a continuous martingale for arbitrary } u, w \in H
$$

can be equivalently written as
$X \otimes X-V$ is a continuous martingale.
So V fulfills the role of a quadratic variation of the H-valued Martingale X, and is denoted by $\langle\langle X\rangle\rangle$.

Exercise 3: A Gaussian process(10 points)

Let (E, \mathcal{E}, μ) be a measure space and $I:=L^{2}(E, \mathcal{E}, \mu)$. Define for $u, v \in I$

$$
\Gamma(u, v):=\int_{E} u(t) v(t) d \mu(t)
$$

i) Show that Γ is positive semidefinite.
ii) Let $\left\{B_{t}\right\}_{t \geq 0}$ be a one-dimensional Brownian Motion. For $u \in L^{2}\left(\mathbb{R}_{+}\right)$set $Y_{t}:=\int_{0}^{\infty} u(t) d B_{t}$. Show that $\left\{Y_{u}\right\}_{u \in L^{2}\left(\mathbb{R}_{+}\right)}$is a centered Gaussian process with covariance $\operatorname{Cov}\left(Y_{u}, Y_{v}\right):=\int_{0}^{\infty} u(t) v(t) d t$.

Exercise 4: Negative inverse Laplacian (10 points)
The negative Laplace operator $-\Delta$ of a function $u \in H_{0}^{1}(\mathcal{O})$, where $\mathcal{O} \subset \mathbb{R}^{n}$ is an open, bounded subset, can be defined by

$$
\begin{equation*}
(-\Delta u, v):=\int_{\mathcal{O}} \nabla u(x) \nabla v(x) d x \text { for all } v \in H_{0}^{1}(\mathcal{O}) \tag{1}
\end{equation*}
$$

Here $H_{0}^{1}(\mathcal{O}):=\left\{u \in H^{1}(\mathcal{O})\left|\exists\left\{f_{k}\right\}_{k \in \mathbb{N}} \subset \mathcal{C}_{0}^{\infty}(\mathcal{O}): \lim _{k \rightarrow \infty}\right| f-\left.f_{k}\right|_{H^{1}(\mathcal{O})}=0\right\}$
is equipped with the norm $|u|_{H_{0}^{1}(\mathcal{O})}:=|\nabla u|_{L^{2}(\mathcal{O})}, u \in H_{0}^{1}(\mathcal{O})$, where ∇ is the weak gradient.
i) Show that $-\Delta u$ defines for every $u \in H_{0}^{1}(\mathcal{O})$ an element of $H^{-1}(\mathcal{O}):=H_{0}^{1}(\mathcal{O})^{*}$
ii) Show that the Laplacian constructed by (1) is invertible, i.e. for arbitrary $f \in H^{-1}(\mathcal{O})$, the problem $-\Delta u=f$, has a unique solution $u \in H_{0}^{1}(\mathcal{O})$.
Hint: For surjectivity, you can show that the range of Δ is closed and construct a functional $u_{0} \in$ $H^{-1}(\mathcal{O})^{*}$ that vanishes on Range (Δ). Then use the reflexivity of $H_{0}^{1}(\mathcal{O})$.
iii) With Soboleff and Rellich embedding theorems it can be shown that $(-\Delta)^{-1}$, restricted to the space $L^{2}(\mathcal{O})$, is a linear, compact operator. Show that $\left.(-\Delta)^{-1}\right|_{L^{2}(\mathcal{O})}$ is selfadjoint and positive definite on $L^{2}(\mathcal{O})$.
iv) Now consider $\mathcal{O}:=(0, R)^{n}, R>0$. Calculate for this special \mathcal{O} the eigenvalues and the trace of $(-\Delta)^{-1}$ and determine for which R and n the negative inverse Laplacian is trace class. You can use that an orthonormal basis of $L^{2}\left((0, R)^{n}\right)$ is given by the functions

$$
e_{\left(k_{1}, \ldots, k_{n}\right)}(x):=\left(\frac{2}{R}\right)^{\frac{d}{2}} \prod_{i=1}^{n} \sin \left(\frac{k_{i} \pi}{R} x_{i}\right),\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{n}
$$

