INSTITUT FÜR ANGEWANDTE MATHEMATIK UNIVERSITÄT BONN Prof. Dr. K.-Th. Sturm Frank Miebach Bernhard Hader http://www-wt.iam.uni-bonn.de/~sturm/de/ss09.html

Markov Processes

Exercise sheet 4 from 05/08/2009

Exercise 1: Nuclear Operators (10 points)

Let X, Y be Banach spaces. A continuous linear Operator $T \in L(X, Y)$ is called *nuclear* iff one can find sequences $\{x_n^*\}_{n \in \mathbb{N}} \subseteq X^*$ and $\{y_n\}_{n \in \mathbb{N}} \subseteq Y$ with $\sum_{n=1}^{\infty} ||x_n^*|| ||y_n|| < \infty$ such that for all $x \in X$

$$Tx = \sum_{n=1}^{\infty} x_n^*(x) y_n < \infty.$$

Denote the set of all nuclear operators from X to Y with $L_1(X, Y)$, and define for $T \in L_1(X, Y)$ the nuclear norm by

$$||T||_{L_1} := \inf \left\{ \sum_{n=1}^{\infty} ||x_n^*|| \, ||y_n|| : \ Tx = \sum_{n=1}^{\infty} x_n^*(x)y_n \right\}.$$

- i) Show that $(L_1(X, Y), \|\bullet\|_{L_1})$ is a Banach space.
- ii) Let W, Z be additional Banach spaces, $R \in L(W, X)$, $S \in L(X, Y)$ and $T \in L(Y, Z)$. Show that $\|TSR\|_{L_1} \leq \|T\| \|S\|_{L_1} \|R\|$, hence $TSR \in L_1(W, Z)$. (where $\|\bullet\|$ denotes the usual operator norm.)
- iii) Let $(H, \langle \bullet, \bullet \rangle)$ be a separable Hilbert space, $\{e_n\}_{n \in \mathbb{N}}$ an orthonormal basis of H and $T \in L_1(H) := L_1(H, H)$. Show that the series

$$\operatorname{Tr}(T) := \sum_{n=1}^{\infty} \langle Te_n, e_n \rangle$$

converges absolutely, that Tr(T) is independent of the choice of the orthonormal basis, and that

$$|\operatorname{Tr}(T)| \le ||T||_{L_1}$$

iv) Show that a selfadjoint, positiv semidefinit Operator $T \in L(H)$ is nuclear iff $\text{Tr}(T) < \infty$. Show that in this case $|\text{Tr}(T)| = ||T||_{L_1}$.

Exercise 2 : Quadratic Variation in Hilbert spaces (10 points)

Let $(H, \langle \bullet, \bullet \rangle)$ be a infinite dimensional, separable Hilbert space with orthonormal basis $\{e_n\}_{n \in \mathbb{N}}$, and $\{X_t\}_{t \in [0,T]}, T > 0$ be an *H*-valued, continuous, square integrable martingale. Define the operator-valued random variable $\{V_t\}_{t \in [0,T]}, T > 0$ by

$$V_t(h) := \sum_{k,l=1}^{\infty} \left\langle \left\langle X^k, X^l \right\rangle \right\rangle_t \left\langle h, e_k \right\rangle e_l, \ h \in H, \ t \in [0, T],$$

where $X_t^k := \langle X_t, e_k \rangle$ and $\langle \langle X^k, X^l \rangle \rangle_t$ denotes the quadratic Variation of X_k and X_l .

- i) Show that the sum in the definition of V converges a.s., that $V \in L_1(H)$ and that for all $u, w \in H$, $V^{u,w} := \langle Vu, w \rangle$ defines a continuous process with finite variation.
- ii) Show that for all $u, w \in H$, the process $\langle X, u \rangle \langle X, w \rangle V^{u,w}$ is a continuous martingale.

Remark: The result

$$\langle X, u \rangle \langle X, w \rangle - V^{u,w}$$
 is a continuous martingale for arbitrary $u, w \in H$

can be equivalently written as

$$X \otimes X - V$$
 is a continuous martingale.

So V fulfills the role of a quadratic variation of the H-valued Martingale X, and is denoted by $\langle \langle X \rangle \rangle$.

Exercise 3: A Gaussian process(10 points)

Let (E, \mathcal{E}, μ) be a measure space and $I := L^2(E, \mathcal{E}, \mu)$. Define for $u, v \in I$

$$\Gamma(u,v) := \int_E u(t)v(t)d\mu(t).$$

- i) Show that Γ is positive semidefinite.
- ii) Let $\{B_t\}_{t\geq 0}$ be a one-dimensional Brownian Motion. For $u \in L^2(\mathbb{R}_+)$ set $Y_t := \int_0^\infty u(t)dB_t$. Show that $\{Y_u\}_{u\in L^2(\mathbb{R}_+)}$ is a centered Gaussian process with covariance $\operatorname{Cov}(Y_u, Y_v) := \int_0^\infty u(t)v(t)dt$.

Exercise 4: Negative inverse Laplacian (10 points)

The negative Laplace operator $-\Delta$ of a function $u \in H_0^1(\mathcal{O})$, where $\mathcal{O} \subset \mathbb{R}^n$ is an open, bounded subset, can be defined by

(1)
$$(-\Delta u, v) := \int_{\mathcal{O}} \nabla u(x) \nabla v(x) dx \text{ for all } v \in H^1_0(\mathcal{O}).$$

Here $H_0^1(\mathcal{O}) := \left\{ u \in H^1(\mathcal{O}) | \exists \{f_k\}_{k \in \mathbb{N}} \subset \mathcal{C}_0^\infty(\mathcal{O}) : \lim_{k \to \infty} |f - f_k|_{H^1(\mathcal{O})} = 0 \right\}$ is equipped with the norm $|u|_{H_0^1(\mathcal{O})} := |\nabla u|_{L^2(\mathcal{O})}, u \in H_0^1(\mathcal{O})$, where ∇ is the weak gradient.

- i) Show that $-\Delta u$ defines for every $u \in H_0^1(\mathcal{O})$ an element of $H^{-1}(\mathcal{O}) := H_0^1(\mathcal{O})^*$
- ii) Show that the Laplacian constructed by (1) is invertible, i.e. for arbitrary $f \in H^{-1}(\mathcal{O})$, the problem $-\Delta u = f$, has a unique solution $u \in H^1_0(\mathcal{O})$. *Hint:* For surjectivity, you can show that the range of Δ is closed and construct a functional $u_0 \in H^{-1}(\mathcal{O})^*$ that vanishes on Range(Δ). Then use the reflexivity of $H^1_0(\mathcal{O})$.
- iii) With Soboleff and Rellich embedding theorems it can be shown that $(-\Delta)^{-1}$, restricted to the space $L^2(\mathcal{O})$, is a linear, compact operator. Show that $(-\Delta)^{-1}|_{L^2(\mathcal{O})}$ is selfadjoint and positive definite on $L^2(\mathcal{O})$.
- iv) Now consider $\mathcal{O} := (0, R)^n$, R > 0. Calculate for this special \mathcal{O} the eigenvalues and the trace of $(-\Delta)^{-1}$ and determine for which R and n the negative inverse Laplacian is trace class. You can use that an orthonormal basis of $L^2((0, R)^n)$ is given by the functions

$$e_{(k_1,\ldots,k_n)}(x) := \left(\frac{2}{R}\right)^{\frac{d}{2}} \prod_{i=1}^n \sin\left(\frac{k_i\pi}{R}x_i\right), \ (k_1,\ldots,k_n) \in \mathbb{N}^n.$$