Markov Processes

Exercise sheet 2 from 04/24/2009

Exercise 1: "Differential properties" of the Stratonovich-integral (10 points)
Let $\left\{X_{t}\right\}_{t \geq 0}=\left\{\left(X_{t}^{i j}\right)\right\}_{t \geq 0}$ be an $M_{n, l}(\mathbb{R})$-valued continuous semimartingale, and $\left\{Y_{t}\right\}_{t \geq 0}=\left\{\left(Y_{t}^{i j}\right)\right\}_{t \geq 0}$ be an $M_{l, m}(\mathbb{R})$-valued continuous semimartingale. The Ito- and the Stratonovich-integral in this case are given by

$$
\begin{aligned}
\left(\int_{0}^{t} X_{s} d Y_{s}\right)^{i j} & :=\sum_{k=1}^{l}\left(\int_{0}^{t} X_{s}^{i k} d Y_{s}^{k j}\right), t \geq 0 \\
\left(\int_{0}^{t} X_{s} * d Y_{s}\right)^{i j}: & =\sum_{k=1}^{l}\left(\int_{0}^{t} X_{s}^{i k} d Y_{s}^{k j}+\frac{1}{2}\left\langle X^{i k}, Y^{k j}\right\rangle_{t}\right), t \geq 0 .
\end{aligned}
$$

Show that the Stratonovich-integral has the following properties:
i)

$$
d(X Y)_{t}=X_{t} * d Y_{t}+\left(Y_{t}^{T} * d X_{t}^{T}\right)^{T}, t \geq 0(\text { product rule })
$$

where $X Y$ denotes the usual matrix product and X^{T} the transposed of X.
ii)

$$
d f\left(X_{t}\right)=\sum_{i=1}^{n} \sum_{j=1}^{l} \partial_{(i, j)} f\left(X_{t}\right) * d X_{t}^{i j}, t \geq 0 \text { (chain rule) }
$$

where $f \in \mathcal{C}^{3}\left(M_{n, l}(\mathbb{R})\right)$, and $\partial_{(i, j)}$ denotes the partial derivative of the (i, j) th coordinate.
iii) Let $\left\{X_{t}\right\}_{t \geq 0}$ and $\left\{Y_{t}\right\}_{t \geq 0}$ be n-dimensional continuous semimartingales, (\bullet, \bullet) the scalar product in \mathbb{R}^{n} and $f \in \mathcal{C}^{3}\left(\mathbb{R}^{n}\right)$. By using the parts i) and ii), find nice expressions in Stratonovich calculus for $d(X, Y)$ and $d f(X)$.

Exercise 2: Stratonovich integral as limit in probability (10 points)
Let $\left\{V_{t}\right\}_{t \geq 0}$ and $\left\{Z_{t}\right\}_{t \geq 0}$ be continuous semimartingales and $\Delta:=\left\{t_{0}, \ldots, t_{N}\right\}$ be a partition of $[0, t]$ with $0=t_{0}<t_{1}, \cdots<t_{N} \leq t$.
i) Show that

$$
\int_{0}^{t} Z_{s} * d V_{s}=\text { l.i.p. } \cdot\|\Delta\| \downarrow 0 \sum_{i=0}^{N} \frac{1}{2}\left(Z_{t_{i+1}}+Z_{t_{i}}\right)\left(V_{t_{i+1}}-V_{t_{i}}\right),
$$

where l.i.p. denotes the limit in probability.
ii) Show that, if in addition $d\langle Z, V\rangle$ is absolutely continuous w.r.t. the Lebesgue measure, we get

$$
\int_{0}^{t} Z_{s} * d V_{s}=\text { l.i.p. }\|\Delta\| \| \downarrow 0 \sum_{i=0}^{N} Z_{\frac{t_{i+1}+t_{i}}{2}}\left(V_{t_{i+1}}-V_{t_{i}}\right)
$$

Exercise 3: Solution for a Stratonovich-equation (10 points)

i) Let $u=\left(u_{1}, \ldots, u_{n}\right) \in \mathcal{C}^{2}\left([0, \infty) \times \mathbb{R}^{n}, \mathbb{R}^{n}\right)$ be a solution of the equations

$$
\frac{\partial}{\partial t} u_{i}(t, x)=b_{i}(t, u(t, x)), \frac{\partial}{\partial x_{j}} u_{i}(t, x)=\sigma_{i j}(t, u(t, x)) ; 1 \leq i, j \leq n
$$

on $[0, \infty) \times \mathbb{R}^{n}$, where $b=\left(b_{1}, \ldots, b_{n}\right) \in \mathcal{C}\left([0, \infty) \times \mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and $\sigma=\left(\sigma_{i j}\right)_{1 \leq i, j \leq n} \in \mathcal{C}^{2}\left([0, \infty) \times \mathbb{R}^{n}, M_{n}(\mathbb{R})\right)$. Let $\left\{W_{t}\right\}_{t \geq 0}$ be a d-dimensional Brownian Motion. Show that the process

$$
X_{t}:=u\left(t, W_{t}\right) ; t \geq 0
$$

solves the Stratonovich-equation

$$
d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) * d W(t) ; t \geq 0
$$

ii) Determine the unique, strong solution of the one-dimensional Ito-equation

$$
d X_{t}=\left[\frac{2}{1+t} X_{t}-a(1+t)^{2}\right] d t+a(1+t)^{2} d W_{t} ; t \geq 0
$$

by using the results of part i) of this exercise.

Exercise 4: Ornstein-Uhlenbeck Feller semigroup (10 points)
Let $\left\{P_{t}\right\}_{t \geq 0}$ be a set of operators on $\mathcal{C}_{0}(\mathbb{R}):=\left\{f \in \mathcal{C}(\mathbb{R}): \lim _{|x| \rightarrow \infty} f(x)=0\right\}$, defined by

$$
P_{t} f(x):=\mathbb{E} f\left(e^{-\frac{t}{2}} x+\sqrt{1-e^{-t}} Z\right), f \in \mathcal{C}_{0}(\mathbb{R}), x \in \mathbb{R}, t \geq 0
$$

where Z is an $\mathcal{N}(0,1)$-distributed random variable. Show that $\left\{P_{t}\right\}_{t \geq 0}$ is a Feller semigroup.

