Institut für angewandte Mathematik

Universität Bonn

Prof. Dr. K.-Th. Sturm

Hendrik Weber

http://www-wt.iam.uni-bonn.de/~sturm/vorlesungSS08/

Übungen zur Vorlesung Stochastische Prozesse

9. Aufgabenblatt vom 13.6.2008

Aufgabe 1 - Markoveigenschaft (10 Punkte)

Sei $(X_t, t \geq 0)$ ein adaptierter Prozess auf einem Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$. Zeige, dass (X_t) genau dann die Markoveigenschaft bezüglich seiner kanonischen Filtration erfüllt, wenn für alle Zeitpunkte t die σ -Algebra der Vergangenheit $\Sigma_t^- := \sigma(X_s, s \leq t)$ von der σ -Algebra der Zukunft $\Sigma_t^+ := \sigma(X_s, s \geq t)$ bedingt auf $\sigma(X_t)$ (die Gegenwart) unabhängig ist.

Hinweis: Zwei σ -Algebren $\Sigma^{1,2}$ sind per Definition genau dann unabhängig bedingt auf eine dritte Σ^0 , wenn für alle $A \in \Sigma^1$ und $B \in \Sigma^2$ gilt:

$$\mathbb{P}[A\cap B|\Sigma^0] = \mathbb{P}[A|\Sigma^0]\mathbb{P}[B|\Sigma^0] \qquad \mathbb{P}\text{- f.s.}$$

Aufgabe 2 - Mehler Formel (10 Punkte)

Sei $(X_t, t \ge 0)$ ein Ornstein-Uhlenbeck Prozess. Zeige, dass (X_t) ein zeitlich homogener (aber räumlich inhomogener) Markovprozess ist. Die Übergangsfamilie P_t ist (in integraler Form) gegeben durch

$$P_t f(x) = \mathbb{E} \Big[f \Big(e^{-\alpha t} + \sigma \sqrt{1 - \exp(2\alpha t)} Z \Big) \Big],$$

wobei Z eine $\mathcal{N}(0,1)$ -verteilte Zufallsvariable ist.

Hinweis: Man kann annehmen, dass $X_t = e^{-\alpha t} B_{\sigma^2 \exp(2\alpha t)}$ mit einer Brownschen Bewegung B_t und dann die Markoveigenschaft der Brownschen Bewegung verwenden.

Aufgabe 3 - Fraktionelle Brownsche Bewegung III (10 Punkte)

Sei $(B_t, t \ge 0)$ eine fraktionelle Brownsche Bewegung mit Hurst-Parameter $H \ne \frac{1}{2}$. Zeige, dass (B_t) kein Markovprozess ist.

Aufgabe 4 - Sprungprozesse (10 Punkte)

- a) Sei E eine endliche Menge und $(Q(i,j))_{(i,j)\in E^2}$ eine Matrix mit folgenden Eigenschaften
 - i) $Q(i,j) \ge 0$ für $i \ne j$ und
 - ii) $\sum_{j \in E} Q(i, j) = 0$ für alle $i \in E$.

Zeige, dass durch

$$P_t := \exp(tQ) = \sum_{j=0}^{\infty} \frac{(tQ)^k}{k!}$$

eine zeitlich homogene Markovsche Übergangsfamilie definiert wird. (Hierbei werden, wie gewöhnlich, die auftretenden stochastischen Matrizen als Übergangskerne interpretiert.)

b) Sei nun E abzählbar. Zeige eine analoge Aussage unter der zusätzlichen Voraussetzung, dass die Q(i, j) beschränkt sind.

Hinweis: Man kann die Matrix Q zum Beispiel als stetigen Operator auf dem Banachraum $\ell^{\infty}(E) = \{f \colon E \to \mathbb{R} : \sup_{i \in E} |f(i)| < \infty\}$ auffassen, um die Konvergenz der Reihe zu zeigen.

c) Betrachte den Fall $E = \mathbb{N}_0$ mit der Matrix Q:

$$Q(i,j) = \begin{cases} -\lambda & \text{falls } i = j \\ \lambda & \text{falls } i + 1 = j \\ 0 & \text{sonst} \end{cases}$$

für ein $\lambda > 0$. Zeige, dass dann $P_t(i, i+k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$. (Das ist die Übergangsfamilie des *Poisson Prozesses*.)