Institut für angewandte Mathematik

Universität Bonn

Prof. Dr. K.-Th. Sturm

Hendrik Weber

http://www-wt.iam.uni-bonn.de/~sturm/vorlesungSS08/

Übungen zur Vorlesung Stochastische Prozesse

7. Aufgabenblatt vom 30.5.2008

Aufgabe 1 - Unabhängigkeit Gaußscher Zufallsvariablen (10 Punkte)

- a) Sei (X_1, \ldots, X_n) ein Gaußscher Zufallsvektor. Zeige, dass die X_i unabhängig sind, falls für alle $i \neq j$ gilt $Cov(X_i, X_j) = 0$.
- b) Sei $X \sim \mathcal{N}(0,1)$ verteilt und Z unabhängig davon mit $\mathbb{P}[Z=-1] = \mathbb{P}[Z=1] = \frac{1}{2}$. Zeige, dass Y = XZ auch nach $\mathcal{N}(0,1)$ verteilt ist, dass gilt Cov(X,Y) = 0, aber dass X und Y nicht unabhängig sind. Ist das ein Widerspruch zu der Aussage in Teil a)?

Aufgabe 2 - Abgeleitete Verteilungen der Gaußschen Verteilung (10 Punkte)

Seien X und Y unabhängige $\mathcal{N}(0,1)$ – verteilte Zufallsvariablen. Berechne die Verteilungen von X^2 , von $X^2 + Y^2$ und von $\frac{X^2}{X^2 + Y^2}$.

Aufgabe 3 - Verallgemeinerung des Satzes von Kolmogorov - Chentsov (10 Punkte)

Sei $(X_t, t \in \mathbb{R}^d_+)$ ein stochastischer Prozess (ein Prozess mit d-dimensionaler Indexmenge heißt auch zufälliges Feld). Es gelte für positive Konstanten α , β und C

$$\mathbb{E}|X_t - X_s|^{\alpha} \le C|t - s|^{d + \beta},$$

wobei |t-s| den euklidischen Abstand bezeichne. Zeige, dass es dann eine Version von X gibt, die lokal Hölderstetig für jeden Exponent $\gamma < \frac{\beta}{\alpha}$ ist.

Aufgabe 4 - Brownsches Blatt(10 Punkte)

a) Zeige, dass es einen zentrierten Gaußschen Prozess $(B_{(x,y)},(x,y)\in\mathbb{R}^2_+)$ mit der Kovarianzfunktion

$$Cov(B_{(x_1,y_1)}, B_{(x_2,y_2)}) = (x_1 \land x_2)(y_1 \land y_2).$$

gibt.

- b) Zeige mit Hilfe der Aussage aus Aufgabe 3, dass eine stetige Version von B existiert diese heißt Brownsches Blatt.
- c) Sei für ein fixes x>0 die Kurve $\gamma^1(t)=(x,\frac{t}{x})$ und die Kurve $\gamma^2(t)=(e^t,e^{-t})$. Zeige, dass $(X_t=B_{\gamma^1(t)},t\geq 0)$ eine Brownsche Bewegung und dass $(Y(t)=B_{\gamma^2(t)},t\geq 0)$ ein Ornstein Uhlenbeck Prozess ist.