Institut für angewandte Mathematik

Universität Bonn

Prof. Dr. K.-Th. Sturm

Hendrik Weber

http://www-wt.iam.uni-bonn.de/~sturm/vorlesungSS08/

Übungen zur Vorlesung Stochastische Prozesse

6. Aufgabenblatt vom 23.5.2008

Aufgabe 1 - Anwendung des Satzes von Kolmogorov I (10 Punkte)

Sei (E, \mathcal{E}, μ) ein endlicher Maßraum (das heißt $\mu(M) < \infty$ aber nicht unbedingt $\mu(M) = 1$). Zeige, dass es eine Familie von Zufallsvariablen $(X(A), A \in \mathcal{E})$ gibt, so dass gilt

- Für alle A ist X(A) Poissonverteilt mit Parameter $\mu(A)$.
- Wenn $\mu(A \cap B) = 0$, dann sind X(A) und X(B) unabhängig.

Aufgabe 2 - Anwendung des Satzes von Kolmogorov II (10 Punkte)

Zeige, dass es eine Familie von Zufallsvariablen $(X_t, t \in [0,1])$ gibt, so dass für alle $t_1 < t_2 < t_n = 1$ gilt $(X_{t_1}, \ldots, X_{t_n}) \sim \operatorname{Dir}_{t_1, t_2 - t_1, \ldots, t_n - t_{n-1}}$.

Erininnerung: Die Dirichlet-Verteilung mit Parametern $\theta_1, \ldots, \theta_n$ ist eine Wahrscheinlichkeitsverteilung auf dem n-1 dimensionalen Simplex $\{(x_1, \ldots, x_n) \in \mathbb{R}^n_+ : \sum_i x_i = 1\}$, die gegeben ist durch

$$\operatorname{Dir}_{\theta_1,\dots,\theta_n}(A) = \int \mathbf{1}_A(x_1,\dots,x_n) \frac{\Gamma(\theta_1+\dots+\theta_n)}{\Gamma(\theta_1)\dots\Gamma(\theta_n)} x_1^{\theta_1-1}\dots x_n^{\theta_n-1} dx_1\dots dx_{n-1}.$$

Siehe 2. Übungsblatt.

Aufgabe 3 - Produktsigmaalgebra I (10 Punkte)

Sei $E = \mathbb{R}^d$ und I = [0, 1]. Sei $\mathcal{B}(\mathbb{R}^d)^I = \bigotimes_{i \in I} \mathcal{B}(\mathbb{R}^d)$ die kleinste Sigmaalgebra bzgl. der die Koordinatenabbildungen $X_t \colon E^I \to \mathbb{R}$ $(x_i)_{i \in I} \mapsto x_t$ messbar sind (Produktsigmaalgebra). Zeige, dass die Menge C[0, 1] der stetigen Funktionen $f \colon [0, 1] \to \mathbb{R}$ nicht messbar bzgl. $\mathcal{B}(\mathbb{R}^d)^I$ ist.

Hinweis: Zeige, dass es für jede messbare Menge $A \in \mathcal{B}(\mathbb{R}^d)^I$ eine abzählbare Menge $J \subset I$ gibt, so dass $A \in \sigma(X_j, j \in J)$.

Aufgabe 4 - Produktsigmaalgebra II (10 Punkte)

Die Bezeichnungen seien wie in Aufgabe 3. Zeige, dass die Spursigmaalgebra von $\mathcal{B}(\mathbb{R}^d)^I$ auf C[0,1] mit der Borelschen Sigmaalgebra der Topologie der gleichmäßigen Konvergenz übereinstimmen.

Hinweis: Wenn (E, \mathcal{E}) eine Menge mit Sigmaalgebra ist und $A \subset E$, dann ist die Spursigmaalgebra die Menge der $A \cap B$ für $B \in \mathcal{E}$.