Stochastische Analysis II Blatt 5

Aufgabe 1 (4 Punkte)

Die Cauchy-Halbgruppe $(S_t)_{t\geq 0}$ auf \mathbb{R} ist für t>0 durch

$$(S_t u)(x) := \int_{\mathbb{R}} \frac{t}{\pi(t^2 + (x - y)^2)} u(y) dy$$

definiert. Es seien A ihr Generator, $W = (W_t)_{t \geq 0}$ ein Q-Wiener-Prozess auf $L^2(\mathbb{R})$ und ξ eine \mathcal{F}_0 -messbare $L^2(\mathbb{R})$ -wertige Zufallsvariable. Wir betrachten in $L^2(\mathbb{R})$ die stochastische partielle Differentialgleichung

$$dX_t = AX_t dt + dW_t$$
$$X_0 = \xi.$$

- a) Es sei zunächst $Q=\mathrm{Id}$ (also W ein zylindrischer Wiener-Prozess). Zeigen Sie: Die obige Gleichung besitzt genau eine schwache Lösung.
- b) Zeigen Sie: Für jedes t > 0 ist $S_t : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ ein beschränkter Operator mit Operatornorm ≤ 1 . Folgern Sie daraus: Ist Q ein Spurklasse-Operator, so besitzt die obige Gleichung genau eine schwache Lösung mit Werten im Raum $L^2(\mathbb{R})$.

Aufgabe 2 (4 Punkte)

Es seien $M \subset \mathbb{R}^n$ offen und beschränkt, Δ_M der Laplace-Operator auf M mit Null-Randbedingung, $0 < \alpha < 1$ und $A := -(-\Delta_M)^{\alpha}$. Ferner seien $(W_t)_{t \geq 0}$ ein zylindrischer Wiener-Prozess auf $L^2(M)$ (mit $Q = \mathrm{Id}$), $\beta \in \mathbb{R}$, $B := (-\Delta_M)^{\beta}$ und ξ eine \mathcal{F}_0 -messbare $L^2(M)$ -wertige Zufallsvariable. Wir betrachten in $L^2(M)$ die stochastische partielle Differentialgleichung

$$dX_t = AX_t dt + BdW_t$$
$$X_0 = \xi.$$

- a) Unter welcher Bedingung an β besitzt die obige Gleichung genau eine schwache Lösung?
- b) In welchem Raum nimmt diese Lösung ihre Werte an?
- c) Wann nimmt die Lösung Werte in $L^2(M)$ an?

Aufgabe 3 (4 Punkte)

Es seien $D \subset \mathbb{R}^n$ offen und beschränkt und Δ der Laplace-Operator auf D mit Null-Randbedingung. Mit $\mathcal{D}((-\Delta)^{-1/2})$ bezeichnen wir die Vervollständigung von $L^2(D)$ bezüglich der Norm $\|x\|_{\mathcal{D}((-\Delta)^{-1/2})} := \|(-\Delta)^{-1/2}x\|_{L^2(D)}$. Wir definieren den Hilbertraum $H := L^2(D) \oplus \mathcal{D}((-\Delta)^{-1/2})$, versehen mit dem Skalarprodukt $\langle (y, z), (y_1, z_1) \rangle_H := \langle y, y_1 \rangle_{L^2(D)} + \langle (-\Delta)^{-1/2}z, (-\Delta)^{-1/2}z_1 \rangle_{L^2(D)}$. Wir betrachten in H die stochastische partielle Differentialgleichung

$$dX_t = AX_t dt + BdW_t$$
$$X_0 = \xi.$$

Hierbei sei der Operator A auf dem Definitionsbereich $\mathcal{D}(A) := \mathcal{D}((-\Delta)^{1/2}) \oplus L^2(D) \subset H$ durch $A(y,z) := (z,\Delta y)$ definiert. Ferner seien $(W_t)_{t\geq 0}$ ein Q-Wiener-Prozess auf $\mathcal{D}((-\Delta)^{-1/2})$, Bu := (0,u) und ξ eine \mathcal{F}_0 -messbare H-wertige Zufallsvariable.

- a) Begründen Sie, warum man die obige Gleichung als stochastische Wellengleichung bezeichnet.
- b) Zeigen Sie, dass die von A erzeugte Halbgruppe $(S_t)_{t\geq 0}$ durch

$$S_t \begin{pmatrix} y \\ z \end{pmatrix} = \begin{pmatrix} \cos((-\Delta)^{1/2}t) & (-\Delta)^{-1/2}\sin((-\Delta)^{1/2}t) \\ -(-\Delta)^{1/2}\sin((-\Delta)^{1/2}t) & \cos((-\Delta)^{1/2}t) \end{pmatrix} \begin{pmatrix} y \\ z \end{pmatrix}$$

gegeben ist.

c) Folgern Sie, dass die stochastische Faltung durch

$$W_A(t) = \left((-\Delta)^{-1/2} \int_0^t \sin((-\Delta)^{1/2} (t-s)) dW_s, \int_0^t \cos((-\Delta)^{1/2} (t-s)) dW_s \right)$$

gegeben ist.

d) Untersuchen Sie, unter welchen Bedingungen an D die stochastische Wellengleichung genau eine schwache Lösung in H besitzt, und zwar zum einen im Fall $\operatorname{Spur}(Q) < \infty$, und zum anderen im Fall $Q = \operatorname{Id}$.

Abgabe der Lösungen: Mittwoch, 9. Mai 2007, zu Beginn der Übung