Solution of Aufgabe 4, Blatt 6

i) First note that for any odd function f the derivative f’ is even, i.e. f(z) =
f'(—2) holds. This follows because — f'(—z) = 7~ f(—z) = %(—f(a:)) = —f'(x).
Moreover, any odd function f fulfills f(0) = 0. Consequently, for g as in
Aufgabe 4 of Blatt 6 the functions ¢’ and ¢(®) are even and ¢” and ¢g*) are odd.
In particular, g(0) = 0, g”(0) = 0 and ¢ (0) = 0.
From Taylor’s formula with “Integral-Restglied” we obtain
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By applying Taylor’s formula with “Integral-Restglied” for ¢’ we get
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By multiplying equation (2) with —% and adding the result to equation (1)
one obtains
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So the assertion follows from
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for some & € [0, z]. Here step () follows from the “Mittelwertsatz der Integral-
Rechnung” (which is applicable because (z —t)3(% +¢) > 0 for t € [0,z]). Step
(*x) follows because
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ii) Define h and g (on the obvious domains) by

he) = fo+ 252)
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Clearly, g is odd, so with x := b7 we obtain from part i)
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with some ¢ €]0, 52[. Here step (*) follows because ¢'(z) = f'(z + %£2) +

=z + %) and ¢©®)(z) = fO) (z + 2£2) + fO) (—z + 2£2). From the fact that

f©®) is continuous it then follows that there is a £ € ]—f’—i—aT'H’, +§’+a7+b[ =la,b|

(here we have assumed without loss of generality that £’ > 0) such that
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holds.



