Functional Analysis

WS 2015/2016 Prof. Dr. M. Disertori P. Gladbach; R. Schubert

universität**bonn**

Due 8.1.2016.

Problem 1. (Continuity of the projection) (10 Points)

Let X be a Hilbert space, $K \subseteq X$ nonempty, closed and convex. Show that the orthogonal projection $P: X \to A$ is continuous. Hint: Show that $\operatorname{Re}(x - y, P(x) - P(y)) \ge ||P(x) - P(y)||^2$.

Problem 2. (Compactness in Hölder spaces) (10 Points)

Let $0 < \beta < \alpha \leq 1$. Show that the unit ball of $C^{0,\alpha}([0,1])$ is compact in $C^{0,\beta}([0,1])$. Hint: Use the Arzela-Ascoli theorem.

Problem 3. (Boundedness and precompactness) (7+3 Points)

Consider the following sets:

- i) $E_1 = \{ f : (0,1) \to \mathbb{R} : f(x) = x^{-\alpha}, 0 \le \alpha < 1 \},\$
- ii) $E_2 = \{f: (0,1) \to \mathbb{R} : f(x) = x^{-\alpha}, -\infty < \alpha \le 1 \delta\}$ (with fixed $\delta > 0$),
- iii) $E_3 = \{f : (0,1) \to \mathbb{R} : f(x) = \sin(\omega x), \omega \in \mathbb{R}\}.$
- iv) $E_4 = \{ f \in C^2([0,1]) : \|f\|_{\infty} (1 + \|f''\|_{\infty}) \le 1 \}.$
- a) Decide whether E_1, E_2, E_3 as subsets of $L^1((0, 1))$ are bounded and whether they are precompact.
- b) Decide whether E_4 as a subset of C([0, 1]) is precompact.

Problem 4. (Precompactness criterium in L^2) (10 Points)

Suppose $A \subset L^2(\mathbb{R}^n)$. For $f \in A$ denote by \hat{f} its Fourier transform. Prove that A is precompact if and only if the following three statements are true.

- i) $\sup_{f \in A} \|f\|_{L^2}$
- ii) $\limsup_{R\to\infty} \sup_{f\in A} \int_{\mathbb{R}^n \setminus B_R(0)} |f(x)|^2 dx = 0$
- iii) $\limsup_{R\to\infty}\sup_{f\in A}\int_{\mathbb{R}^n\setminus B_R(0)}\left|\widehat{f}(k)\right|^2\mathrm{d}k=0$

Hint: Observe that there is a decomposition $f = f_1 + f_2$ *with* supp $\hat{f}_1 \subset B_R(0)$ *and* $\left\| \hat{f}_2 \right\|_{L^2} < \varepsilon$.