Functional Analysis

WS 2015/2016 Prof. Dr. M. Disertori P. Gladbach; R. Schubert

Problem Sheet 5.

Due 4.12.2015.

Problem 1. (Sobolev inequalities) (4+5+1 Points)

- a) Let $1 \leq p < \infty$. Show that $C_c^{\infty}(\mathbb{R}^n)$ is dense in $W^{1,p}(\mathbb{R}^n)$.
- b) Let $u \in C_c^{\infty}(\mathbb{R}^2)$. Show that $||u||_{L^2} \leq ||Du||_{L^1}$. Hint: Write $u^2(x, y) = \left(\int_{-\infty}^x \partial_1 u(t, y) dt\right) \left(\int_{-\infty}^y \partial_2 u(x, s) ds\right)$.
- c) Show that there is no constant C > 0 such that $||u||_{L^1} \leq C ||Du||_{L^1}$ for all $u \in C_c^{\infty}(\mathbb{R}^2)$.

Problem 2. (Reproducing kernels) (3+2+5 Points)

Let $\Omega \neq \emptyset$ be a set. Suppose $H \subset \{f : \Omega \to \mathbb{R}\}$ is a real Hilbert space of functions $\Omega \to \mathbb{R}$ with inner product (\cdot, \cdot) . We call a function $K : \Omega \times \Omega \to \mathbb{R}$ a reproducing kernel for H if

- i) $K(x, \cdot) \in H$ for all $x \in \Omega$, and
- ii) $f(x) = (f, K(x, \cdot))$ for all $f \in H$ and all $x \in \Omega$.
- a) Prove that if a reproducing kernel for H exists, then it is unique.
- b) Prove that if a reproducing kernel for H exists, then, for every $x \in \Omega$, the evaluation functional $\delta_x : H \to \mathbb{R}, f \mapsto f(x)$ is a bounded linear functional.
- c) Consider $\Omega = \mathbb{R}$ and set $K(x, y) \coloneqq \frac{1}{2}e^{-|x-y|}$. Prove that K is a reproducing kernel for $W^{1,2}(\mathbb{R})$. Precisely, prove i) and prove for any $f \in W^{1,2}(\mathbb{R})$ that its continuous representative \overline{f} satisfies for all $x \in \mathbb{R}$

$$\bar{f}(x) = (\bar{f}, K(x, \cdot))_{W^{1,2}(\mathbb{R})} = \int_{\mathbb{R}} \bar{f}(y) K(x, y) \mathrm{d}y + \int_{\mathbb{R}} \bar{f}'(y) \partial_2 K(x, y) \mathrm{d}y.$$

Hint: Split the second integral and integrate by parts. Recall that $C_c^{\infty}(\mathbb{R})$ *is dense in* $W^{1,2}(\mathbb{R})$ *.*

Problem 3. (Difference quotients) (4+4+2 Points)

Suppose $U \subset \mathbb{R}^n$ is open and bounded. For $i=1,\ldots,n$ and h > 0 define $U_{i,h} = \{x \in U : x + te_i \in U \text{ for all } 0 < t \le h\}$, and let $1 \le p < \infty$.

a) Prove that for all $u \in W^{1,p}(U)$, every i = 1, ..., n and for all h > 0

$$\int_{U_{i,h}} \frac{|u(x+he_i) - u(x)|^p}{h^p} \mathrm{d}x \le \int_U \left| \frac{\partial u}{\partial x_i} \right|^p \mathrm{d}x$$

Hint: For smooth functions use the fundamental theorem of calculus.

b) Suppose $u \in L^p(U)$ satisfies for all h > 0

$$\left(\int_{U_{i,h}} \frac{|u(x+he_i)-u(x)|^p}{h^p} \mathrm{d}x\right)^{\frac{1}{p}} \le C < \infty, \ i = 1, \dots, n.$$

Let $k \mapsto \varphi_k$ be a sequence of mollifiers with $\sup \varphi_k \subset B(0, \frac{1}{k})$, and set $u_k \coloneqq u * \varphi_k$. Prove that for any $U' \subset U$ open with $\overline{U'} \subset U \setminus \overline{B(\partial U, \frac{1}{k})}$ and all $i = 1, \ldots, n$

$$\left(\int_{U'} \left|\frac{\partial u_k}{\partial x_i}\right|^p \mathrm{d}x\right)^{\frac{1}{p}} \le C.$$
(1)

Hint: write out the convolution explicitly to show

$$\left(\int_{U'_{i,h}} |u_k(x+he_i) - u_k(x)|^p \, \mathrm{d}x\right)^{\frac{1}{p}} \le \left(\int_{U_{i,h}} |u(x+he_i) - u(x)|^p \, \mathrm{d}x\right)^{\frac{1}{p}}$$

c) We will see later that (1) implies that if $1 there exists a subsequence <math>l \mapsto u_{k_l}$ and functions $v_i \in L^p(U')$ such that

$$\lim_{l \to \infty} \int_{U'} \frac{\partial}{\partial x_i} u_{k_l}(x) \xi(x) \, dx = \int_{U'} v_i(x) \xi(x) \, dx \text{ for all } \xi \in L^q, \text{ where } \frac{1}{p} + \frac{1}{q} = 1.$$

Show that this implies that $u \in W^{1,p}(U')$.

Problem 4. (Minimization) (5+5+5* Points)

Decide whether the following problems have a minimizer:

- a) Let $g \in C^0([0,1])$. Minimize $||f g||_{L^{\infty}([0,1])}$ among all $f \in L^{\infty}([0,1])$ with $\int_0^1 f \, dx = 0$. *Hint: Consider* $\left| \int_0^1 (g - f) \, dx \right|$.
- b) Minimize $\int_0^1 (u(x))^2 + ((u'(x))^2 1)^2 dx$ in $W^{1,4}([0,1])$. Hint: Sketch the function $z \mapsto (z^2 - 1)^2$.
- c*) Minimize $\int_{-1}^{1} (u'(x))^2 dx$ among all $u \in W^{1,2}([-1,1])$ with u(-1) = u(1) = 0 and

$$u(x) \ge \max(1 - 2|x|, 0)$$

for all $x \in [0, 1]$. This is called an **obstacle problem**.

Hint: The pointwise conditions on u are well-defined for the continuous representative (see Problem 4 on Sheet 4).