Functional Analysis

WS 2015/2016 Prof. Dr. M. Disertori P. Gladbach; R. Schubert

Problem Sheet 2.

Due 13.11.2015.

universität**bonn**

Problem 1. (Convexity) (3+5+2+5* Points)

- a) Let $(X, \|\cdot\|)$ be a normed space. Show that the closed unit ball $\overline{B(0,1)}$ is convex.
- b) Let $(X, (\cdot, \cdot))$ be a pre-Hilbert space. Show that the closed unit ball is *strictly convex*, i.e. that for $x, y \in \overline{B(0, 1)}$, $x \neq y$, and $t \in (0, 1)$ we have $(1 t)x + ty \in B(0, 1)$, i.e. the interior of $\overline{B(0, 1)}$.

Hint: Compute the second derivative of the function $t \mapsto ||(1-t)x + ty||^2$.

- c) Sketch the unit ball $\overline{B(0,1)}$ in $(\mathbb{R}^2, \|\cdot\|_p)$ for $p = 1, 3/2, 2, 3, \infty$. What about p = 1/2?
- d*) Show that the closed unit ball in $(\mathbb{R}^n, \|\cdot\|_p)$ is strictly convex for $p \in (1, \infty)$.

Problem 2. (The spaces l_p) (5+3+2 Points)

Define the norm $\|\cdot\|_p : \mathbb{R}^{\mathbb{N}} \to [0,\infty]$ for $p \in [1,\infty)$ as $\|x\|_p = \left(\sum_{j=1}^{\infty} |x_j|^p\right)^{1/p}$ and the space $l_p = \{x \in \mathbb{R}^{\mathbb{N}} : \|x\|_p < \infty\}.$

- a) Show that $(l_p, \|\cdot\|_p)$ is a Banach space.
- b) Find all pairs $p, q \in [1, \infty)$ such that $id : l_p \to l_q$ is a bounded linear operator.
- c) Find an injective, non-surjective bounded linear operator $T: l_p \to l_p$.

Hint: You may use that $\|\cdot\|_p$ is a norm on \mathbb{R}^n for all $n \in \mathbb{N}$. Let X, Y be normed spaces. A linear operator $A: X \to Y$ is bounded if there exists $C \in (0, \infty)$ such that $\|Ax\|_Y \leq C \|x\|_X$ for all $x \in X$.

Problem 3. (Completeness) (4+6 Points)

- a) Define $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by $d(x, y) = |\arctan x \arctan y|$. Prove that d is a metric on \mathbb{R} , and that the induced topology agrees with the standard topology on \mathbb{R} . Show further that (\mathbb{R}, d) is not complete, i.e. there is a Cauchy sequence $x : \mathbb{N} \to \mathbb{R}$ which does not converge with respect to d. *Hint: You may use that (with respect to the standard topology)* arctan $: \mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2})$ is a *homeomorphism and* $\lim_{x\to\infty} \arctan x = \frac{\pi}{2}$.
- b) Are the following normed spaces complete? (If not, give a counterexample.)
 - i) l_1 equipped with the l_2 norm.
 - ii) $C_c^0(\mathbb{R}^n)$ equipped with the sup norm $\|f\|_{\infty} = \sup_{x \in \mathbb{R}^n} |f(x)|$.
 - iii) $C^{0}[0,1]$ equipped with the L^{1} norm $||f||_{L^{1}} = \int_{0}^{1} |f(x)| dx$.

Problem 4. (Parallelogram identity) (10 Points)

Let $(V, \|\cdot\|)$ be a normed \mathbb{R} -vector space. Prove that the norm $\|\cdot\|$ is given by a scalar product (\cdot, \cdot) , i.e. $\|x\| = \sqrt{(x,x)}$ if and only if the parallelogram identity

$$2 ||x||^{2} + 2 ||y||^{2} = ||x + y||^{2} + ||x - y||^{2}$$

holds for all $x, y \in V$. Hint: For the 'if' part construct a candidate for the scalar product by looking at $||x + y||^2 = (x + y, x + y) = \dots$