Functional Analysis

WS 2015/2016 Prof. Dr. M. Disertori P. Gladbach; R. Schubert

Problem Sheet 12.

Due Wednesday, 3.2.2016.

Problem 1. (Small sets in C([0,1])) (5*+5* Points)

a*) For $n \in \mathbb{N}$ define the set $M_n \subset C([0,1])$ as

 $M_n = \left\{ f \in C([0,1]) : \exists x^* \in [0, 1-1/n] \text{ s.t. } |f(x^*+h) - f(x^*)| \le nh \text{ for all } h \in [0, 1-x^*] \right\}.$

Show that M_n is closed and has empty interior in C([0, 1]).

b*) Define the set $M \subset C([0,1])$ as

$$M = \{ f \in C([0,1]) : \exists x^* \in [0,1) \text{ s.t. the right derivative } f'_+(x^*) \text{ exists} \}$$

Show that M has empty interior in C([0, 1]).

Problem 2. (Weak convergence in $W^{1,p}$) (4×5* Points)

- a*) Let X, Y be Banach spaces. Show that a sequence (x_k, y_k) converges weakly in $(X \times Y)$ to (x, y) if and only if $x_k \rightharpoonup x$ and $y_k \rightharpoonup y$.
- b*) Let X be a Banach space, $Z \subset X$ a closed supspace of X(i.e. also a Banach space). Show that a sequence $z_k \in Z$ converges weakly in X to x if and only if $x \in Z$ and z_k converges weakly to x in Z.
- c*) Let X, Y be Banach spaces, $T \in \mathcal{L}(X, Y)$ invertible. Show that $x_k \rightharpoonup x$ in x if and only if $Tx_k \rightharpoonup Tx$ in Y.
- d*) Let $U \subseteq \mathbb{R}^n$ be open and $1 . Show that <math>f_k \rightharpoonup f$ in $W^{1,p}(U)$ if and only if $f_k \rightharpoonup f$ in $L^p(U)$ and $\partial_j f_k \rightharpoonup \partial_j f$ in $L^p(U)$ for $j = 1, \ldots, n$.