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Problem 1 (Poincaré inequality in an interval).
Let I = (0, 1) ⊂ R, let λ ≥ π and let L(s, p) = 1

2(p2 − λ2s2). Consider the integral functional

Iλ(u) =

∫ 1

0
L(u(x), u′(x)) dx =

1

2

∫ 1

0
|u′|2 dx− λ2

2

∫ 1

0
|u|2 dx , for u ∈ H1

0 (0, 1).

a) For λ = π, find a family of solutions uα ∈ H1
0 (0, 1), depending on a real parameter

α ∈ R, to the Euler-Lagrange equation associated with the functional Iλ, such that
Iλ(uα) = 0.

b) For λ > π, show that infu∈H1
0 (0,1) Iλ(u) = −∞, and hence the functional Iλ has no

minimizer in H1
0 (0, 1). (It is also worth to remark that for 0 ≤ λ ≤ π one has

infu∈H1
0 (Ω) Iλ(u) = 0: hence λ = π is the best constant for the Poincaré inequality

in an interval).

c) However, show that the Euler-Lagrange equation has always a solution, and that for
some values of λ > π there are infinitely many solutions in H1

0 (0, 1). (Notice that the
map p 7→ f(s, p) is convex, but (s, p) 7→ f(s, p) is not, and in this case there are solutions
to the Euler-Lagrange equation which are not minimizers).

Problem 2 (Minimal graphs of revolution).
Let u ∈ C1([−1, 1]) such that u > 0, u(−1) = a, u(1) = b for given a, b > 0. The area of the
surface obtained by rotating the graph of u about the x-axis is

A(u) = 2π

∫ 1

−1
u(x)

√
1 + |u′(x)|2 dx .

a) Derive the Euler-Lagrange equation of A.

b) Show that, if u is a (sufficiently regular) minimizer of A in the class of functions with
the same boundary values, then

u2 = c2(1 + |u′|2) (1)

for some constant c ∈ R.

c) Solve the equation (1). Is the solution always a minimizer of the area among surfaces of
revolution with the same boundary values? Is there always a minimizer among smooth
graphs with prescribed boundary values? Think about the case a = b.
Hint: look for a solution in the form u(x) = c cosh v(x).



Problem 3 (Minimal surfaces).
Let Ω ⊂ Rn be an open set and let u ∈ C2(Ω)∩C0(Ω). Show that if the area of the graph of
u, defined by

A(u) =

∫
Ω

√
1 + |∇u|2 dx ,

is minimal with respect to every v ∈ C2(Ω) ∩ C0(Ω) such that v = u on ∂Ω, then the graph
of u has mean curvature constantly equal to 0, that is

div

(
∇u√

1 + |∇u|2

)
= 0 in Ω.

Problem 4 (Variational formulation of a nonlinear equation).
Let Ω ⊂ Rn be open and bounded, and let f : Ω× R→ R be a Carathéodory function:

a) for every s ∈ R the map x 7→ f(x, s) is measurable in Ω;

b) for almost every x ∈ Ω the map s 7→ f(x, s) is continuous on R.

Assume also that f satisfies the growth condition

|f(x, s)| ≤ a(x) + b|s|

for some a ∈ L2(Ω) and b > 0. Find an integral functional I : H1
0 (Ω) → R such that every

minimizer of I in H1
0 (Ω) is a weak solution to the boundary value problem{

−∆u = f(x, u(x)) in Ω,

u = 0 on ∂Ω.

Problem 5 (Euler-Lagrange equations).
Find a Lagrangian L = L(x, s, p) such that the PDE

−∆u+Dφ ·Du = f in Ω

is the Euler-Lagrange equation corresponding to the functional I(u) =
∫

Ω L(x, u(x), Du(x)) dx.
Here φ and f are given smooth functions.
Hint: look for a Lagrangian with an exponential term.
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