Problem 1 (Nonlinearities and weak convergence, 6 points).

The aim of the exercise is to show that the weak convergence of a sequence $f_n \rightharpoonup f$ in L^2 does **not** imply $a(f_n) \rightharpoonup a(f)$ for any **nonlinear**, real-valued function a.

a) (Weak convergence of highly-oscillating functions) Let $u : \mathbb{R} \to \mathbb{R}$ be a 1-periodic function in $L^{\infty}(\mathbb{R})$, and define $u_n(x) := u(nx)$ for $n \in \mathbb{N}$. Show that, as $n \to \infty$,

$$u_n \rightarrow m = \int_{(0,1)} u(x) \, \mathrm{d}x$$
 weakly in $L^2(A)$, for every open, bounded set $A \subset \mathbb{R}$.

Hint: by considering the functions $U(x) = \int_0^x (u(t) - m) dt$, $U_n(x) = U(nx)$, and integrating by parts, show that $\lim_{n\to\infty} \int_{\mathbb{R}} (u_n(x) - m)\varphi(x) dx = 0$ for every $\varphi \in C^1_c(\mathbb{R})$.

b) Let $a : \mathbb{R} \to \mathbb{R}$ be a continuous function such that $a(f_n) \rightharpoonup a(f)$ weakly in $L^2(0,1)$ whenever $f_n \rightharpoonup f$ weakly in $L^2(0,1)$. Prove that a is affine:

$$a(z) = \alpha z + \beta \,,$$

for some constants α , β .

Hint: suppose by contradiction that there exist values $z_1, z_2 \in \mathbb{R}$ and $\lambda \in (0, 1)$ such that $a(\lambda z_1 + (1 - \lambda)z_2) \neq \lambda a(z_1) + (1 - \lambda)a(z_2)$. Then construct a suitable weakly convergent sequence f_n , and use the result in a).

c) Find a continuous function $a : \mathbb{R} \to \mathbb{R}$ such that for every $p \in \mathbb{R}$ there is a sequence $f_n \in L^{\infty}(0,1)$ such that $f_n \rightharpoonup 0$ and $a(f_n) \rightharpoonup p$ weakly in $L^2(0,1)$.

Problem 2 (p-Laplacian, 4 points).

Let $\Omega \subset \mathbb{R}^n$ be open and bounded, and $p \in (1, \infty)$. Consider the vector field $a : \mathbb{R}^n \to \mathbb{R}^n$ given by $a(\xi) := |\xi|^{p-2}\xi$, and the associated operator

$$A: W_0^{1,p}(\Omega) \to (W_0^{1,p}(\Omega))'$$

defined by $A(u) := -\operatorname{div}(a(\nabla u))$, or equivalently

$$A(u)(v) = \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v \, \mathrm{d}x \qquad \text{for every } u, v \in W_0^{1,p}(\Omega).$$

Show that:

- a) A is well-defined and maps bounded sets into bounded sets;
- b) A is strictly monotone: (A(u) A(v))(u v) > 0 for every $u, v \in W_0^{1,p}(\Omega), u \neq v$;
- c) A is coercive on $W_0^{1,p}(\Omega)$.

Problem 3 (Mean curvature of a graph, 6 points).

For a function $u: \Omega \to \mathbb{R}$ of class C^2 in an open set $\Omega \subset \mathbb{R}^n$, the mean curvature H of the graph of u has the expression

$$nH = \operatorname{div}\left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}}\right) \quad \text{in } \Omega.$$
 (1)

Suppose that $\Omega \subset B(0, R)$ for some R > 0, and define $v_R : \Omega \to \mathbb{R}$ by $v_R(x) = \sqrt{R^2 - |x|^2}$.

- a) Show that the graph of v_R has mean curvature equal to $-\frac{1}{R}$.
- b) Let $H: \Omega \to \mathbb{R}$ with $-\frac{1}{R} < H < 0$, and let $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfy

$$\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = nH$$
 in Ω , $u = 0$ on $\partial\Omega$.

Show that $0 < u < v_R$ in Ω .

Hint: to show that $u < v_R$, notice that the equation for u is equivalent to

$$\frac{1}{\sqrt{1+|\nabla u|^2}} \left(-\Delta u + \sum_{i,j=1}^n \frac{\partial_i u \partial_j u}{1+|\nabla u|^2} \partial_i \partial_j u \right) = -nH.$$

Assume that $u - v_R$ has an interior maximum at $x_0 \in \Omega$, and derive a contradiction. To show that u > 0 argue similarly, or apply the strong maximum principle for linear PDEs.

c) Show that the vector field $a(p) = \frac{p}{\sqrt{1+|p|^2}}$ is strictly monotone, that is for every $p, q \in \mathbb{R}^n$ $(a(p) - a(q)) \cdot (p - q) > 0$. Is it possible to apply the general theory seen in the lectures to obtain the existence of a weak solution u to (1), for a given $H \in L^2(\Omega)$?

Total: 16 points