Problem 1 (Eigenvalues of symmetric, elliptic operators, 2+2 points).

Let $\Omega \subset \mathbb{R}^n$ be open, bounded, and connected. Consider the operator $Lu = -\sum_{i,j=1}^n (a_{ij}u_{x_j})_{x_i}$, where the coefficients $a_{ij} \in L^{\infty}(\Omega)$ are symmetric and uniformly elliptic, and the associated bilinear form

$$B(u,v) = \sum_{i,j=1}^{n} \int_{\Omega} a_{ij} u_{x_j} v_{x_i} \, \mathrm{d}x, \qquad u, v \in H_0^1(\Omega).$$

By the general theory, we have a sequence $0 < \lambda_1 < \lambda_2 \leq \lambda_3 \leq \ldots$ of eigenvalues of the operator L (with Dirichlet boundary conditions), with the corresponding eigenfunctions $\{u_k\}_k$ forming an orthonormal basis of $L^2(\Omega)$.

a) Prove the formula

$$\lambda_k = \min\left\{\frac{B(u, u)}{\|u\|_{L^2}^2} : u \in H^1_0(\Omega), \, (u, u_i)_{L^2} = 0 \text{ for } i = 1, \dots, k-1\right\},\$$

where $(u, v)_{L^2}$ denotes the scalar product in $L^2(\Omega)$.

b) (Courant minmax principle) Prove that

$$\lambda_k = \sup_{\varphi_1, \dots, \varphi_{k-1} \in L^2(\Omega)} \min \left\{ \frac{B(u, u)}{\|u\|_{L^2}^2} : u \in H^1_0(\Omega), \, (u, \varphi_i)_{L^2} = 0 \text{ for } i = 1, \dots, k-1 \right\}.$$

Hint: choose $u = \sum_{i=1}^{k} \beta_i u_i$ *for suitable* β_i .

Problem 2 (Monotone dependence of eigenvalues on the domain, 4 points).

Let $a_{ij} \in L^{\infty}(\mathbb{R}^n)$ be symmetric and uniformly elliptic coefficients, and consider the elliptic operator $Lu := -\sum_{i,j=1}^n (a_{ij}u_{x_j})_{x_i}$. For any given open and bounded set $\Omega \subset \mathbb{R}^n$, denote by $\{\lambda_k(\Omega)\}_k$ the sequence of eigenvalues of L (with Dirichlet boundary conditions) on the domain Ω : that is, the values for which there exist nontrivial solutions to the boundary value problem

$$\begin{cases} Lu = \lambda_k(\Omega)u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$

Show that if $\Omega_1 \subset \Omega_2$ are open and bounded, then $\lambda_k(\Omega_2) \leq \lambda_k(\Omega_1)$ for every k. Hint: you can first do the proof in the easiest case k = 1, using Rayleigh's formula; in the general case k > 1, use the two characterizations of λ_k given in Problem 1.

Please turn over.

Problem 3 (Mosco convergence and γ -convergence, 6 points).

Let D be a fixed open, bounded set. Let $\Omega_n \subset D$ be a sequence of open subsets of D, and let $\Omega \subset D$ be an open subset. We say that:

a) $\Omega_n \gamma$ -converges to Ω , if for every $f \in (H_0^1(D))'$ (the dual of $H_0^1(D)$), denoting by $u_f^{(n)}$ and u_f the weak solutions to the Dirichlet problems

$$\begin{cases} -\Delta u_f^{(n)} = f & \text{in } \Omega_n, \\ u_f^{(n)} = 0 & \text{on } \partial \Omega_n, \end{cases} \quad \begin{cases} -\Delta u_f = f & \text{in } \Omega, \\ u_f = 0 & \text{on } \partial \Omega \end{cases}$$

respectively, then $u_f^{(n)}$ converges strongly to u_f in $H_0^1(D)$ (here, as usual, every function in $H_0^1(\Omega_n)$ is extended by zero outside Ω_n).

- b) $H_0^1(\Omega_n)$ converges to $H_0^1(\Omega)$ in the sense of Mosco, if the following two conditions are satisfied:
 - (M1) for every $v \in H_0^1(\Omega)$, there exists a sequence $v_n \in H_0^1(\Omega_n)$ such that $v_n \to v$ strongly in $H_0^1(D)$;
 - (M2) for every subsequence $v_{n_k} \in H_0^1(\Omega_{n_k})$ which converges weakly in $H_0^1(D)$ to a function $v \in H_0^1(D)$, then $v \in H_0^1(\Omega)$.

Prove that $\Omega_n \gamma$ -converges to Ω if and only if $H_0^1(\Omega_n)$ converges to $H_0^1(\Omega)$ in the sense of Mosco.

BONUS (extra credit: 4 points). Prove that, if $\Omega_n \gamma$ -converges to Ω , then all the eigenvalues of the Laplacian in the domain Ω_n converge to the corresponding eigenvalues in the domain Ω : $\lambda_k(\Omega_n) \to \lambda_k(\Omega)$ as $n \to \infty$, for every k (with the notation of Problem 2).

Hint: use the characterizations of eigenvalues given in Problem 1 to show the following implications:

(M1)
$$\implies \limsup_{n \to \infty} \lambda_k(\Omega_n) \le \lambda_k(\Omega),$$

(M2) $\implies \lambda_k(\Omega) \le \liminf_{n \to \infty} \lambda_k(\Omega_n).$

You might first try with the easiest case k = 1.

Problem 4 (Nodal domains, 2 points).

Let $\Omega \subset \mathbb{R}^n$ be open, bounded, and connected. Consider the operator $Lu = -\sum_{i,j=1}^n (a_{ij}u_{x_j})_{x_i}$, where the coefficients $a_{ij} \in C^{\infty}(\Omega)$ are symmetric and uniformly elliptic. Let $u_k, k \ge 1$, be the eigenfunctions of the operator L in Ω (with Dirichlet boundary conditions), associated to the eigenvalues λ_k . The connected components of the open sets

$$\Omega_k^+ = \{ x \in \Omega : u_k(x) > 0 \}, \qquad \Omega_k^- = \{ x \in \Omega : u_k(x) < 0 \}$$

are called the *nodal domains* of u_k .

Show that every eigenfunction u_k , $k \ge 2$, has to change sign in Ω . Moreover, let ω_k be one of the nodal domains of u_k . Show that the first eigenvalue of L in ω_k coincides with λ_k :

$$\lambda_1(\omega_k) = \lambda_k$$

(with the notation of Problem 2).

Total: 16 points, extra credit 4 points