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Problem 1 (Uniqueness for various boundary conditions, 2+2+2 points).

Let © C R™ be open, bounded, and connected, and suppose that {2 satisfies an interior ball
condition at every point on 9. If 2y € 9f, denote by v(z() the exterior normal to an interior
ball tangent to 9€) at z.

Consider Lu := — szzl AUz, + o biug, + cu, where a;j, b;, ¢ € C%Q), ¢ > 0, and agj
are uniformly elliptic. Assume that u € C?(Q) N C%(Q) is a solution to Lu = 0 in Q. Prove:

a) If the normal derivative % is defined everywhere on 0f) and g—}j = 0 on 01, then u is

constant in 2. If furthermore ¢ > 0 at some point in €2, then u = 0.

b) Assume that 9Q = dpQ U N, with pQ # (), and that u € C1(Q U INN) satisfies the

mixed boundary condition
n
u =0 on 9p1, Zﬁl(a})uzl =0 on N9,
i=1

where f(x) = (B1(x), ..., Bn(x)) has a non-zero normal component (to the interior ball)
at each point z € dy§2. Then u = 0.

c) Assume that u € C(Q) satisfies the regular oblique derivative boundary condition
n
a(r)u + Zﬁz(x)umz =0 on 99,
i=1

where (8- v)a > 0 on 9. Then u = 0.

Problem 2 (Comparison principle for quasilinear elliptic equations, 4 points).
Let © C R™ be open and bounded. Consider a second order quasilinear operator

Au = — Z aij(z, Vu(x))ugz; + bz, u(z), Vu(z)),

ij=1
where the coefficients a;; € C°(Q x R") are symmetric and bounded,

n

Z aij(z, &)mim; > Oln|*>  for every (z,€) € Q x R™
ij=1

for some § > 0, and b € C%(Q x R x R"). Assume also that the maps £ — a;;(z,€),
& — b(x, z,€) are continuously differentiable in R™ for every (z,z) € Q x R, and b is non-
decreasing in the second variable.



Let u,v € C%(Q2) N C%(Q) satisfy
Au < Av  in Q, u<wv on Jf.

Prove that v < v in Q.
Hint: recall that for a continuously differentiable function g : R™ — R we have the mean value
theorem

1
gp) —9(q) =s-(p—q), s:/o Vg((1—t)q+tp)dt.

Apply this property to the function

n

g(x,p) == Z aij(x7p)vxizj(x) —}—b(x,u(x),p)

i,j=1
to obtain
n
— Z (aij(x, Vu) — aij(z, Vv))vxixj + b(x,u, Vu) — b(x,u, Vv) = f(x) - V(u — v).
i,j=1
Then apply the weak maximum principle to the linear operator

n

Lw :=— Z aij(z, Vu(Z))wa,o; + B(z) - Vw(z) .

4,j=1

Problem 3 (Convexity of solutions to elliptic PDEs, 24242 points).
Let © C R™ be an open, bounded and convex domain. Consider an elliptic operator Lu :=
— Z?Fl @ijug,z; + f(u), where the constant coefficients a;; are symmetric and elliptic, and

feCR), f >0, fconcave.

Suppose that v € C?(Q) is a solution to Lu = 0 in Q. Define, for A € (0, 1), the concavity
function

Ca(z,y) =u(dz+ (1= Ny) = Au(@) — (1 = Nuly),  (z,y) €Qx Q.

Notice that Cy measures how much u fails to be convex; in particular, if Cy < 0 in © x € for
every A € (0,1), then u is convex in .

a) Prove that C) cannot have a positive maximum at an interior point (z,y) € Q x Q.
Hint: argue by contradiction, and consider the function

CA(§) =CA(@ +&,7 + ),

which has a local mazimum at § = 0. Also use the fact that, if M = (myj)i; is a
symmetric and negative semidefinite matriz, then Z:‘szl a;;mg; < 0.



b) Generalize the previous result to the case in which a;; = a;;(Vu), f = f(u, Vu) depend
also on Vu:

n
a;; € CO(R™), Z aij(&)nim; > 0n>  for every &,n € R™,
ij=1

feCl R x R"), % >0, wur~ f(u,§) concave for every £ € R".

Hint: prove that Vu(z) = Vu(y) = Vu(AZ + (1 — N)y) at an interior mazimum point
(Z,9) € Q x Q of Cx. Then repeat the proof as in the previous case.

c) Let Q be strictly convex (that is, Az + (1 — XNy € Q for every z,y € Q and X € (0,1)).
Assume that u(x) — oo uniformly as dist (x,92) — 0. Prove that u is convex in .

Total: 16 points



