Problem 1 (Uniqueness for various boundary conditions, 2+2+2 points).

Let $\Omega \subset \mathbb{R}^n$ be open, bounded, and connected, and suppose that Ω satisfies an interior ball condition at every point on $\partial \Omega$. If $x_0 \in \partial \Omega$, denote by $\nu(x_0)$ the exterior normal to an interior ball tangent to $\partial \Omega$ at x_0 .

Consider $Lu := -\sum_{i,j=1}^{n} a_{ij} u_{x_i x_j} + \sum_{i=1}^{n} b_i u_{x_i} + cu$, where $a_{ij}, b_i, c \in C^0(\overline{\Omega}), c \ge 0$, and a_{ij} are uniformly elliptic. Assume that $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ is a solution to Lu = 0 in Ω . Prove:

- a) If the normal derivative $\frac{\partial u}{\partial \nu}$ is defined everywhere on $\partial \Omega$ and $\frac{\partial u}{\partial \nu} = 0$ on $\partial \Omega$, then u is constant in Ω . If furthermore c > 0 at some point in Ω , then $u \equiv 0$.
- b) Assume that $\partial \Omega = \partial_D \Omega \cup \partial_N \Omega$, with $\partial_D \Omega \neq \emptyset$, and that $u \in C^1(\Omega \cup \partial_N \Omega)$ satisfies the mixed boundary condition

$$u = 0 \text{ on } \partial_D \Omega, \qquad \sum_{i=1}^n \beta_i(x) u_{x_i} = 0 \text{ on } \partial_N \Omega,$$

where $\beta(x) = (\beta_1(x), \dots, \beta_n(x))$ has a non-zero normal component (to the interior ball) at each point $x \in \partial_N \Omega$. Then $u \equiv 0$.

c) Assume that $u \in C^1(\overline{\Omega})$ satisfies the regular oblique derivative boundary condition

$$\alpha(x)u + \sum_{i=1}^{n} \beta_i(x)u_{x_i} = 0$$
 on $\partial\Omega$,

where $(\beta \cdot \nu)\alpha > 0$ on $\partial\Omega$. Then $u \equiv 0$.

Problem 2 (Comparison principle for quasilinear elliptic equations, 4 points). Let $\Omega \subset \mathbb{R}^n$ be open and bounded. Consider a second order quasilinear operator

$$Au := -\sum_{i,j=1}^{n} a_{ij}(x, \nabla u(x))u_{x_i x_j} + b(x, u(x), \nabla u(x)),$$

where the coefficients $a_{ij} \in C^0(\Omega \times \mathbb{R}^n)$ are symmetric and bounded,

$$\sum_{i,j=1}^{n} a_{ij}(x,\xi)\eta_i\eta_j \ge \theta |\eta|^2 \quad \text{for every } (x,\xi) \in \Omega \times \mathbb{R}^n$$

for some $\theta > 0$, and $b \in C^0(\Omega \times \mathbb{R} \times \mathbb{R}^n)$. Assume also that the maps $\xi \to a_{ij}(x,\xi)$, $\xi \to b(x,z,\xi)$ are continuously differentiable in \mathbb{R}^n for every $(x,z) \in \Omega \times \mathbb{R}$, and b is non-decreasing in the second variable.

Let $u, v \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfy

$$Au \leq Av$$
 in Ω , $u \leq v$ on $\partial \Omega$.

Prove that $u \leq v$ in Ω .

Hint: recall that for a continuously differentiable function $g : \mathbb{R}^n \to \mathbb{R}$ *we have the mean value theorem*

$$g(p) - g(q) = s \cdot (p - q), \qquad s = \int_0^1 \nabla g((1 - t)q + tp) \, \mathrm{d}t.$$

Apply this property to the function

$$g(x,p) := -\sum_{i,j=1}^{n} a_{ij}(x,p)v_{x_ix_j}(x) + b(x,u(x),p)$$

 $to \ obtain$

$$-\sum_{i,j=1}^n \left(a_{ij}(x,\nabla u) - a_{ij}(x,\nabla v)\right) v_{x_i x_j} + b(x,u,\nabla u) - b(x,u,\nabla v) = \beta(x) \cdot \nabla(u-v).$$

Then apply the weak maximum principle to the linear operator

$$Lw := -\sum_{i,j=1}^{n} a_{ij}(x, \nabla u(x))w_{x_ix_j} + \beta(x) \cdot \nabla w(x).$$

Problem 3 (Convexity of solutions to elliptic PDEs, 2+2+2 points).

Let $\Omega \subset \mathbb{R}^n$ be an open, bounded and convex domain. Consider an elliptic operator $Lu := -\sum_{i,j=1}^n a_{ij} u_{x_i x_j} + f(u)$, where the *constant* coefficients a_{ij} are symmetric and elliptic, and

$$f \in C^1(\mathbb{R}), \quad f' > 0, \quad f \text{ concave.}$$

Suppose that $u \in C^2(\Omega)$ is a solution to Lu = 0 in Ω . Define, for $\lambda \in (0, 1)$, the concavity function

$$\mathcal{C}_{\lambda}(x,y) := u(\lambda x + (1-\lambda)y) - \lambda u(x) - (1-\lambda)u(y), \qquad (x,y) \in \Omega \times \Omega.$$

Notice that C_{λ} measures how much u fails to be convex; in particular, if $C_{\lambda} \leq 0$ in $\Omega \times \Omega$ for every $\lambda \in (0, 1)$, then u is convex in Ω .

a) Prove that C_{λ} cannot have a positive maximum at an interior point $(\bar{x}, \bar{y}) \in \Omega \times \Omega$. Hint: argue by contradiction, and consider the function

$$\bar{\mathcal{C}}_{\lambda}(\xi) := \mathcal{C}_{\lambda}(\bar{x} + \xi, \bar{y} + \xi),$$

which has a local maximum at $\xi = 0$. Also use the fact that, if $M = (m_{ij})_{ij}$ is a symmetric and negative semidefinite matrix, then $\sum_{i,j=1}^{n} a_{ij}m_{ij} \leq 0$.

b) Generalize the previous result to the case in which $a_{ij} = a_{ij}(\nabla u)$, $f = f(u, \nabla u)$ depend also on ∇u :

$$\begin{aligned} a_{ij} \in C^0(\mathbb{R}^n), \qquad \sum_{ij=1}^n a_{ij}(\xi)\eta_i\eta_j \geq \theta |\eta|^2 \quad \text{for every } \xi, \eta \in \mathbb{R}^n, \\ f \in C^1(\mathbb{R} \times \mathbb{R}^n), \quad \frac{\partial f}{\partial u} > 0, \quad u \mapsto f(u,\xi) \text{ concave for every } \xi \in \mathbb{R}^n. \end{aligned}$$

Hint: prove that $\nabla u(\bar{x}) = \nabla u(\bar{y}) = \nabla u(\lambda \bar{x} + (1 - \lambda)\bar{y})$ *at an interior maximum point* $(\bar{x}, \bar{y}) \in \Omega \times \Omega$ of \mathcal{C}_{λ} . Then repeat the proof as in the previous case.

c) Let Ω be strictly convex (that is, $\lambda x + (1 - \lambda)y \in \Omega$ for every $x, y \in \overline{\Omega}$ and $\lambda \in (0, 1)$). Assume that $u(x) \to \infty$ uniformly as dist $(x, \partial \Omega) \to 0$. Prove that u is convex in Ω .

Total: 16 points