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Problem 1 (Uniqueness for various boundary conditions, 2+2+2 points).
Let Ω ⊂ Rn be open, bounded, and connected, and suppose that Ω satisfies an interior ball
condition at every point on ∂Ω. If x0 ∈ ∂Ω, denote by ν(x0) the exterior normal to an interior
ball tangent to ∂Ω at x0.
Consider Lu := −

∑n
i,j=1 aijuxixj +

∑n
i=1 biuxi + cu, where aij , bi, c ∈ C0(Ω), c ≥ 0, and aij

are uniformly elliptic. Assume that u ∈ C2(Ω) ∩ C0(Ω) is a solution to Lu = 0 in Ω. Prove:

a) If the normal derivative ∂u
∂ν is defined everywhere on ∂Ω and ∂u

∂ν = 0 on ∂Ω, then u is
constant in Ω. If furthermore c > 0 at some point in Ω, then u ≡ 0.

b) Assume that ∂Ω = ∂DΩ ∪ ∂NΩ, with ∂DΩ 6= ∅, and that u ∈ C1(Ω ∪ ∂NΩ) satisfies the
mixed boundary condition

u = 0 on ∂DΩ,
n∑
i=1

βi(x)uxi = 0 on ∂NΩ,

where β(x) = (β1(x), . . . , βn(x)) has a non-zero normal component (to the interior ball)
at each point x ∈ ∂NΩ. Then u ≡ 0.

c) Assume that u ∈ C1(Ω) satisfies the regular oblique derivative boundary condition

α(x)u+

n∑
i=1

βi(x)uxi = 0 on ∂Ω,

where (β · ν)α > 0 on ∂Ω. Then u ≡ 0.

Problem 2 (Comparison principle for quasilinear elliptic equations, 4 points).
Let Ω ⊂ Rn be open and bounded. Consider a second order quasilinear operator

Au := −
n∑

i,j=1

aij(x,∇u(x))uxixj + b(x, u(x),∇u(x)) ,

where the coefficients aij ∈ C0(Ω× Rn) are symmetric and bounded,

n∑
i,j=1

aij(x, ξ)ηiηj ≥ θ|η|2 for every (x, ξ) ∈ Ω× Rn

for some θ > 0, and b ∈ C0(Ω × R × Rn). Assume also that the maps ξ → aij(x, ξ),
ξ → b(x, z, ξ) are continuously differentiable in Rn for every (x, z) ∈ Ω × R, and b is non-
decreasing in the second variable.



Let u, v ∈ C2(Ω) ∩ C0(Ω) satisfy

Au ≤ Av in Ω, u ≤ v on ∂Ω.

Prove that u ≤ v in Ω.
Hint: recall that for a continuously differentiable function g : Rn → R we have the mean value
theorem

g(p)− g(q) = s · (p− q), s =

∫ 1

0
∇g((1− t)q + tp) dt .

Apply this property to the function

g(x, p) := −
n∑

i,j=1

aij(x, p)vxixj (x) + b(x, u(x), p)

to obtain

−
n∑

i,j=1

(
aij(x,∇u)− aij(x,∇v)

)
vxixj + b(x, u,∇u)− b(x, u,∇v) = β(x) · ∇(u− v).

Then apply the weak maximum principle to the linear operator

Lw := −
n∑

i,j=1

aij(x,∇u(x))wxixj + β(x) · ∇w(x) .

Problem 3 (Convexity of solutions to elliptic PDEs, 2+2+2 points).
Let Ω ⊂ Rn be an open, bounded and convex domain. Consider an elliptic operator Lu :=
−
∑n

i,j=1 aijuxixj + f(u), where the constant coefficients aij are symmetric and elliptic, and

f ∈ C1(R), f ′ > 0, f concave.

Suppose that u ∈ C2(Ω) is a solution to Lu = 0 in Ω. Define, for λ ∈ (0, 1), the concavity
function

Cλ(x, y) := u(λx+ (1− λ)y)− λu(x)− (1− λ)u(y), (x, y) ∈ Ω× Ω.

Notice that Cλ measures how much u fails to be convex; in particular, if Cλ ≤ 0 in Ω× Ω for
every λ ∈ (0, 1), then u is convex in Ω.

a) Prove that Cλ cannot have a positive maximum at an interior point (x̄, ȳ) ∈ Ω × Ω.
Hint: argue by contradiction, and consider the function

C̄λ(ξ) := Cλ(x̄+ ξ, ȳ + ξ),

which has a local maximum at ξ = 0. Also use the fact that, if M = (mij)ij is a
symmetric and negative semidefinite matrix, then

∑n
i,j=1 aijmij ≤ 0.
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b) Generalize the previous result to the case in which aij = aij(∇u), f = f(u,∇u) depend
also on ∇u:

aij ∈ C0(Rn),
n∑

ij=1

aij(ξ)ηiηj ≥ θ|η|2 for every ξ, η ∈ Rn,

f ∈ C1(R× Rn),
∂f

∂u
> 0, u 7→ f(u, ξ) concave for every ξ ∈ Rn .

Hint: prove that ∇u(x̄) = ∇u(ȳ) = ∇u(λx̄ + (1 − λ)ȳ) at an interior maximum point
(x̄, ȳ) ∈ Ω× Ω of Cλ. Then repeat the proof as in the previous case.

c) Let Ω be strictly convex (that is, λx+ (1− λ)y ∈ Ω for every x, y ∈ Ω and λ ∈ (0, 1)).
Assume that u(x)→∞ uniformly as dist (x, ∂Ω)→ 0. Prove that u is convex in Ω.

Total: 16 points
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