Problem 1 (Approximate point spectrum, 4 points).

Let H be an Hilbert space and let $T: H \to H$ be a bounded linear operator. Assume that T is symmetric.

- a) Suppose that $T \lambda I$ is injective. Show that $R(T \lambda I)$ is dense in H (where $R(T \lambda I)$ denotes the range of $T \lambda I$). Hint: if not, there would exist $x \in H$ orthogonal to the closure of $R(T - \lambda I)$.
- b) Suppose that $R(T \lambda I)$ is dense in H and that

$$\inf_{\|x\|=1} \|Tx - \lambda x\| > 0.$$

Show that $R(T - \lambda I) = H$.

c) Denote by $\sigma(T)$ the spectrum of T. Prove that $\lambda \in \sigma(T)$ if and only if there exists a sequence $x_n \in H$, $||x_n|| = 1$, for which

$$\lim_{n \to \infty} \|Tx_n - \lambda x_n\| = 0.$$

(Thus every $\lambda \in \sigma(T)$ which is not an eigenvalue of T is an "approximate" eigenvalue).

Problem 2 (Spectral properties of the shift, 4 points).

Let $E = \ell^2$ be the space of the sequences $x = (x_1, x_2, \ldots, x_n, \ldots)$ such that

$$||x||_2 := \left(\sum_{k=1}^{\infty} |x_k|^2\right)^{\frac{1}{2}} < \infty.$$

Consider the bounded, linear operators $S_r, S_l : \ell^2 \to \ell^2$ defined by

$$S_r x = (0, x_1, x_2, \dots, x_{n-1}, \dots), \qquad S_l x = (x_2, x_3, x_4, \dots, x_{n+1}, \dots)$$

for $x \in \ell^2$.

- a) Determine $||S_l||$ and $||S_r||$. Is S_r or S_l a compact operator?
- b) Prove that $\sigma(S_r) = [-1, 1]$ and $\sigma_p(S_r) = \emptyset$.
- c) Prove that $\sigma(S_l) = [-1, 1]$ and $\sigma_p(S_l) = (-1, 1)$.
- d) Determine the adjoint operators S_r^*, S_l^* .

Please turn over.

Problem 3 (Volterra operator, 4 points).

Let $X = L^2(0,1)$ and define the operator $V: X \to X$ by

$$Vu(x) = \int_0^x u(t) \,\mathrm{d}t \,.$$

Arguing as in Problem 2 in Problem Sheet 2, you can check that V is compact (you don't have to prove it again).

- a) Determine the spectrum $\sigma(V)$ and the point spectrum $\sigma_p(V)$.
- b) Give an explicit formula for $(V \lambda I)^{-1}$ when $\lambda \in \rho(V)$ (the resolvent set of V).
- c) Determine the adjoint V^* .

Problem 4 (Weak solutions as minimizers, 4 points).

Let H be an Hilbert space, let $F : H \to R$ be a linear functional, and let $B : H \times H \to \mathbb{R}$ be a symmetric, bilinear form, such that

$$B(u, u) \ge 0$$
 for every $u \in H$.

Show that u satisfies

$$B(u, v) = F(v)$$
 for every $v \in H$

if and only if u is minimizer of the problem

$$\min\left\{\frac{1}{2}B(v,v) - F(v) : v \in H\right\}.$$

Deduce that every weak solution $u \in H_0^1(\Omega)$ to

$$-\sum_{i,j=1}^{n} D_{x_i}(a_{ij}D_{x_j}u) = f$$

(with $a_{ij} \in L^{\infty}(\Omega)$ symmetric and elliptic, $f \in L^{2}(\Omega)$) is a minimizer of some functional.

Total: 16 points